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LOCAL SELECTIVITY OF ORDERS IN CENTRAL SIMPLE ALGEBRAS

BENJAMIN LINOWITZ AND THOMAS R. SHEMANSKE

Abstract. Let B be a central simple algebra of degree n over a number field K, and
L ⊂ B a strictly maximal subfield. We say that the ring of integers OL is selective if
there exists an isomorphism class of maximal orders in B no element of which contains OL.
Many authors have worked to characterize the degree to which selectivity occurs, first in
quaternion algebras, and more recently in higher-rank algebras. In the present work, we
consider a local variant of the selectivity problem and applications.

We first prove a theorem characterizing which maximal orders in a local central simple
algebra contain the global ring of integers OL by leveraging the theory of affine buildings
for SLr(D) where D is a local central division algebra. Then as an application, we use the
local result and a local-global principle to show how to compute a set of representatives of
the isomorphism classes of maximal orders in B, and distinguish those which are guaranteed
to contain OL. Having such a set of representatives allows both algebraic and geometric
applications. As an algebraic application, we recover a global selectivity result mentioned
above, and give examples which clarify the interesting role of partial ramification in the
algebra.

1. Introduction

Let B be a central simple algebra of degree n over a number field K, and L ⊂ B a strictly
maximal (i.e., [L : K] = n) subfield of B. There exists at least one maximal order R of B
which contains the ring of integers OL, and so every element of the isomorphism class of R
admits an embedding of OL. If there exists an isomorphism class of maximal orders in B
no element of which contains OL, then OL is said to be selective. This is equivalent to no
element of the isomorphism class admitting an embedding of OL.

Many authors worked to characterize the degree to which selectivity occurs: [12], [10],[16],
[22], [19] (in quaternion algebras), and [2], [20], [3], [4] (in higher-rank algebras). The tools
which have been employed vary from the Bruhat-Tits tree in [12], to representation fields
(a subfield of a spinor class field) in [3]. The results of [3] are very general, offering the
proportion of isomorphism classes of maximal orders (an element of) which contain the
order OL (or any of its suborders), in terms of the index of the representation field in an
associated spinor class field.
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In the present work, the authors continue their study (cf. [20]) of how the use of Bruhat-
Tits buildings can illuminate problems for higher rank algebras as the Bruhat-Tits tree was
used to answer selectivity questions in the quaternion case [12]. Locally, since all maximal
orders are conjugate, every maximal order admits an embedding of OL, so a local selectivity
question must be more discerning: to characterize the maximal orders in a local central
simple algebra which contain OL. This turns out to be both an interesting and somewhat
nuanced question.

To be more precise, we set some notation. By Wedderburn’s structure theorem, we shall
assume that B = Mr(D) where D is a central division algebra over K of degree m, so that
n = rm. Let ν be any place of K, and denote the completion of K at ν by Kν , and when ν
is a finite place, denote by Oν the valuation ring of Kν . The completion of B at ν is given
by

Bν = Kν ⊗K B ∼= Mrν (Dν),

where Dν is a central division algebra over Kν of degree mν , so that n = rm = rνmν with
r | rν . We say that a place ν of K splits in B if mν = 1, totally ramifies in B if mν = n,
and partially ramifies in B if 1 < mν < n. If B totally ramifies at a finite place ν, there is
a unique maximal order of Bν , so of course OL is contained in it, thus the only interest in
local selectivity arises when ν is not totally ramified.

As a consequence of the condition that L is a strictly maximal subfield of B, we know that
for each place ν of K and for all places P of L lying above ν, mν | [LP : Kν ] (the Albert-
Brauer-Hasse-Noether theorem), we have by (31.10) of [25], that each LP splitsDν (and hence
Bν), and moreover by (28.5) of [25], for each place P of L with P | ν, there is a smallest
integer rP ≥ 1 so that LP embeds in MrP(Dν) as a Kν-algebra; here rP = [LP : Kν ]/mν .
Theorem 2.1 (which applies even in the quaternion case) says:

Theorem. Let B be a central simple algebra over a number field K of dimension n2 ≥ 4
and L a degree n field extension of K which is contained in B. Let ν be a finite place
of K which splits or is partially ramified in B, so Bν = Mrν (Dν) with rν > 1, and Dν

a central division algebra over Kν of degree mν. Assume that the place ν is unramified
in L, and let {P1, . . . ,Pg} be the set of places of L lying above ν. As above, let rPi

=
[LPi

: Kν ]/mν . Then OL is contained in the maximal orders of Bν represented by the
homothety class [L] = [a1, . . . , arν ] ∈ Zrν/Z(1, . . . , 1) if and only if there are ℓi ∈ Z such that
[L] = [ℓ1, . . . , ℓ1︸ ︷︷ ︸

rP1

, ℓ2, . . . , ℓ2︸ ︷︷ ︸
rP2

, . . . , ℓg, . . . , ℓg︸ ︷︷ ︸
rPg

].

There are a number of applications of such a local result. As a primary application, it
allows us to construct a set of representatives of all the isomorphism classes of maximal
orders in the global algebra B, and specify those which are guaranteed to contain OL.

This is turn has at least two other applications, one algebraic and one geometric. In terms
of the global selectivity problem, it allows one to compute not simply the selectivity pro-
portion for OL, but distinguish those classes which necessarily admit an embedding of OL.
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The same computation of explicit representatives of maximal orders in B also can be used
in geometric realms such the development of a higher-dimensional analog of a construction
of Vignerás [29] of isospectral non-isometric Riemann surfaces (e.g., [21]). Explicit charac-
terization of these maximal orders allows the geometry of the corresponding manifold to be
detailed, e.g., computation of the geodesic length spectrum.

As an algebraic application, we recover a global selectivity result mentioned above, and
give an explicit example which demonstrates the effect of partial ramification in the algebra.

2. Local Results

Because our main application of these local results will be to construct a distinguished
set of representatives for the isomorphism classes of maximal orders in the global algebra B,
and then recover a selectivity result, we retain global notation throughout to allow for some
dovetailing of local and global remarks.

Let ν be a finite place of K, and Bν
∼= Mrν (Dν), with Dν a central division algebra of

degree mν over Kν . Recall [L : K] = n = degK(B) = rm = rνmν . We shall note in
Theorem 4.3, if there is a finite place ν for which Bν is a division algebra (rν = 1), there can
be no selectivity, so we assume for this section that rν > 1.

Recall from the introduction that for each place ν of K, and each place P of L lying
above ν, rP = [LP : Kν ]/mν ≥ 1 is the smallest integer so that LP embeds in MrP(Dν) as a
Kν-algebra.

We note that ∑

P|ν

rP =
∑

P|ν

[LP : Kν ]

mν
=

[L : K]

mν
=

n

mν
= rν ,

and this means that

(1) Kν ⊗K L ∼=
⊕

P|ν

LP →֒
⊕

P|ν

MrP(Dν) →֒ Mrν (Dν),

with the last embedding as blocks along the diagonal.

We have fixed a global maximal order R in B which contains OL. We define completions
Rν ⊆ Bν by:

Rν =

{
Oν ⊗OK

R if ν is finite

Kν ⊗OK
R = Bν if ν is infinite.

For finite places ν, we know by (17.3) of [25], that Rν is conjugate to Mrν (∆ν) where ∆ν is
the unique maximal order of Dν , so we assume that Bν has been identified with Mrν (Dν)
in such a way that Rν = Mrν (∆ν). Since all maximal orders of MrP(Dν) are conjugate to
MrP(∆ν) we may, by a change of basis, adjust the embeddings LP →֒ MrP(Dν) so that the
ring of integers OP ⊂ MrP(∆ν). Now by Exercise 5.4 (p. 76) of [25], Oν is a faithfully flat
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OK-module and the containment of OL ⊂ R extends to one ofOν⊗OK
OL ⊂ Oν⊗OK

R = Rν .
We identify OL with its image 1 ⊗ OL, so will simply write OL ⊂ Rν . More precisely, we
will identify OL with its image in

⊕
P|ν OP via:

(2) OL ⊂ Oν ⊗OK
OL →֒

⊕

P|ν

OP ⊂
⊕

P|ν

MrP(∆ν) ⊂ Mrν (∆ν) = Rν ,

where we are using the subset notation to identify the object and its image.

Fix a uniformizing parameter π = πDν
of the maximal order ∆ν , and let

dℓk = diag(πℓ, . . . ,πℓ

︸ ︷︷ ︸
k

, 1, . . . , 1) ∈ Mrν (Dν). Put

(3)

R(k, ℓ) := dℓkRνd
−ℓ
k = dℓkMrν (∆ν)d

−ℓ
k =

(
Mk(∆ν) π

ℓMk×rν−k(∆ν)
π

−ℓMrν−k×k(∆ν) Mrν−k(∆ν)

)
⊂ Mrν(Dν).

Note that R(0, ℓ) = R(rν , ℓ) = R(k, 0) = Rν = Mrν (∆ν). If we let P1, . . . ,Pg denote all
the places of L lying above ν, then from equations (2),(3) above, it is evident that for all
ℓ1, . . . , ℓg ∈ Z,

(4) OL ⊂ R(rP1
, ℓ1) ∩R(rP1

+ rP2
, ℓ2) ∩ · · · ∩ R(rP1

+ · · ·+ rPg
, ℓg),

that is,
(5)

OL ⊂
⋂

ℓi∈Z

[
R(rP1

, ℓ1) ∩R(rP1
+ rP2

, ℓ2)∩ · · ·∩R(rP1
+ · · ·+ rPg

, ℓg)
]
=

⊕

P|ν

MrP(∆ν) ⊂ Rν .

2.1. Affine buildings and type distance. We now translate this to the language of affine
buildings. By (17.4) of [25], we know that every maximal order in Bν has the form End∆ν

(Λ)
where Λ is a full (i.e., rank rν), free (left) ∆ν-lattice in Drν

ν . We recall that a maximal order
is characterized completely by the homothety class of its associated lattice, and homothety
classes of lattices in Drν

ν are a very concrete way in which to characterize the vertices of
the affine building associated to SLrν (Dν) (see section 3 of [1], or [26] Ch.9, §2). We know
GLrν (Dν) acts transitively on the free ∆ν-lattices of rank rν and acts invariantly on the
homothety classes. Using that the maximal order ∆ν of Dν is a discretely valued ring with
π = πDν

a uniformizer, we put ordπ to be the exponential valuation on Dν . Then we note
that ordπ is trivial on the commutator [D×, D×], so for each g ∈ GLrν(Dν), ordπ(det(g))
is a well-defined integer, where det(·) is the Dieudonné determinant. It is then natural to
define the type of a vertex as an integer modulo rν as follows (see [26]). Let Λ be a (free of
rank rν) ∆ν-lattice whose homothety class is assigned the type 0. For another such lattice
Γ, let g be any element of GLrν(Dν) so that Γ = g(Λ). Then the class of Γ is assigned type
ordπ(det(g)) (mod rν), which is well-defined on the homothety class since we are viewing
the type modulo rν .
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The simplicial structure of the building associated to SLrν(Dν) is reflected through its
vertex types. In particular, the rν vertices of any chamber have types 0 through (rν − 1). In
relating the vertices, we utilize the invariant factor theory which applies to free ∆ν-lattices of
rank rν . Let Γ and Λ be two rank rν free ∆ν-lattices. Since we are working with homothety
classes, we may assume that Γ ⊆ Λ. By (17.7) of [25], given two such lattices, there exists a
basis {e1, . . . , erν} of Drν

ν and rational integers 0 ≤ a1 ≤ · · · ≤ ar so that

Λ =
rν⊕

i=1

∆νei and Γ =
rν⊕

i=1

∆νπ
aiei.

Suppose that E = End∆ν
(Λ), and E ′ = End∆ν

(Γ). Using the invariant factor decomposition
above, we define the type distance tdν(E , E ′) to be

tdν(E , E ′) =
rν∑

i=1

ai (mod rν).

We note that this definition depends only upon the homothety class of the lattices. While
it is true that tdν(E , E ′) ≡ −tdν(E ′, E) (mod rν), our main concern will be when the type
distance tdν(E , E ′) is divisible by some integer, so the order will be of little consequence.
This definition of type distance generalizes the one in [20], where whenever the algebra was
not totally ramified, it was split, so that rν = n and Dν = Kν .

2.2. Local selectivity. Pick a basis {α1, . . . , αrν} of Drν
ν (and hence in particular fix an

apartment of the building associated to SLrν(Dν)), so that with respect to this basis, Rν =
Mrν (∆ν) = End∆ν

(Λ), where Λ = ⊕rν
i=1∆ναi. Also we have R(k, ℓ) = End∆ν

(M(k, ℓ))
where M(k, ℓ) = ⊕k

i=1π
ℓ∆ναi ⊕ ⊕rν

i=k+1∆ναi and π is our fixed uniformizer in ∆ν . As
usual, this maximal order in Bν can be represented by the homothety class of the lattice
M(k, ℓ), [M(k, ℓ)] := [ℓ, . . . , ℓ︸ ︷︷ ︸

k

, 0, . . . , 0] ∈ Zrν/Z(1, . . . , 1). Observe that R(k, ℓ) has type kℓ

(mod rν).

With the notation fixed as above, we characterize precisely which maximal orders in this
apartment contain OL. The theorem is valid even in the quaternion case (n = 2). We shall
continue to assume rν > 1 (i.e. ν not totally ramified in B), otherwise Bν has a unique
maximal order, which must clearly contain OL.

Theorem 2.1. Let B be a central simple algebra over a number field K of dimension n2 ≥ 4
and L a degree n field extension of K which is contained in B. Let ν be a finite place
of K which splits or is partially ramified in B, so Bν = Mrν (Dν) with rν > 1, and Dν

a central division algebra over Kν of degree mν. Assume that the place ν is unramified
in L, and let {P1, . . . ,Pg} be the set of places of L lying above ν. As above, let rPi

=
[LPi

: Kν ]/mν . Then OL is contained in the maximal orders of Bν represented by the



6 BENJAMIN LINOWITZ AND THOMAS R. SHEMANSKE

homothety class [L] = [a1, . . . , arν ] ∈ Zrν/Z(1, . . . , 1) if and only if there are ℓi ∈ Z such that
[L] = [ℓ1, . . . , ℓ1︸ ︷︷ ︸

rP1

, ℓ2, . . . , ℓ2︸ ︷︷ ︸
rP2

, . . . , ℓg, . . . , ℓg︸ ︷︷ ︸
rPg

].

Proof of Theorem. Consider equation (5). We know that OL is contained in R(rP1
, ℓ1) ∩

R(rP1
+ rP2

, ℓ2) ∩ · · · ∩ R(rP1
+ · · ·+ rPg

, ℓg) for any choice of ℓi ∈ Z. These orders corre-
spond to homothety classes of lattices [M(rP1

+ · · ·+ rPi
, ℓi)] = ℓi[M(rP1

+ · · ·+ rPi
, 1)] =

ℓi[ 1, . . . , 1︸ ︷︷ ︸
rP1

+···+rPi

, 0, . . . , 0] as an element of Zrν/Z(1, . . . , 1). In [7], it is shown that walks in an

apartment are consistent with the natural group action on Zrν/Z(1, . . . , 1), and by [28] the
intersection of any finite number of maximal orders (containing ∆rν

ν ) in an apartment is the
same as the intersection of all the maximal orders in the convex hull they determine. The
references above discuss the case where Dν = Kν , but the arguments generalize trivially to
the setting of a vector space over Dν instead of Kν , as does the theory of buildings. Using
these observations, we deduce that OL is contained in maximal orders corresponding to

[M(rP1
, ℓ1) +M(rP1

+ rP2
, ℓ2) + · · ·+M(rP1

+ · · ·+ rPg
, ℓg)] =

[ℓ1 + · · ·+ ℓg, . . . , ℓ1 + · · ·+ ℓg︸ ︷︷ ︸
rP1

, ℓ2 + · · ·+ ℓg, . . . , ℓ2 + · · ·+ ℓg︸ ︷︷ ︸
rP2

, . . . , ℓg, . . . , ℓg︸ ︷︷ ︸
rPg

].

Since the ℓi ∈ Z are arbitrary, a simple change of variable (ℓk + · · ·+ ℓg 7→ ℓk) shows that
OL is contained in the maximal orders specified in the proposition. We now show these are
the only maximal orders in the apartment which contain OL. To proceed, we need to set
some notation and prove a technical lemma.

For any place P of L lying above ν, we have (by assumption) that LP/Kν is an unramified
extension of degree f := rPmν . Let OP and Oν be the associated residue fields and let
q = |Oν |. Now let ω be a primitive qf − 1 root of unity over Kν , so that LP = Kν(ω).
We know that Dν contains an inertia field, Wν , which is unique up to conjugacy. It is an
unramified extension of Kν and a maximal subfield of Dν , having degree [Wν : Kν ] = mν .
Without loss, we may assume that Kν ⊆ Wν ⊆ LP, with Wν generated over Kν by an
appropriate power of ω (since qmν−1 | qf − 1). Now let h = minKν

(ω) be the minimal
polynomial of ω over Kν . As ω is integral, we know h ∈ Oν [x].

Proposition 2.2. From Theorem 5.10 and Corollary 5.11 of [25], we recall

• OP = Oν [ω]; OP = Oν [ω].

• h = minOν
(ω) and is separable.

• LP/Kν and OP/Oν are cyclic extensions with isomorphic Galois groups.

The technical lemma we require is:

Lemma 2.3. Let R be the valuation ring of ν in K, and S its integral closure in L. Suppose
that E is a ring containing both R and OL. Then S ⊂ E .
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Proof. By Corollary 5.22 of [6], S is the intersection of all valuation rings of L which contain
R. The valuation ring R is equal to the localization D−1OK where D = OK \ νOK , and
the valuation rings of L which contain R are precisely the localizations of OL at the places
P1, . . . ,Pg of L which lie above ν. By p43 of [25], the intersection of these localizations, S,
is equal to the localization T−1OL, where T = OL \ (P1 ∪ · · · ∪Pg).

It is easy to see that D ⊆ T since if α ∈ D = OK \ νOK , we have α ∈ OL and if
α ∈ Pi for some i, then α ∈ Pi ∩ OK = νOK , a contradiction. So D−1OL ⊆ T−1OL. To
show equality, we need only show that for β ∈ T , β−1 ∈ D−1OL. Since β ∈ OL we know
that NL/K(β) := ββ̃ ∈ OK , which means β̃ = β−1NL/K(β) ∈ L and is integral, hence in

OL, so β−1 = β̃/NL/K(β), and we need only check that NL/K(β) ∈ D. Suppose to the
contrary that NL/K(β) ∈ νOK . Then we show that ν ∈ Pi for some i, a contradiction.
We use the extension of the norm to ideals and that NL/K(βOL) = NL/K(β)OK . If we
write βOL = Pm1

1 · · ·Pmg
g Q where Q is an ideal place to the Pi, and let q = Q ∩ OK , then

NL/K(βOL) = (νOK)
∑g

i=1
mifiqf where fi = f(Pi : ν) and f = f(Q : q) are the corresponding

inertial degrees. So NL/K(β) ∈ νOK if and only if some mi > 0 which is to say that β ∈ Pi,
a contradiction. Thus we have that S, the integral closure of R in L, can be expressed as
D−1OL = R · OL, so any ring E containing R and OL contains S. �

Continuing now with the proof of Theorem 2.1, denote p denote the two-sided ideal π∆ν

of ∆ν , and suppose that OL is contained in a maximal order Λ(a1, . . . , arν ) where

Λ(a1, . . . , arν) = diag(πa1 , . . . ,πarν )Mrν (∆ν) diag(π
a1 , . . . ,πarν )−1 =




∆ν pa1−a2 pa1−a3 . . . pa1−arν

pa2−a1 ∆ν pa2−a3 . . . pa2−arν

pa3−a1 pa3−a2 . . . . . . pa3−arν

...
... ∆ν

...
parν−a1 . . . parν−arν−1 ∆ν




,

that is Λ(a1, . . . , arν ) corresponds to the homothety class of the lattice [a1, . . . , arν ] relative
to our fixed basis {α1, . . . , αrν} of Drν

ν . By equation (5), we can reorder subsets of the basis
{α1, . . . , αrP1

}, {αrP1
+1, . . . , αrP1

+rP2
}, . . . , {αrP1

+···+rPg−1
+1, . . . , αrν} so that equation (5)

remains valid and a1 ≤ · · · ≤ arP1
, arP1

+1 ≤ · · · ≤ arP1
+rP2

, . . . , arP1
+···+rPg−1

+1 ≤ · · · ≤ arν .

Now we assume that [a1, . . . , arν ] is not of the form [ℓ1, . . . , ℓ1︸ ︷︷ ︸
rP1

, ℓ2, . . . , ℓ2︸ ︷︷ ︸
rP2

, . . . , ℓg, . . . , ℓg︸ ︷︷ ︸
rPg

] for

ℓi ∈ Z. Since we can permute the order in which we list the places Pi of L lying above ν, we
may assume that there is an r0 with 1 ≤ r0 < rP1

so that a1 = · · · = ar0 < ar0+1 ≤ · · · ≤ arP1
.
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From equation (2), we know that OL ⊂ ⊕g
i=1OPi

⊂ ⊕g
i=1MrPi

(∆ν) ⊂ Mrν (∆ν), so

OL ⊂ ⊕g
i=1MrPi

(∆ν) ∩ Λ(a1, . . . , arν) =: Γ =




Λ1 0 0

0
. . . 0

0 0 Λg


 ,

where the Λi ⊂ MrPi
(∆ν). Since Oν (as scalar matrices) and OL are contained in Γ,

Lemma 2.3 gives us that S, the integral closure of R = (Oν ∩ K) in L, is contained in
Γ. Thus Oν ⊗R S ⊂ Oν ⊗R Γ = Γ. By Proposition II.4 of [27], Oν ⊗R S ∼= ⊕g

i=1OPi
, so from

Oν ⊗R S ⊂ Γ , we may assume that OP1
→֒ Λ1, from which we shall derive a contradiction.

So we focus on Λ1, the upper rP1
× rP1

block of ⊕g
i=1MrPi

(∆ν) ∩ Λ(a1, . . . , arν). That
intersection is contained in

(6) Γ1 :=


 Mr0(∆ν) Mr0×rP1

−r0(∆ν)

πMrP1
−r0×r0(∆ν) MrP1

−r0(∆ν)


 .

Write P for P1. As in Proposition 2.2 and the discussion which immediately precedes
it, we write LP = Kν(ω) (OP = Oν [ω]) where ω is an appropriate primitive root of unity
over Kν , and h is its minimal polynomial over Kν . We know that h ∈ Oν [x] is monic
and irreducible of degree [LP : Kν ] = rPmν . Under the embedding OP →֒ Γ1 we send
ω 7→ γ ∈ Γ1. In particular, h(γ) = 0.

Case 1: mν = 1 (ν splits in B), which means Dν = Kν , ∆ν = Oν , and p = πOν .
Let χγ = det(xI − γ) denote the characteristic polynomial of γ ∈ Γ1 ⊂ MrP(Oν). Since
deg(χγ) = rP = deg(h) and χγ(γ) = 0, and h is irreducible, we have h | χγ, hence h = χγ

by comparing degrees. On the other hand viewing χγ (mod πOν) means computing the
characteristic polynomial in Γ1 (mod πOν) ⊂ MrP(Oν), whose block structure will make

χγ reducible mod πOν . If h = χγ = h̄1h̄2 with gcd(h̄1, h̄2) = 1, then we get a nontrivial
factorization of h over Oν by Hensel’s lemma, a contradiction to the irreducibility of h. If
not, then h = (h0)

k for some irreducible h0 ∈ Oν [x] with deg(h0) < deg(h). But this means
that h has multiple roots, contrary to Proposition 2.2.

Case 2: mν > 1. Now deg(h) = rPmν , and γ ∈ Γ1 ⊂ MrP(∆ν). As above, let Wν be
a maximal unramified extension of Kν contained in LP ∩ Dν ; recall [Wν : Kν ] = mν . As a
maximal subfield of Dν , Wν is a splitting field for Dν and we consider 1⊗ γ ∈ MrP·mν

(Wν).
By Theorem 9.3 of [25] the characteristic polynomial χ1⊗γ ∈ Oν [x], which is to say it is
independent of the splitting field for Dν . As in the previous case, we deduce that h = χ1⊗γ .
To maintain the flow of this argument, we defer the proof of the following lemma to the end
of this proof.

Lemma 2.4. χ1⊗γ is reducible in OWν
[x]. In particular, χ1⊗γ = h1h2 with hi ∈ OWν

[x] and

deg(h1) = r0 < rP.
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If h = χ1⊗γ = (h0)
k with deg(h0) < deg(h), then as in the previous case h has multiple

roots, a contradiction. On the other hand, if h factors into relatively prime factors, Hensel’s
lemma will only provide a nontrivial factorization over OWν

which is actually expected since
h is irreducible over Kν and [Wν : Kν ] = mν > 1. So we need to dig a bit deeper. Let
G = Gal(LP/Kν) and H = Gal(LP/Wν). Then

h = minKν
(ω) =

∏

σ∈G

(x− σ(ω)) =
∏

σ∈G/H

∏

τ∈H

(x− τσ(w)).

Let hσ =
∏

τ∈H(x − τσ(w)). Since hτ
σ = hσ for all τ ∈ H , by Galois theory we have that

hσ ∈ OWν
[x], and deg(hσ) = |H| = [LP : Wν ] = rP. Moreover since LP = Kν(ω) = Kν(σ(w))

for any σ ∈ G, [LP : Wν ] = deg(minWν
(σ(ω)), we see that hσ = minWν

(σ(ω)), and so in
particular, h =

∏
σ∈G/H hσ is the irreducible factorization of h in OWν

[x].

Now consider h ∈ Oν [x] ⊂ OWν
[x]. We have that h =

∏
σ∈G/H hσ and hσ ∈ OWν

[x].

Recall that h = minOν
(ω) and the isomorphisms G = Gal(LP/Kν) ∼= Gal(OP/Oν) and

H = Gal(LP/Wν) ∼= Gal(OP/OWν
) give that the decomposition h =

∏
σ∈G/H hσ is the

irreducible factorization of h in OWν
[x]. But this contradicts Lemma 2.4 which says that

h = χ1⊗γ has a factor of degree s < rP. �

Proof of Lemma 2.4. To set the notation, we have Γ1 ⊂ MrP(∆ν). Following §14 of [25],
we can choose π ∈ ∆ν a uniformizer with π

mν = πν (πν a uniformizer in Kν), and let ω0

be a primitive qmν − 1 root of unity over Kν , q = |Oν |. So Wν = Kν(ω0) is an unramified
extension of Kν in Dν with degree mν over Kν . Then

∆ν =
mν−1⊕

i,j=0

Oνω
i
0π

j = Oν [ω0,π]; Dν = Kν [ω0,π].

In (14.6) [25], Reiner gives an explicit Kν-isomorphism

Dν → Mmν
(Wν) ∼= Wν ⊗Kν

Dν denoted simply a 7→ a∗.

From (14.7) [25], we see that for a ∈ ∆ν , a
∗ ∈ Mmν

(OWν
) has upper triangular image in

Mmν
(OWν

), and for a ∈ π∆ν , a
∗ has strictly upper triangular image in Mmν

(OWν
). The

map a 7→ a∗ now extends linearly to MrP(Dν) → MrP·mν
(Wν).

We first work through a simple, but non-trivial example which will make the general proof
much easier to understand.

Example 2.5. Let r0 = 3, mν = 2, and rP > r0 (the exact value will not matter). Then

γ ∈ Γ1 =


 M3(∆ν) M3×rp−3(∆ν)

πMrP−3×3(∆ν) Mrp−3(∆ν)


 .

Then χ1⊗γ = det(−A) (the minus is for easier typesetting), where
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(7) A =




a11 − x a12 a13 a14 a15 a16 a17 a18 . . . . . .
0 a22 − x 0 a24 0 a26 0 a28 . . . . . .
a31 a32 a33 − x a34 a35 a36 a37 a38 . . . . . .
0 a42 0 a44 − x 0 a46 0 a48 . . . . . .
a51 a52 a53 a54 a55 − x a56 a57 a58 . . . . . .
0 a62 0 a64 0 a66 − x 0 a68 . . . . . .

0 ∗ 0 ∗ 0 ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 0 ∗ ∗ ∗ ∗
0 ∗ 0 ∗ 0 ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 0 ∗ ∗ ∗ ∗
...

...
...

...
...

...
...

...
...

...
0 ∗ 0 ∗ 0 ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 0 ∗ ∗ ∗ ∗




.

We are going to compute this determinant using minors with expansions focusing on
columns 1, 3, 5 where the entries in the lower left blocks are all zero. By expanding, we
find that after three iterations, all of the summands in the determinant will be contain the
determinant of the same (rp − 3)× (rp − 3) minor. Collecting the other terms gives a degree
r0 = 3 factor. The notation we shall use is A(i1, . . . , ir|j1, . . . js) will denote the matrix
obtained from A be removing rows i1, i2, . . . , ir and columns j1, j2, . . . , js.

Expanding along the first column, we obtain:

det(A) = (a11 − x) detA(1|1) + a31 detA(3|1) + a51 detA(5|1).

In computing detA(m|1), we now look at what would be column 3 of the original matrix
A which now has only two non-zero entries in that column of the minor.

detA(1|1) = (a33 − x) detA(1, 3|1, 3) + a53 detA(1, 5|1, 3),
detA(3|1) = a13 detA(1, 3|1, 3)− a53 detA(3, 5|1, 3),
detA(5|1) = −a13 detA(1, 3|1, 3)− (a33 − x) detA(3, 5|1, 3).

In this last stage we need to compute the determinant of three minors, and the expression
for each will be a multiple of detA(1, 3, 5|1, 3, 5) from which we will obtain the claim.

detA(1, 3|1, 3) = (a55 − x) detA(1, 3, 5|1, 3, 5),
detA(1, 5|1, 3) = −a35 detA(1, 3, 5|1, 3, 5),
detA(3, 5|1, 3) = a15 detA(1, 3, 5|1, 3, 5).
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Now by inspection we see that we obtain a product of a cubic and a factor of degree
rP − 3. �

We now turn to the general case. We have a

γ ∈ Γ1 :=


 Mr0(∆ν) Mr0×rP1

−r0(∆ν)

πMrP1
−r0×r0(∆ν) MrP1

−r0(∆ν)


 .

Then 1 ⊗ γ ∈ Wν ⊗Kν
Γ1 ⊂ MrPmν

(OWν
), with reduced characteristic polynomial χ1⊗γ ∈

OWν
[x] of degree rPmν . Then the reduction, χ1⊗γ , of the characteristic polynomial modulo

πνOWν
is given as in the example above as χ1⊗γ = det(−A), where A has entries in OWν

[x]
and is given by (using s for r0 − 1, m for mν and writing ai,j instead of aij for clarity)

(8)












































































































a1,1 − x . . . a1,m a1,m+1 . . . a1,2m . . . a1,sm+1 . . . a1,r0m a1,r0m+1 . . .

0
. . .

.

.. 0
. . .

.

.. . . . 0
. . .

.

..
.
..

0 . . . am,m − x 0 . . . am,2m . . . 0 . . . am,r0m

...

am+1,1 . . . am+1,m am+1,m+1 − x . . . am+1,2m . . . am+1,sm+1 . . . am+1,r0m

...

0
. . .

..

. 0
. . .

..

. . . . 0
. . .

..

.
..
.

0 . . . a2m,m 0 . . . a2m,2m − x . . . 0 . . . a2m,r0m

...

...
...

...
...

...
...

. . .
...

...
...

...

asm+1,1 . . . asm+1,m asm+1,m+1 . . . asm+1,2m . . . asm+1,sm+1 − x . . . asm+1,r0m

.

..

0
. . .

... 0
. . .

... . . . 0
. . .

...
...

0 . . . ar0m,m 0 . . . ar0m,2m . . . 0 . . . ar0m,r0m − x
.
..

0 ∗ ∗ 0 ∗ ∗ . . . 0 ∗ ∗ ar0m+1,r0m+1 − x
...

. . . ∗
...

. . . ∗ . . . 0
. . . ∗ 0

0 . . . 0 0 . . . 0 . . . 0 . . . 0 0
. . .

.

..
.
..

.

..
.
..

.

..
.
..

. . .
.
..

.

..
.
..

.

..

0 ∗ ∗ 0 ∗ ∗ . . . 0 ∗ ∗ ∗
..
.

. . . ∗
..
.

. . . ∗ . . . 0
. . . ∗ 0

0 . . . 0 0 . . . 0 . . . 0 . . . 0 0
. . .













































































































.

We are going to partially compute this determinant, taking advantage of the zeros in
columns kmν +1, k = 0, . . . , (r0− 1) (below row r0mµ). The goal is to indicate that after r0
iterations, every minor will have the same form, and the determinant of this minor will be
therefore be a factor of the reduced characteristic polynomial (viewed over the residue field).
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Computing the determinant by expanding along the first column, we obtain (still using
s = r0 − 1, m for mν , and writing ai,j for aij for clarity):

det(A) = (a1,1 − x) detA(1|1) +
s∑

k=1

akm+1,1 detA(km+ 1|1)

So at this stage our determinant involves the determinants of new minors of the form
detA(km+1|1), k = 0, . . . , s, that is over column 1 and all the rows with nontrivial entries.

In computing each term detA(∗|1), we next want to expand along what would be column
m+1 of the original matrix A which now has only r0 − 1 non-zero entries in that column of
the minor. The final simplification we make is that we shall not fuss about the correct signs
of each summand in the expression of the determinant since they will be immaterial in the
end, so we simply denote all of them as ±.

detA(1|1) = ±(am+1,m+1 − x) detA(1, m+ 1|1, m+ 1) +
s∑

k=2

±akm+1,m+1 detA(1, km+ 1|1, m+ 1).

detA(m+ 1|1) = ±a1,m+1 detA(1, m+ 1|1, m+ 1)± a2m+1,m+1 detA(m+ 1, 2m+ 1|1, m+ 1)± · · ·
± asm+1,m+1 detA(m+ 1, sm+ 1|1, m+ 1)

=

s∑

k=0
k 6=1

±akm+1,m+1 detA(km+ 1, m+ 1|1, m+ 1).

detA(2m+ 1|1) = ±a1,m+1 detA(1, 2m+ 1|1, m+ 1)± (am+1,m+1 − x) detA(m+ 1, 2m+ 1|1, m+ 1)

± a3m+1,m+1 detA(2m+ 1, 3m+ 1|1, m+ 1)± · · ·
± asm+1,m+1 detA(2m+ 1, sm+ 1|1, m+ 1)

=
s∑

k=0
k 6=2

±akm+1,m+1 detA(2m+ 1, km+ 1|1, m+ 1)∓ x detA(m+ 1, 2m+ 1|1, m+ 1)

...
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detA(sm+ 1|1) = ±a1,m+1 detA(1, sm+ 1|1, m+ 1)± (am+1,m+1 − x) detA(m+ 1, sm+ 1|1, m+ 1)

± a2m+1,m+1 detA(2m+ 1, sm+ 1|1, m+ 1)± · · ·
± a(s−1)m+1,m+1 detA((s− 1)m+ 1, sm+ 1|1, m+ 1)

=

s∑

k=0
k 6=s

±akm+1,m+1 detA(sm+ 1, km+ 1|1, m+ 1)∓ x detA(m+ 1, sm+ 1|1, m+ 1)

We need to take stock of what is happening. Each of these minors has the form A(∗|1, m+
1). It is clear and we continue to evaluate the determinants of these minors, the next
set will have the form A(∗|1, m + 1, 2m + 1) and after r0 iterations will have the form
A(∗|1, m+ 1, 2m+ 1, . . . , sm+ 1).

Also at our current stage of computation, all minors of the form A(jm+1, km+1|1, m+1)
where j 6= k ∈ {0, . . . , s} also occur. At each new stage a new row will be added to the
minor jm+1, km+1, ℓm+1 where j, k, l range over 0, . . . , s with all indices distinct. After
r0 iterations, all r0 rows km+1, k = 0, . . . , s will necessarily appear in each minor, at which
point we will have

χ1⊗γ = h1 · detA(1, m+ 1, . . . , sm+ 1|1, m+ 1, . . . , sm+ 1).

Moreover, if A0 was the image of the matrix of 1⊗ γ in MrPmν
(OWν

) (so that the matrix A
above is A = det(xI −A0)), we would have that

det−A(1, m+1, . . . , sm+1|1, m+1, . . . , sm+1) = det(xI−A0(1, . . . , sm+1|1, . . . , sm+1)),

that is the characteristic polynomial of a matrix in MrPmν−r0(OWν
), and thus having degree

rpmν − r0. This establishes that χ1⊗γ = h1h2 where deg h1 = r0 < rP, which completes the
proof. �

3. Constructing Distinguished Representatives of the Isomorphism Classes

of Maximal Orders

The goal of this section is to use the local result (Theorem 2.1) and a local-global principle
to construct a set of representatives of the isomorphism classes of maximal orders in B, and
distinguish those which are guaranteed to contain OL. This task involves a number of steps.
The first is to define a class field K(R)/K whose degree is the number of isomorphism
classes comprising the genus of R. Then places ν of K are chosen so that the Artin symbols
(ν,K(R)/K) correspond to generators of Gal(K(R)/K) in which ν has prescribed splitting
behavior in L. Finally, a set of maximal orders in B are constructed by choosing distinguished
representatives of the local algebras Bν using Theorem 2.1. This broad outline was also
followed in the simpler case of prime degree [20], but we include all the details here to afford
careful treatment especially to the complications which arise due to the presence of partial
ramification for central simple algebras of arbitrary degree.
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3.1. Class fields and the genus of R. First, we construct a class field, K(R), associated
to the maximal order R whose degree over K equals the number of isomorphism classes of
maximal orders in the global algebra B. We then we give a filtration of the Galois group,
Gal(K(R)/K), in order to parametrize the isomorphism classes of maximal orders in B.

The class field extension K(R)/K comes from class field theory by producing an open
subgroup HR of finite index in the idele group JK . The group HR is the product of K× and
the reduced norm of an idelic normalizer of R (nr(N(R)), where N(R) = JB ∩∏

ν N (Rν),
and where N (Rν) is the local normalizer of Rν in B×

ν , and JB is the idele group of B.) We
begin by computing the local normalizers and their reduced norms.

3.1.1. Normalizers and their reduced norms. Given our maximal order R ⊂ B and a place ν
ofK, we have previously defined the completionsRν ⊆ Bν . LetN (Rν) denote the normalizer
ofRν in B×

ν , and nrBν/Kν
(N (Rν)) its reduced norm inK×

ν . First suppose that ν is an infinite
place, so N (Rν) = B×

ν . If ν splits in B, then Bν
∼= Mn(Kν), so N (Rν) ∼= GLn(Kν), and

nrBν/Kν
(N (Rν)) = K×

ν , while if ν ramifies in B (possible only if n is even and ν is real),
then (33.4) of [25] shows that nrBν/Kν

(N (Rν)) = R×
+.

For a finite place ν, it is clearest to distinguish three cases. If mν = 1 (the split case),
then Bν has been identified with Mn(Kν), so by (17.3) and (37.26) of [25], every maximal
order is conjugate by an element of B×

ν to Mn(Oν), and every normalizer is conjugate to
GLn(Oν)K

×
ν , hence nrBν/Kν

(N (Rν)) = O×
ν (K

×
ν )

n.

At the other extreme is mν = n (the totally ramified case), so that Bν = Dν . Then Rν is
the unique maximal order of the division algebra Bν , so N (Rν) = B×

ν , and by p 153 of [25],
nr(N (Rν)) = nrBν/Kν

(B×
ν ) = K×

ν .

Finally, consider the partially ramified case in which Bν
∼= Mrν(Dν) where Dν is a central

division algebra of degree 1 < mν < n over Kν . Then Rν is conjugate to Mrν(∆ν) where ∆ν

is the unique maximal order of Dν (17.3 of [25]).

From §14.5 of [25], we choose a uniformizer π = πDν
for ∆ν so that πmν = πν ∈ Kν . We

also take ω a primitive (qmν − 1)th root of unity in ∆ν . Then Eν = Kν(π) and Wν = Kν(ω)
are degree mν field extensions of Kν which are respectively totally ramified and unramifed
and so that

(9) ∆ν = Oν [ω,π] =

mν−1⊕

i,j=0

Oνω
i
π

j and Dν = Kν [ω,π].

To deduce nr(N (Rν)), it is sufficient to consider Rν = Mrν (∆ν). From (37.25)-(37.27) of
[25], we know that N (Rν)/GLrν (∆ν)K

×
ν
∼= Z/mνZ. By (17.3) of [25], we know that πRν is

the unique two-sided ideal of Rν , which is to say that π ∈ N (Rν). It follows that N (Rν)
is the group generated by πIrν and GLrν (∆ν)K

×
ν . Since nrDν/Kν

(π) = (−1)mν−1πν , we

have nrBν/Kν
(πIrν) = (−1)rν(mν−1)πrν

ν . Finally, given that the unramified extension Wν/Kν
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is contained in ∆ν and and the norm NWν/Kν
maps the units of OWν

onto O×
ν , we may

conclude that nr(N (Rν)) = O×
ν (K

×
ν )

rν .

Summarizing, for a finite place ν of K, the computations above show that

nr(N (Rν)) = nrBν/Kν
(N (Rν)) = O×

ν (K
×
ν )

rν ,

for all 1 ≤ rν ≤ n.

Thus with the exception of a real place ν which ramifies in B (possible only if n is even),
for all places ν we have O×

ν ⊂ nr(N (Rν)), a fact that will be important in associating a
class field to R.

3.1.2. Parametrizing the Genus. We know that any two maximal orders in B are locally
conjugate at all (finite) places of K, so the number of isomorphism classes can be computed
adelically as follows. Let JB be the idele group of B, and let N(R) = JB ∩ ∏

ν N (Rν) be
the adelic normalizer of R. The number of isomorphism classes of maximal orders is the
cardinality of the double coset space B×\JB/N(R). To make use of class field theory, we
need to realize this quotient in terms of the arithmetic of K. The reduced norms on the
local algebras Bν induce a natural map nr : JB → JK , where JK is the idele group of K,
and where for α̃ = (αν)ν ∈ JB, nr(α̃) := (nrBν/Kν

(αν))ν .

The theorem below was proven (Theorem 3.1 of [20]) for degK B = p an odd prime. The
changes required for general degree n involve handling possible ramification at an infinite
place, and pervade the proof, so we repeat the full argument in the interest of clarity.

Theorem 3.1. Let n = degK B ≥ 3. The reduced norm induces a bijection

nr : B×\JB/N(R) → K×\JK/nr(N(R)).

The group K×\JK/nr(N(R)) is abelian with exponent n.

Remark 3.2. The proof below is valid for n = 2 as well as long as B satisfies the Eichler
condition. The map is always surjective, but injectivity requires strong approximation.

Proof. The map is defined in the obvious way with nr(B×α̃N(R)) = K×nr(α̃)nr(N(R)),

We first show the mapping is surjective. Let ã = (aν)ν ∈ JK and K×ã nr(N(R)) be the
associated double coset in K×\JK/nr(N(R)). The weak approximation theorem implies the
existence of an element c ∈ K× so that cã satisfies caν > 0 for all real places ν of K which
ramify in B (if any). Since (replacing a by ca) the associated double cosets are equal, we
may assume without loss that ã was chosen with aν > 0 are all the real places which ramify
in B.

Now we appeal to (33.4) of [25] which says that for any place ν of K, nrBν/Kν
(Bν) = Kν

with the sole exception of Kν
∼= R and B ramified at ν in which case the image of the norm

is the non-negative reals. Let S be a finite set of places of K containing all the archimedean
places and all places which ramify in B. By (33.4) and the assumptions on ã at the real
places, for each place ν ∈ S, there exists βν ∈ B×

ν so that nrBν/Kν
(βν) = aν .
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Now let ν be a place of K, with ν /∈ S. We have that Rν is conjugate to Mn(OKν
),

so let βν ∈ Rν be conjugate to diag(aν , 1, . . . , 1) ∈ Mn(OKν
). Then nrBν/Kν

(βν) =

nrBν/Kν
(diag(aν , 1, . . . , 1)) = aν . So now put β̃ = (βν)ν . It is clear that β̃ = (βν)ν ∈ JB and

nrJB/JK (β̃) = ã, which establishes surjectivity.

To prove injectivity, we first prove a claim: The preimage of K×nr(N(R)) under nr
is B×J1

BN(R) where J1
B is the kernel of the norm map: nr : JB → JK . It is obvious

that nr(B×J1
BN(R)) ⊂ K×nr(N(R)). Let γ̃ = (γν)ν ∈ JB be such that nr(B×γ̃N(R)) ∈

K×nr(N(R)). Then nr(γ̃) ∈ K×nr(N(R)), so write nr(γ̃) = a · nr(r̃) where a ∈ K× and
r̃ = (rν)ν ∈ N(R). We claim that a is positive at all the real places which ramify in B.
Indeed writing aν for the image of a under the embedding K ⊂ Kν

∼= R, we have that
nrBν/Kν

(γν) = aνnrBν/Kν
(rν), with nrBν/Kν

(γν), nrBν/Kν
(rν) > 0. It follows by the Hasse-

Schilling-Maass theorem (Theorem 33.15 of [25]) that there is an element b ∈ B× so that
nrB/K(b) = a, and so that nr(γ̃) = nr(b)nr(r̃), or nr(b−1)nr(γ̃)nr(γ̃−1) = 1 ∈ JK . Thus
b−1γ̃ r̃−1 ∈ J1

B, and B×γ̃N(R) = B×b−1γ̃ r̃−1N(R) ∈ B×J1
BN(R) as claimed.

To proceed with the proof of injectivity, suppose that that are α̃, β̃ ∈ JB so that
nr(B×α̃ nr(N(R)) = nr(B×β̃ nr(N(R)). Then

K×nr(α̃)nr(N(R)) = K×nr(β̃)nr(N(R)),

which since JK is abelian, implies that nr(α̃−1β̃) ∈ K×nr(N(R)), so by the above claim,

α̃−1β̃ ∈ B×J1
BN(R).

Now the subgroup B×J1
B is the kernel of the homomorphism JB → JK/K

× induced by

nr, so that β̃ ∈ B×J1
BN(R) = B×J1

Bα̃N(R). By VI.iii and VII of [15], J1
B ⊂ B×γ̃N(R)γ̃−1

for any γ̃ ∈ JB, so choosing γ̃ = α̃, we get

β̃ ∈ B×J1
Bα̃N(R) ⊂ B×(B×α̃N(R) α̃−1)α̃N(R) = B×α̃N(R).

Thus B×β̃N(R) ⊆ B×α̃N(R), and and by symmetry, we have equality.

To see that the group has exponent n, we note that the local factors in JK/nr(N(R))
have the form K×

ν /nrBν/Kν
(N (Rν)). From our computations above, we see that for ν a

finite place, this quotient is either trivial or equal to K×
ν /(O×

ν (K
×
ν )

r) (for r | n) which clearly
has exponent n, and that if ν is an infinite place, the quotient is trivial unless ν is a real
place which ramifies in B. In that case, K×

ν /nr(N (Rν)) = R×/R×
+
∼= Z/2Z, but in that case

n is necessarily even, so again the factor has exponent n. �

We have seen above that the distinct isomorphism classes of maximal orders in B are in
one-to-one correspondence with the double cosets in the group K×\JK/nr(N(R)) ∼= GR :=
JK/HR, where HR = K×nr(N(R)). Since HR contains a neighborhood of the identity in
JK , it is an open subgroup (Proposition II.6 of [17]) having finite index, and so by class
field theory [18], there is a class field, K(R), associated to it. The extension K(R)/K is an
abelian extension with Gal(K(R)/K) ∼= GR. Moreover, a place ν of K (possibly infinite) is
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unramified in K(R) if and only if O×
ν ⊂ HR, and splits completely if and only if K×

ν ⊂ HR.
Here if ν is archimedean, we take O×

ν = K×
ν .

Remark 3.3. From our computations above, we see (unless there is a real place of K which
ramifies in B) that O×

ν is always contained in HR. In particular the class field K(R)/K is
unramified outside of the real places which ramify in B, so contained in the narrow class
field of K.

It is also useful to make a simple observation about the order of Artin symbols in the
class field extension K(R)/K. For a finite place ν of K and πν a uniformizer in Kν ,
the isomorphism GR = JK/HR → Gal(K(R)/K) associates the image of the idele ω̃ν =
(. . . , 1, πν , 1, . . . ) in GR with the Artin symbol (ν,K(R)/K). Since ω̃rν

ν = 1 in GR we have
that the order of the Artin symbol (the inertial degree) f(ν;K(R)/K) divides rν . �

Our goal in what follows is to determine a subgroup H of the Galois group G =
Gal(K(R)/K) so that each isomorphism class of maximal order in B corresponding to an
element of H contains a representative which contains the ring of integers OL. On the other
hand, the process of identifying the representatives containing OL requires a slightly finer
filtration of the group G which we establish below.

We begin by specifying a set of generators for the group G as Artin symbols, (ν,K(R)/K),
in such a way that we can control the splitting behavior of ν in the extension L/K. As L is
an arbitrary extension of K of degree n, this requires some care.

We have assumed that L ⊂ B. Put L0 = K(R) ∩ L and L̂0 = L̂ ∩K(R) where L̂ is the

Galois closure of L. Then L0 ⊂ L̂0 and we define subgroups of G: Ĥ = Gal(K(R)/L̂0) ⊆
H = Gal(K(R)/L0). We write the finite abelian groups Ĥ , H/Ĥ, and G/H as a direct
product of cyclic groups:

G/H =〈ρ1H〉 × · · · × 〈ρrH〉,(10)

H/Ĥ = 〈σ1Ĥ〉 × · · · × 〈σsĤ〉,(11)

Ĥ = 〈τ1〉 × · · · × 〈τt〉.(12)

The following proposition is clear.

Proposition 3.4. Every element ϕ ∈ G can be written uniquely as ϕ = ρa11 · · · ρarr σb1
1 · · ·σbs

s τ c11 · · · τ ctt
where 0 ≤ ai < |ρiH|, 0 ≤ bj < |σjĤ|, and 0 ≤ ck < |τk|, with | · | the order of the element
in the respective group.

Next we characterize each of these generators in terms of Artin symbols. Since the vehicle
to accomplish this is the Chebotarev density theorem which provides an infinite number of
choices for places, we may and do assume without loss that the places we choose to define

the Artin symbols are unramified in both L̂/K and B.
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First consider the elements τk ∈ Ĥ = Gal(K(R)/L̂0). By Lemma 7.14 of [23], there exist
infinitely many places νk of K so that τk = (νk, K(R)/K) and for which there exists a

place Qk of L̂ with inertia degree f(Qk | νk) = 1. Since L̂/K is Galois (and the place νk is

unramified by assumption), this implies νk splits completely in L̂, hence also in L.

Next consider σjĤ with σj ∈ H = Gal(K(R)/L0). Again by Lemma 7.14 of [23], there
exist infinitely many places µj of K so that σj = (µj, K(R)/K) and for which there exists
a place Qj of L with inertia degree f(Qj | µj) = 1. Here the µj need not split completely in
L.

Finally consider ρkH with ρk ∈ G = Gal(K(R)/K). By Chebotarev, there exist infinitely
many places λi of K so that ρi = (λi, K(R)/K). For later convenience, we note that by
standard properties of the Artin symbol, ρi = ρi|L0

= (λi, L0/K) whose order in Gal(L0/K)
is equal to the inertia degree f(λi;L0/K).

As we said above, we have assumed without loss that all the places λi, µj, νk are unramified

in L̂ and not totally ramified in B.

3.2. Fixing representatives of the isomorphism classes. In the previous subsection,
we have chosen generators for Gal(K(R)/K) which are characterized as Artin symbols, in
particular associated to certain finite places of K whose splitting behavior in our given
extension L/K is somewhat controlled. We recall that the size of the Galois group equals
the number of isomorphism classes of maximal orders in B. At each of those places ν
associated to an Artin symbol, we consider the local algebra, Bν , and specify a certain
collection of maximal orders in it (the number being equal to the order of the Artin symbol
(ν,K(R)/K)), and loosely speaking, take as many local orders as possible which contain
OL. We will then fix representatives of the isomorphism classes of maximal orders in B by
utilizing a local-global correspondence.

As above, R is a fixed maximal order of B containing OL. For a finite place ν of K which
is not totally ramified in B, we have Bν

∼= Mrν (Dν), with Dν a central division algebra over
Kν with unique maximal order ∆ν , and rν > 1. We fix an apartment in the affine building for
SLrν (Dν) which contains the vertex corresponding to the maximal orderRν . We may select a
basis {α1, . . . , αrν} of Drν

ν so that Rν = Mrν (∆ν) ∼= End∆ν
(Λ) where Λ =

⊕rν
i=1∆ναi. With

π a uniformizer of ∆ν , the vertices of the apartment are in bijective correspondence with
those maximal orders of Bν which are given as endomorphism rings of lattices of the form⊕rν

i=1∆νπ
aiαi, the homothety class of which we abbreviate by [a1, . . . , arν ] ∈ Zrν/Z(1, . . . , 1).

We shall identify the vertices of the apartment with these homothety classes of lattices.

Let’s understand how this applies to choosing our representatives for the isomorphism
classes. Since L ⊂ B, we know (by the Albert-Brauer-Hasse-Noether theorem) that mν |
[LP : Kν ] for all places ν of K and places P of L lying above ν. For finite places ν, we have
that LP embeds as a Kν-algebra into Bν

∼= MrP(Dν) where rP = [LP : Kν ]/mν is minimal.
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Corresponding to various generators of the Gal(K(R)/K) we have chosen finite places
λi, µj, and νk to parametrize the Artin symbols which represent the generators. We now
consider maximal orders in the associated local algebras. For a generic place ν among these
(which we recall can be assumed unramified in L/K), let νOL = P1 · · ·Pg be the prime
factorization in L. By Theorem 2.1, we know that OL is a subset of precisely those maximal
orders (vertices of the apartment) associated to homothety classes of lattices of the form
[L] = [ℓ1, . . . , ℓ1︸ ︷︷ ︸

rP1

, ℓ2, . . . , ℓ2︸ ︷︷ ︸
rP2

, . . . , ℓg, . . . , ℓg︸ ︷︷ ︸
rPg

], ℓi ∈ Z.

We will be particularly interested in maximal orders of the form R(k, ℓ) defined in equa-
tion (3). Because we shall vary the place ν in the parametrization below, we will write
Rν(k, ℓ) for R(k, ℓ) to make the dependence on ν explicit. Recall that Rν(k, ℓ) corresponds
to the homothety class [ℓ, . . . , ℓ︸ ︷︷ ︸

k

, 0, . . . , 0] ∈ Zrν/Z(1, . . . , 1) which has type kℓ (mod rν).

By equation (5),

OL ⊂
⋂

ℓi∈Z

[
Rν(rP1

, ℓ1) ∩Rν(rP1
+rP2

, ℓ2)∩· · ·∩Rν(rP1
+· · ·+rPg

, ℓg)
]
=

⊕

P|ν

MrP(∆ν) ⊂ Mrν (Dν).

Now for the places λi, µj , and νk we specified above to parametrize G = Gal(K(R)/K),

fix the following local orders using the decomposition of G into G/H , H/Ĥ, and Ĥ:

The places νk all split completely in L, so LP = Kνk , and mν | [LP : Kνk ] implies
rP = mνk = 1, and that rνk = n.

So for each place νk (k = 1, . . . , t) whose Artin symbol (νk, K(R)/K)) = τk is one of the

generators of Ĥ, we fix vertices Rνk(m, 1), m = 0, 1, . . . , |τk| − 1 with associated homothety
classes [0, . . . , 0], [1, 0, . . . , 0], [1, 1, 0, . . . , 0], . . . , [1, . . . , 1︸ ︷︷ ︸

|τk|−1

, 0, . . . , 0]. Note that since rνk = n

and τk has exponent n, all these homothety classes correspond to vertices in a fundamental
chamber of the building, and the corresponding maximal orders contain OL by equation (5).

Now consider the places µj (j = 1, . . . , s) whose Artin symbol (µj, K(R)/K)) = σj gives

one of the generators σjĤ of H/Ĥ. Recall that each µj factors into places of L with at
least one having inertia degree one over µj, say P1. Since µj is (by choice) unramified in
L, we have as in the previous case mµj

| [LP1
: Kµj

] = 1, which forces mµj
= rP1

= 1 and
rµj

= rµj
mµj

= n. From equation (5), OL ⊂ Rµj
(rP1

, ℓ1) = Rµj
(1, ℓ1) for all ℓ1 ∈ Z, so we

fix vertices Rµj
(1, m), m = 0, 1, . . . , |σjĤ| − 1 with associated homothety classes [0, . . . , 0],

[1, 0, . . . , 0], [2, 0, . . . , 0], . . . , [|σjĤ| − 1, 0, . . . , 0] in a fundamental apartment.

Finally consider the places λi (i = 1, . . . , r) whose Artin symbol (λi, K(R)/K)) = ρi gives
one of the generators ρiH of G/H . It is only here where selectivity can manifest itself.
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Recall that via the isomorphism G/H ∼= Gal(L0/K) (ρiH ↔ ρi), we know that the
order of ρiH is the inertia degree f(λi;L0/K) which we have shown divides rλi

. So we
wish to specify f(λi;L0/K) maximal orders in the local algebra. From Theorem 2.1, we
know that OL is contained in maximal orders corresponding precisely to vertices whose
associated homothety classes are of the form [ℓ1, . . . , ℓ1︸ ︷︷ ︸

rP1

, ℓ2, . . . , ℓ2︸ ︷︷ ︸
rP2

, . . . , ℓg, . . . , ℓg︸ ︷︷ ︸
rPg

], in particular

having types
∑g

k=1 rPk
ℓk (mod rλi

). Since the ℓk are arbitrary integers, OL is contained
in maximal orders having types which are multiples of dλi

= gcd(rP1
, . . . , rPg

); note that
dλi

| rλi
=

∑g
k=1 rPk

.

Remark 3.5. We need to be a bit careful in leveraging the above observation. We have shown
that OL is contained in maximal orders having types a multiple of dλi

, but the converse is not
necessarily true. For example, suppose rλi

=
∑g

k=1 rPk
= 1 + 2, so that OL is contained in

maximal orders corresponding to homothety classes of the form [ℓ1, ℓ2, ℓ2]. Now dλi
= 1, so OL

is contained in maximal orders associated to homothety classes of all types, in particular type
1, but for example OL is not contained in the maximal order corresponding to the homothety
class of the lattice [0, 1, 0] since that is not of the prescribed form: [ℓ1, ℓ2, ℓ2]. This presents
no serious issue, but we need to be somewhat careful in selecting our representatives.

Fix integers ℓ1, . . . , ℓk so that

dλi
= gcd(rP1

, . . . , rPg
) = rP1

ℓ1 + · · ·+ rPg
ℓg,

and fix a vertex corresponding to the homothety class

[L] = [ℓ1, . . . , ℓ1︸ ︷︷ ︸
rP1

, ℓ2, . . . , ℓ2︸ ︷︷ ︸
rP2

, . . . , ℓg, . . . , ℓg︸ ︷︷ ︸
rPg

].

Using somewhat ad hoc notation, for an integer a, let

[La] = [aℓ1, . . . , aℓ1︸ ︷︷ ︸
rP1

, aℓ2, . . . , aℓ2︸ ︷︷ ︸
rP2

, . . . , aℓg, . . . , aℓg︸ ︷︷ ︸
rPg

],

which has type adλi
(mod rλi

). Now

dλi
x ≡ dλi

y (mod rλi
) iff x ≡ y (mod rλi

/dλi
),

so this process will produce rλi
/dλi

maximal orders which contain OL, representing every
possible type of maximal order which can contain OL. It turns out that in general, there will
be some redundancy when we use these local orders to construct global ones via a local-global
correspondence. We need to correct for this, and we begin with an elementary claim.

Lemma 3.6. With the notation as above except abbreviating f(λi;L0/K) by fλi
, we have

fλi

gcd(dλi
, fλi

)

∣∣∣∣
rλi

dλi

.
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Proof. We know that fλi
| rλi

and dλi
| rλi

. Then

rλi

dλi

· gcd(dλi
, fλi

)

fλi

=
rλi

lcm(dλi
, fλi

)
,

which is clearly integral. �

Above, we observed that types dλi
x ≡ dλi

y (mod rλi
) iff x ≡ y (mod rλi

/dλi
), so given

the lemma, if we choose orders of types dλi
x with x modulo fλi

/gcd(dλi
, fλi

), they will be
distinct modulo both rλi

and fλi
.

We want to fix maximal orders Rm
λi

where m ∈ Z/fλi
Z; we separate those residues which

can be written asm ≡ dλi
a (mod fλi

) from those that cannot. We putRdλia

λi
:= End∆λi

([La])

for a = 0, 1, . . . , fλi
/gcd(dλi

, fλi
)− 1, and for m one of the remaining fλi

− fλi
/gcd(dλi

, fλi
)

residues, choose a maximal order associated to a homothety class of lattice having type m.
Recall that fλi

| rλi
, so these choices are possible.

Remark 3.7. We note from our remarks above, that OL is a subset of Rµj
(1, m) for every

value of m, and of Rνk(m
′, 1) for 0 ≤ m′ ≤ n.

Now we use the local-global correspondence for orders to define global orders from the
above local factors. Fix the following notation:

a = (ai) ∈ Z/|ρ1H|Z× · · · × Z/|ρrH|Z,
b = (bj) ∈ Z/|σ1Ĥ|Z× · · · × Z/|σsĤ|Z,
c = (ck) ∈ Z/|τ1|Z× · · · × Z/|τt|Z.

Here we assume the coordinates ai, bj, ck are integers which are the least non-negative residues
corresponding to the moduli. Define maximal orders, Da,b,c, in B via the local-global corre-
spondence:

(13) Da,b,c
p =





Rp if p /∈ {λi, µj, νk},
Rai

λi
if p = λi, i = 1, . . . , r,

Rbj
µj

:= Rµj
(1, bj) if p = µj, j = 1, . . . , s,

Rck
νk

:= Rνk(ck, 1) if p = νk, k = 1, . . . , t.

We claim that such a collection of maximal orders parametrizes the isomorphism classes
of maximal orders in B. That is, given any maximal order E in B, we show there are
unique tuples a,b, c so that E ∼= Da,b,c. To see this we again employ a local-global principle.
We know that any two maximal orders in B are equal at almost all places of K, so they
are distinguished at only a finite number of places. We collect information about those
differences by defining a “distance idele” associated to the two orders.
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Let M denote the set of all maximal orders in B, and let R1,R2 ∈ M. For each place ν
of K we want to define a local “type distance”, tdν(R1ν ,R2ν), which distinguishes the local
orders. For infinite places ν, R1ν = R2ν = Bν , so (whatever the definition at other places)
it makes sense to define tdν(R1ν ,R2ν) = 0 in this case. We adopt the same convention for
a finite place which totally ramifies in B, since there is a unique maximal order in Bν . In
the cases where a finite place splits or partially ramifies, we have already defined the type
distance tdν(R1ν ,R2ν) in section 2. In particular, tdν is only well-defined modulo rν , but
this causes no difficulty.

To return to the problem of parametrizing the isomorphism classes of maximal orders in
B, we define a map (called the GR-valued distance idele) δ : M×M → GR = JK/HR (where
HR = K×nr(N(R))) as follows: Given R1, R2 ∈ M, let δ(R1,R2) be the image in GR of

the idele (π
tdν(R1ν ,R2ν)
ν )ν , where πν is a fixed uniformizing parameter in Kν (putting πν = 1

at the archimedean places). Note that while the idele is not well-defined, its image in GR is,
since at any place where the type distance might be nontrivial, the local factor in HR equals
O×

ν (K
×
ν )

rν .

That the orders {Da,b,c} parametrize the isomorphism classes of maximal orders in B
follows from the the following proposition.

Proposition 3.8. Let R be a fixed maximal order in B, and consider the collection of
maximal orders Da,b,c defined above.

(1) If E is a maximal order in B and E ∼= R, then δ(R, E) is trivial.
(2) If E ∼= E ′ are maximal orders in B, then δ(R, E) = δ(R, E ′).
(3) Da,b,c ∼= Da

′,b′,c′ if and only if a = a′, b = b′, and c = c′.
(4) If E and E ′ are maximal orders in B, and δ(R, E) = δ(R, E ′), then E ∼= E ′.

Proof. For the first assertion, we may assume that E = bRb−1 for some b ∈ B× by Skolem-
Noether. Thus for each place ν, Eν = bRνb

−1. The goal is to show that δ(R, E) = 1 in GR,
by showing that the distance idele which is derived from the local type distances is the same
as the principal idele (nrB/K(b)) which lies in the image of K× in JK .

We first verify that the local factors of the principal idele (nrB/K(b)) are also trivial in
GR. Indeed the local factors in GR are trivial at both the infinite and totally ramified places
with the possible exception of a real place which ramifies in B, but it follows from (33.4) of
[25] that the norm is positive which is trivial in the local factor R×/R×

+.

Thus we need only consider places ν which are split or partially ramified in B. We handle
these cases together as in our description above, and assume Bν has been identified with
Mrν (Dν) where Dν is a central division algebra of degree mν over Kν . As before we let ∆ν

be the unique maximal order in Dν . For convenience assume that the identification of Bν

with Mrν(Dν) is done in such a way that, as described in the previous section, there is a
rank rν free ∆ν-lattice Λν so that Rν = End∆ν

(Λν), and hence Eν = End∆ν
(bΛν) for some
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b ∈ GLrν (Dν). Using elementary divisors for ∆ν-lattices, we may assume without loss that
b = diag(πa1

Dν
, . . . ,π

arν
Dν

). Then tdν(Rν , Eν) ≡
∑rν

i=1 ai (mod rν).

So we shall compare the cosets π
∑rν

i=1
ai

ν Oν(K
×
ν )

rν with πℓ
νOν(K

×
ν )

rν where ℓ = ordπν
(nrBν/Kν

(b)).

We check that indeed ℓ ≡ ∑rν
i=1 ai (mod rν) as follows. With b = diag(πa1

Dν
, . . . ,π

arν
Dν

) ∈
B×

ν = GLrν(Dν), we recall from earlier nrDν/Kν
(πDν

) = (−1)mν−1πν , so (up to units in Oν)

nrBν/Kν
(b) = π

∑

ai
ν , hence the result.

Thus we see that δ(R, E) is the image inGR of the principal idele (nrB/K(b))ν , so δ(R, E) =
1 in GR = Jk/K

×nr(N(R)) as (nrB/K(b))ν is in the image of K× in JK .

For the second claim, we may write E ′ = bEb−1 for some b ∈ B×, so E ′
ν = bEνb−1 for each

place ν, and as in the previous part, we need only worry about those places ν which split or
are partially ramified in B. So as before, we write Rν = End∆ν

(Λν) and Eν = End∆ν
(Γν),

so that E ′
ν = End∆ν

(bΓν), where Λν and Γν are free ∆ν-lattices of rank rν . Considering the
invariant factors of the lattices Λν , Γν and bΓν , we easily see that

δ(R, E ′) = δ(R, E)δ(E , E ′) = δ(R, E),
since δ(E , E ′) = 1 by the computations in the first part.

For the third statement, we need only show one direction. Let ν be a finite place of K
and πν the corresponding uniformizing parameter of Kν . Let ω̃ν denote the idele with πν in
the νth place and 1’s elsewhere. Observe that Artin reciprocity identifies the image of ω̃ν

in GR = JK/HR with the Artin symbol (ν,K(R)/K) ∈ Gal(K(R)/K). Moreover, for two

maximal orders E , E ′ of B, we see that δ(E , E ′) is equal to the image of
∏

ν π
tdν(E,E ′)
ν in GR,

and hence corresponds to a product of Artin symbols.

We recall that the orders Da,b,c differ from our fixed maximal order R only at finite places
which were unramified in both L and B. At such a place ν, we identified Bν with Mrν (Dν)
and our representative maximal orders were identified as endomorphism rings of homothety
classes of lattices relative to some fixed basis {αi} of Drν

ν . Now referring to the conventions
we adopted for the places λi, µj, νk whose associated Artin symbols were used to parametrize
Gal(K(R)/K), we check that (mod n),

tdν(δ(Da,b,c,Da
′,b′,c′) ≡





a′i − ai for ν = λi,

b′j − bj for ν = µj ,

c′k − ck for ν = νk.

It follows that

δ(Da,b,c,Da
′,b′,c′) ↔

g∏

i=1

ρ
a′i−ai
i

s∏

j=1

σ
b′j−bj
j

t∏

k=1

τ
c′
k
−ck

k ∈ Gal(K(R)/K),

which is trivial if and only if a = a′, b = b′, and c = c′ by Proposition 3.4.
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Finally for the last statement, let E and E ′ be maximal orders in B with δ(R, E) = δ(R, E ′).
Suppose to the contrary that E 6∼= E ′. Then E ∼= Da,b,c, E ′ ∼= Da′,b′,c′ where at least
one of a,b, c differs from a′,b′, c′. Since R = D0,0,0, the computations above show that
δ(R,Da,b,c) 6= δ(R,Da

′,b′,c′), but by part (2) of the proposition δ(R, E) = δ(R,Da,b,c),
and δ(R, E ′) = δ(R,Da′,b′,c′), which provides the desired contradiction. This completes the
proof. �

We now summarize our efforts in this section labeling those isomorphism classes of maximal
orders in B which contain (a representative containing) the ring of integers OL. Above we
have parametrized the isomorphism classes of maximal orders by the set {Da,b,c} given in
equation (13). These orders are locally equal to R at all places except those designated
previously as a member of the set T = {λ1, . . . , λr, µ1, . . . , µs, ν1, . . . νt}. By this assumption,

for p /∈ T , we have OL ⊂ Da,b,c
p . For p = µj or νk, we also have OL ⊂ Da,b,c

p by Remark 3.7.

Finally, OL ⊂ Rλi
= D0,b,c

λi
for all the places λi. Thus, for all finite p in K, OL ⊂ Da,b,c

p for all

b, c, and a = 0, and so by the local-global correspondence, OL ⊂ D0,b,c for all b, c. But these
orders {D0,b,c} are precisely those which correspond to the elements of H = Gal(K(R)/L0).
We summarize this as

Theorem 3.9. The ring of integers, OL is contained in at least [K(R) : L0] of the [K(R) :
K] representatives {Da,b,c}. Specifically, OL ⊂ D0,b,c for all b, c.

4. Recovering global selectivity results

In this section we recover and refine some global results on selective orders. Recall that
we have a central simple algebra B = Mr(D) where D is a central division algebra of degree
m over a number field K. We have an extension L/K of degree n = rm which embeds in B,
and we have fixed a maximal order R of B which contains OL. Associated to R is a class
field, K(R), and we have set L0 = K(R) ∩ L. We assume n ≥ 3.

4.1. Simple lower bounds. It is immediate from Theorem 3.9, that the ring of integers,
OL is contained in at least [K(R) : L0] maximal orders which lie in distinct isomorphism
classes, so speaking informally, at least 1/[L0 : K] of the isomorphism classes “admit an
embedding” of OL.

Having established 1/[L0 : K] as a lower bound, we next show that the degree [L0 : K] is
further constrained as a divisor of [L : K] = n = rm in an interesting way.

Proposition 4.1. Let B = Mr(D) where D is a central division algebra of degree m over
a number field K which contains an extension L/K of degree n = rm. Fix a maximal
order R of B which contains the ring of integers OL. As above, associate to R a class field
extension K(R)/K, and put L0 = L ∩ K(R). If no real place of K ramifies in B, then
[L0 : K] | r · gcd(r,m); otherwise [L0 : K] | 2r · gcd(r,m). In particular if gcd(r,m) = 1,
then [L0 : K] | r or 2r.
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Remark 4.2. The proposition above extends the simplest form of Carmona’s [4] result, where
he shows that for an arbitrary division algebra, the selectivity proportion is 1/2 or 1, which
we see from above with r = 1.

Proof. This proof follows the lines of a similar argument in [4]. For each place ν of K, we
have written Bν

∼= Mrν (Dν) where Dν is a central division algebra of degree mν over Kν ,
and of course where n = rm = rνmν . By (32.17) of [25], we know that m = lcm{mν} where
the lcm is taken over all places of K.

To begin, let p be an odd prime, and assume pt‖m, t ≥ 1. Also assume that ps‖r with
s ≥ 0. Then there must be a place ν of K with pt‖mν . Since p is odd, we know ν is a finite
place of K. Since L embeds in B, we know for every place P lying above ν that

mν | [LP : Kν ] = [LP : (L0)P∩L0
][(L0)P∩L0

: Kν ] = [LP : (L0)P∩L0
]f(ν;L0/K),

the last equality since K(R)/K is abelian and unramified at all finite places. By Remark 3.3,
we know that f(ν;K(R)/K) | rν , hence so does f(ν;L0/K). Now since n = rm = rνmν and
pt‖mν we have ps‖rν , so ordp(f(ν;L0/K)) ≤ s. Let t0 = max{0, t− s}. Then
pt0 | [LP : (L0)P∩L0

]. It follows that pt0 | [L : L0]. Therefore

ordp[L0 : K] ≤ s + t− t0 =

{
2s s ≤ t

s+ t s > t
= ordp(r) + ordp(gcd(r,m)).

Which gives the result for the odd primes p. When p = 2, if 4 | m, the same argument gives
the correct bounds with p = 2. Moreover, even if 2‖m, but there is some finite place ν with
2 | mν , the argument is valid. It is only in the case that 2‖m, but for no finite place does
2 | mν that the argument fails, and in that case we must have a real place which ramifies
in B. �

4.2. The effect of ramification on the bounds. The ramification of the central simple
algebra B has an interesting impact on selectivity. In Theorem 4.3, we show that if there
is a finite place of K which is totally ramified in B, there is never selectivity; that is, every
isomorphism class of maximal orders in B admits an embedding of OL. At the other end
of the spectrum, if for each finite place of K, B is split, then the selectivity proportion is
either 1 (no selectivity) or 1/[L0 : K]. In the case of a central simple algebra B which has
partial ramification at some places, the proportion of isomorphism classes which admit an
embedding of OL will be of the form m/[L0 : K] for an integer m which is the cardinality of a
certain subgroup of Gal(L0/K) related to the finite places of K which are partially ramified
in B.

Let’s begin with the case of a totally ramified prime. This theorem was proven for algebras
of odd prime degree in [20], but remains valid for general degree n ≥ 3.

Theorem 4.3. Suppose there is a finite place ν of K which is totally ramified in B, that
is, mν = n. Let Ω ⊂ OL be any OK-order. Then every maximal order in B admits an
embedding of Ω. In particular, there can never be selectivity.
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Proof. It is enough to show that every maximal order in B admits an embedding of OL.
Since Bν is a division algebra, there is a unique maximal order Rν in Bν whose normalizer
is all of B×

ν and so K×
ν , the norm of the normalizer, is contained in HR. This means that

that ν splits completely in the class field K(R), hence also in L0 = K(R) ∩ L.

On the other hand, by the Albert-Brauer-Hasse-Noether theorem, mν = n | [LP : Kν ] for
all places P of L lying above ν. This means that ν is inert in L, hence also in L0. Since
L0/K is unramified (at ν), we have [L0 : K] = f(P|ν). But ν splits completely in L0, so
[L0 : K] = f(P|ν) = 1, and the result is now immediate from Theorem 3.9. �

To go further, we shall utilize the notion of the distance idele and Proposition 3.8 to
characterize those isomorphism classes of maximal orders which admit an embedding of OL.
We have assumed that OL ⊂ R. If there is an embedding of OL into a maximal order E ,
then OL is contained in a conjugate maximal order, E ′, and by Proposition 3.8, the distance
ideles δ(R, E) and δ(R, E ′) are equal. So the idea is to assume that OL is contained in
maximal orders R and E , and to consider their distance idele δ(R, E) ∈ GR. Recall that
GR

∼= Gal(K(R)/K), and that we parametrized the isomorphism classes of maximal orders
in B with representatives Da,b,c having the property that viewing the distance idele as an
element of Gal(K(R)/K) we have (see Proposition 3.4)

δ(R,Da,b,c) = ρa11 · · · ρarr σb1
1 · · ·σbs

s τ c11 · · · τ ctt .

In Theorem 3.9, we see that OL is always contained in those representatives where

δ(R,Da,b,c) = ρ01 · · · ρ0rσb1
1 · · ·σbs

s τ c11 · · · τ ctt ,

that is, those elements whose distance idele lies in H = Gal(K(R)/L0) ≤ G =
Gal(K(R)/K). To delve more deeply, we now view δ(R, E)|L0

∈ Gal(L0/K) ∼= G/H .
We sketch the framework we employ.

Recall some notation from the introduction. Given a finite place ν of K, and the local
index mν , we know that mν | [LP : Kν ] for all places P of L lying above ν. Further, we set
rP = [LP : Kν ]/mν . Next, we defined:

dν = gcd
P|ν

rP = gcd
P|ν

[LP : (L0)P∩L0
][(L0)P∩L0

: Kν ]

mν
(14)

= gcd
P|ν

[LP : (L0)P∩L0
]f(ν;L0/K)

mν
(15)

= gcd
P|ν

([LP : (L0)P∩L0
])
f(ν;L0/K)

mν
.(16)

Now recall that the type distance, δ(R, E), is the image of the idele (π
tdν(Rν ,Eν)
ν )ν in GR,

and viewed as an element of Gal(K(R)/K) it is a product of (powers of) Artin symbols. So
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we can view

δ(R, E)|L0
=

∏

ν finite

(ν, L0/K)tdν(Rν ,Eν),

where we recall that the Artin symbol, (ν, L0/K), has order equal to the inertia degree
f(ν;L0/K). Finally, from Theorem 2.1, we know that if OL ⊂ R∩E , and ν is unramified in
L, then tdν(Rν , Eν) will be divisible by dν . Now consider Equation (16). If mν = 1 (that is,
if Bν

∼= Mn(Kν)), then dν is divisible by f(ν;L0/K), the order of (ν, L0/K), so that factor
in δ(R, E)|L0

will be trivial. So we see it is here that the partially ramified primes play a
critical role in producing a selectivity proportion strictly between 1/[L0 : K] and 1.

Motivated by the above remarks, let λ1, . . . , λℓ be the set places which are partially ramified
in B.

Remark 4.4. In order to use Theorem 2.1 below, we must also assume that the λi are all
unramified in L.

For each place, λi, we have the quantity dλi
from Equation (16). Let G0 be the subgroup

of Gal(L0/K) generated by the Artin symbols:

G0 = 〈(λ1, L0/K)dλ1 , . . . , (λℓ, L0/K)dλℓ 〉 ≤ Gal(L0/K).

Write fλi
for f(λi;L0/K). From equation (16), we know that

dλi
= gcd

P|λi

([LP : (L0)P∩L0
])
fλi

mλi

,

and we know the order of (λi, L0/K) is fλi
. So if mλi

| gcdP|λi
([Lλ : (L0)P∩L0

]), we know that

(λi, L0/K)dλi = 1 ∈ G0; otherwise it generates a cyclic subgroup of order fλi
/ gcd(dλi

, fλi
).

For our use below, we want to define maximal orders, Γa
λi
, in the local algebra Bλi

with type
distance, tdλi

(Rλi
,Γa

λi
) = dλi

a with a = 0, 1, . . . , fλi
/ gcd(dλi

, fλi
)− 1. We do this in exactly

the same way as we did in the previous section just prior to Remark 3.7 where we defined
the orders Rai

λi
, so we do not repeat the argument here, although we do reiterate that we are

assuming that the places λi are unramified in L so as to leverage Theorem 2.1.

Theorem 4.5. Assume that OL ⊂ R ⊂ B. For every σ ∈ G0, there exists a maximal
order E in B so that OL ⊂ E , and viewing the distance idele, δ(R, E), as an element of
Gal(K(R)/K), we have that δ(R, E)|L0

= σ ∈ G0.

Proof. Let σi = (λi, L0/K)dλi ∈ G0 be a generator of G0, and write σ =
∏ℓ

i=1 σ
ai
i , where

we understand the expression may not be unique. Define a maximal order E of B via the
local-global correspondence by specifying:

Eν =
{
Rν for ν /∈ {λ1, . . . , λℓ},
Γai
λi

for ν = λi, i = 1, . . . , ℓ.
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Then, viewing δ(R, E) as an element of Gal(K(R)/K), we have δ(R, E) = ∏ℓ
i=1(λi;K(R)/K)dλiai ,

so that δ(R, E)|L0
= σ ∈ G0. �

Remark 4.6. Presuming that σ 6= 1 in the above theorem, E ∼= Da,b,c for some a 6= 0,
meaning that the proportion of isomorphism classes admiting an embedding of OL is greater
than 1/[L0 : K]. Indeed, this theorem says that the proportion is at least |G0|/[L0 : K].

Now we would like some sort of converse, meaning if there is selectivity, then this is an
upper bound as well. We have the following qualified result.

Theorem 4.7. Assume that OL ⊂ R ⊂ B. Let E be another maximal order in B, and let
δ(R, E) denote the distance idele. Assume further, that any place ν for which tdν(Rν , Eν) 6≡ 0
(mod rν) is unramified in L. If OL ⊂ E , then δ(R, E)|L0

∈ G0.

Proof. Let δ(R, E) ∈ GR = JK/HR be the distance idele. Let ν be any place for which
tdν(Rν , Eν) 6≡ 0 (mod rν). By assumption, we have that ν is unramified in L, and so, by
conventions on the type distance, ν is a finite place and not totally ramified in B. Since
OL ⊂ Eν, by Theorem 2.1, we have that tdν(Rν , Eν) is divisible by dν , which means the local
factor of the Artin symbol coming from δ(R, E) has the form (ν;K(R)/K)dνℓ for some integer
ℓ. So restricted to L0/K, the Artin symbol becomes (ν;L0/K)dνℓ. By Equation (16), if ν is
unramified in B, thenmν = 1 which implies dν ≡ 0 (mod f(ν;L0/K)), but f(ν, L0/K) is the
order of the Artin symbol (ν;L0/K), so this factor is trivial. The only factors left are those
which correspond to partially ramified places in B, and so it is clear that δ(R, E)|L0

∈ G0. �

We can summarize the previous two theorems as:

Theorem 4.8. Let λ1, . . . , λℓ be the set of finite places of K which are partially ramified in
B. Assume the λi are all unramified in L. Let

G0 = 〈(λ1, L0/K)dλ1 , . . . , (λℓ, L0/K)dλℓ 〉 ≤ Gal(L0/K),

be the subgroup generated by powers of the Artin symbols (λi, L0/K). The proportion of

isomorphism classes of maximal orders which admit an embedding of OL is at least
|G0|

[L0 : K]
,

and if L ⊆ K(R) (so in particular, L is unramified at all the finite places of K), then the

proportion is exactly
|G0|

[L0 : K]
.

5. An Example

We give a simple example of Theorem 4.8. Computations are done with Magma [8].

Let K = Q(
√
−39). Then the ideal class group of K is cyclic of order 4, hence the Hilbert

class field of K, HK has Galois group, Gal(HK/K), cyclic of order 4. The rational prime 61
splits completely in K, and there are four primes of HK lying above 61. So put 61OK = p1p2.
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SinceHK/K is Galois, the only way for 61OHK
to factor as the product of four distinct primes

in HK is for each of the primes pi to have inertia degrees f(p1;HK/K) = f(p2;HK/K) = 2.

To construct our central simple algebra, we specify Hasse invariants. Let mp1 = mp2 = 2
and mν = 1 for all other places ν of K. Taking Hasse invariants 1/mν for all places ν of K,
the short exact sequence of Brauer groups (e.g., (32.13) of [25]) guarantees the existence of
a degree 4 central simple K-algebra B = M2(D) having the prescribed Hasse invariants.

Let L = HK . The field L satisfies the conditions of the Albert-Brauer-Hasse-Noether
theorem, so L embeds in B as a K-algebra. Now let R be any maximal order of B which
contains OL, and K(R) the associated class field.

Since K has no real embeddings, its narrow class field and its Hilbert class field coincide,
so K(R) ⊆ HK .

To show the reverse containment, recall that the class field K(R) arises field class field
theory via the quotient JK/HR where HR is characterized by information about the local
norm of normalizers of the Rν which we characterized in section 3. It is then easy to check
that the class group associated to HK contains HR, so HK ⊆ K(R).

Thus L = HK = K(R) = L0.

We now refer to the notation of Theorem 4.8. We have λ1 = p1 and λ2 = p2 and via
Equation (16), compute dλ1

= dλ2
= 1. So G0 is generated by the Artin symbols (p1, HK/K)

and (p2, HK/K) each of which has order 2, but as Gal(HK/K) is cyclic of order 4, they must
be equal, so that |G0| = 2. So while the standard lower bound for the selectivity proportion
is 1/[L0 : K] = 1/4, we have |G0|/[L0 : K] = 2/4 = 1/2.
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