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Abstract

Taking advantage of the Satake isomorphism, we define (n + 1) families of Hecke
operators tnk(p`) for Spn whose generating series

∑

tnk(p`)v` are rational functions of
the form qk(v)−1, where qk is a polynomial in Q[x±1

0 , . . . , x±1
n ][v] of degree 2k

(n
k

)

(2n if
k = 0). For k = 0 and k = 1 the form of the polynomial is essentially that of the local
factors in the spinor and standard zeta functions. For k > 1, these appear to be new
expressions.

We also offer some insight (disjoint from the representation theory) for why there
should be a correspondence between the local Hecke algebra and a ring of polynomials
invariant under an associated Weyl group.

1 Introduction

Hecke theory for modular forms on the symplectic group is still very much in its infancy.
Simplistically, the major stumbling block is that unlike the elliptic modular case, there is no
obvious connection between the known invariants of the Hecke algebra (Satake p-parameters)
and the Fourier coefficients of a Hecke eigenform, although there has been some interesting
work done: using a partial knowledge of Satake parameters to infer complete knowledge
([8]), or finding correlations between Fourier coefficients and Hecke eigenvalues in degree 2
([3]). Still we are very far away from a satisfactory general theory.

It is well-known (see e.g., Cartier [2], Theorem 4.1) that the Satake map shows that the
p-part of the Hecke algebra associated to the symplectic group is isomorphic to a polynomial
ring invariant under a certain Weyl group. In [1], Andrianov and Zhuravlev refer to this
isomorphism as the spherical map, and give a description of it in terms of right cosets of the
double cosets which generate the Hecke algebra.
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By working in the (isomorphic) representation space, we are able to define families of
Hecke operators tnk(p`), k = 0, . . . , n whose generating series have the form (see Theorem 3.3):

∑

`≥0

tn0 (p`)v` =

[

(1− x0v)

n
∏

m=1

∏

1≤i1<···<im≤n

(1− x0xi1 · · ·ximv)

]−1

, (1.1)

and for 1 ≤ k ≤ n,

∑

`≥0

tnk(p`)v` =





∏

1≤i1<···<ik≤n, δij
=±1

(1− x
δi1

i1
· · ·x

δik

ik
v)





−1

. (1.2)

To see the significance of these operators, recall that associated to a simultaneous
Hecke eigenfunction F of weight k for Spn(Z), are the Satake p-parameters (α0, . . . , αn) =
(α0(p), . . . , αn(p)) ∈ Cn+1/Wn for each prime p (Wn the associated Weyl group), which
generalize the Hecke eigenvalues. The Satake parameters satisfy α0(p)2α1(p) · · ·αn(p) =
pnk−n(n+1)/2 and are used to define the spinor and standard zeta functions.

The standard zeta function is defined by DF (s) =
∏

p DF,p(p
−s)−1 (<(s) > 1), where

DF,p(v) = (1− v)
n
∏

m=1

(1− αmv)(1− α−1
m v),

while the spinor zeta function is defined by ZF (s) =
∏

p ZF,p(p
−s)−1 (<(s) > nk/2− n(n +

1)/4 + 1), where

ZF,p(v) = (1− α0v)
n
∏

m=1

∏

1≤i1<···<im≤n

(1− α0αi1 · · ·αimv).

For k = 0, the expression (1.1) clearly corresponds to the local factor of the

spinor zeta function. When k = 1, the expression (1.2) is simply
∑

`≥0

tn1 (p`)v` =

[

n
∏

m=1

(1− xmv)(1− x−1
m v)

]−1

which (up to an initial “zeta” factor) corresponds to the

local factor of the standard zeta function. Except for k = 0 and k = 1, the Hecke operators,
tnk(p`), give rise to new “zeta” functions which may also be of interest in the context of Siegel
modular forms. Independent of that fact, it is significant to have Hecke operators whose
generating functions have this highly structured form. In subsequent work by Ryan [5], a
local inverse for the Satake map is described, allowing these operators in the polynomial
setting to be pulled back to classical Hecke operators in the symplectic setting, which
are guaranteed to have generating functions which sum to rational functions of a highly
structured form.

In the final section we make some remarks offering some intuition (not arising from the
representation theory of p-adic groups) for why there should be a correspondence between
the local Hecke algebra and a ring of symmetric polynomials.
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2 The Classical Hecke Algebras

We shall deal with the Hecke algebra over Q, and in particular with its local subalgebras.
Much of this material can be found in Chapter 3 of [1]; we state it here to set the notation.
Let Γ = Γn = Spn(Z) ⊂ SL2n(Z), and let G = GSp+

n (Q) ⊂ GL2n(Q) be the group of
symplectic similitudes with scalar factor r(M) ∈ Q×

+:

GSp+
n (Q) = {M = ( A B

C D ) ∈M2n(Q) | AtC = CtA, BtD = DtB, AtD − CtB = r(M)I2n}

= {M = ( A B
C D ) ∈M2n(Q) | ABt = BtA, CDt = DCt, ADt −BCt = r(M)I2n}.

Let H denote the rational Hecke algebra associated to the pair Γ and G. That is, as
a vector space, H is generated by all double cosets ΓξΓ (ξ ∈ G), and we turn H into an
algebra by defining the multiplication law as follows: Given ξ1, ξ2 ∈ G, define

Γξ1Γ · Γξ2Γ =
∑

ξ

c(ξ)ΓξΓ, (2.1)

where the sum is over all double cosets ΓξΓ ⊆ Γξ1Γξ2Γ, and the c(ξ) are nonnegative integers
(see [7]). There is an alternate characterization of the Hecke algebra which will be convenient
as well. Let L(Γ, G) be the rational vector space with basis consisting of right cosets Γξ for
ξ ∈ G. The Hecke algebra can be thought of as those elements of L(Γ, G) which are right
invariant under the action of Γ. Thus we can and will think of a double coset as the disjoint
union of right cosets ΓξΓ = ∪Γξν and as the sum of the same cosets

∑

Γξν ∈ L(Γ, G).

The global Hecke algebra, H, is generated by local Hecke algebras, Hp, one for each
prime p, obtained as above by replacing G by G ∩GL2n(Z[p−1]) in the above construction.
Hp is generated by double cosets ΓξΓ with ξ of the form diag(pa1 , . . . , pan , pb1 , . . . , pbn) where
a1 ≤ · · · ≤ an ≤ bn ≤ · · · ≤ b1 are integers with pai+bi = r(ξ) for all i. It is occasionally
useful to consider the “integral” Hecke algebra Hp generated by all ξ as above with ξ =
diag(pa1 , . . . , pan , pb1 , . . . , pbn) ∈M2n(Z).

The integral Hecke algebra Hp is generated by the (n + 1) Hecke operators

T (p) = Γ

(

In 0
0 pIn

)

Γ

and for k = 1, . . . , n,

T n
k (p2) = Tk(p

2) = Γ









In−k 0 0 0
0 pIk 0 0
0 0 p2In−k 0
0 0 0 pIk









Γ,

while the Hecke algebra Hp is generated by the (n + 1) elements above together with the
element Tn(p2)−1 = (pI2n)−1.
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The Satake isomorphism (see [1]) shows that the local Hecke algebra is isomorphic to a
polynomial ring invariant under a Weyl group:

Hp
∼= Q[x0, . . . , xn]Wn

Hp
∼= Q[x±1

0 , . . . , x±1
n ]Wn ∼= Q[x0, . . . , xn]Wn[(x2

0x1 · · ·xn)−1].

Here Wn is the group of Q-automorphisms of the rational function field Q(x0, . . . , xn) gen-
erated by all permutations of the variables x1, . . . , xn and by the automorphisms τ1, . . . , τn

which are given by:

τi(x0) = x0xi, τi(xi) = x−1
i , τi(xj) = xj (0 < j 6= i).

Wn is a signed permutation group, in particular, Wn = 〈τi〉oSn
∼= (Z/2Z)n oSn

∼= Cn where
Cn is Coxeter group associated to the spherical building for Spn(Qp).

3 Symmetric polynomials and Hecke Operators

Our goal in this section is to define (n + 1) families of Hecke operators, tn
k(p`), (analogous

to the T n
k (p2), T (p)) which are arithmetically interesting and at the same time naturally

connected to the Bruhat-Tits building for Spn(Qp).

A large part of the arithmetic interest arises by examining the generating functions
∑

` tnk(p`)v`. The series have sums which are highly structured rational functions. In partic-
ular, in two of the (n+1) cases, tn

0 (p`) and tn1 (p`), the associated rational functions correspond
to the spinor and standard zeta functions. In the other cases, they are new expressions.

As we have suggested, we shall make the definitions of the new operators, not in the
Hecke algebra (defined by double cosets), but in its (isomorphic) representation space, the
ring of Wn-invariant polynomials. Doing so will produce zeta functions in which the variables
x0, . . . , xn correspond (via the Satake correspondence) to the Satake p-parameters associated
to a generic Hecke eigenform.

To define our Hecke operators in the context of this polynomial ring we need a definition

and simple proposition: For a nonnegative integer `, define hr(`) =
∑

P

jk=`
jk≥0

zj1
1 zj2

2 · · · z
jr

r . Note

that hr(`) is a symmetric polynomial in the r variables z1, . . . , zr, and in particular, hr(0) = 1
and hr(1) = z1 + · · ·+ zr.

Proposition 3.1. The generating series associated to the hr(`) satisfies

∑

`≥0

hr(`)u` = [(1− uz1) · · · (1− uzr)]
−1

Proof. This is essentially obvious:
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[(1− uz1) · · · (1− uzr)]
−1 =

(

∑

a1≥0

(uz1)
a1

)

· · ·

(

∑

ar≥0

(uzr)
ar

)

=
∑

`≥0

u` ·
[

∑

P

ai=`
ai≥0

za1

1 · · · z
ar

r

]

It is clear from the definitions above that the coefficient of u` in the given expression is
hr(`).

Next we need to use the above polynomial to create a Wn-invariant polynomial. The
simplest examples are simply to fix a monomial and to sum its images under the action of
Wn. To that end, we compute a few simple orbits.

Lemma 3.2. Under the action of Wn, we obtain the following orbits:

1. OrbitWn
(x0) = {x0x

ε1

1 · · ·x
εn
n | εi = 0, 1}.

2. OrbitWn
(x1 · · ·xk) = {x

δi1

i1
· · ·x

δik

ik
| 1 ≤ i1 ≤ · · · ≤ ik ≤ n, δij = ±1}.

In particular, the orbits have size 2n and 2k
(

n
k

)

respectively.

Proof. With the generators of Wn previously defined, we note that τks
τks−1

· · · τk1
(x0) =

x0xk1
· · ·xks

for distinct kj ≥ 1, so it is clear that OrbitWn
(x0) ⊇ {x0x

ε1

1 · · ·x
εn
n | εi = 0, 1},

and hence the orbit has cardinality at least 2n. On the other hand, all of Sn is contained in
the stabilizer of x0, so the size of the orbit is [Wn : Stab(x0)] ≤ [Wn : Sn] = 2n, which gives
the first result.

For the second, it is easy to see directly: Sn can take x1 · · ·xk to any monomial xi1 · · ·xik

with 1 ≤ i1 ≤ · · · ≤ ik ≤ n. Applying τij takes xij to x−1
ij

fixing all other indices. Since these
generate the group Wn, the orbit and its size are clear.

Having determined these orbits, the following definitions become less mysterious. We
start with hr(`) where r is the size of one of the above orbits and substitute for the variables
zi the elements in the orbit. Thus we define the families of Hecke operators:

tn0 (p`) = h2n

(`)
∣

∣

∣ zi 7→σi(x0)
σi∈Wn/ Stab(x0)

.

and for 1 ≤ k ≤ n,

tnk(p`) = h2k(n

k)(`)
∣

∣

∣ zi 7→σi(x1···xk)
σi∈Wn/ Stab(x1···xk)

.

In particular,

tn0 (p) =
∑

εi=0,1

x0x
ε1

1 · · ·x
εn

n . (2n summands)
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and

tnk(p) =
∑

1≤i1<···<ik≤n
δij

=±1

x
δi1

i1
· · ·x

δik

ik
. (2k

(

n

k

)

summands)

We now examine their generating series.

Theorem 3.3. The operators tk(p
`) have generating series which are rational functions of

the form:

∑

`≥0

tn0 (p`)v` =

[

(1− x0v)

n
∏

m=1

∏

1≤i1<···<im≤n

(1− x0xi1 · · ·ximv)

]−1

,

and for 1 ≤ k ≤ n,

∑

`≥0

tnk(p`)v` =





∏

1≤i1<···<ik≤n, δij
=±1

(1− x
δi1

i1
· · ·x

δik

ik
v)





−1

.

Proof. The proof is immediate from Proposition 3.1 and the computation of orbits in
Lemma 3.2.

Remark 3.4. 1. For k = 0, the expression clearly corresponds to the local factor of the

spinor zeta function: ZF,p(v) = (1− α0v)

n
∏

m=1

∏

1≤i1<···<im≤n

(1− α0αi1 · · ·αimv). When

k = 1, the expression is simply
∑

`≥0

tn1 (p`)v` =

[

n
∏

m=1

(1− xmv)(1− x−1
m v)

]−1

which (up

to an initial “zeta” factor) corresponds to the local factor of the standard zeta function:

DF,p(v) = (1− v)

n
∏

m=1

(1− αmv)(1− α−1
m v).

2. Except for k = 0 and k = 1, the Hecke operators, tn
k(p`), give rise to new “zeta”

functions which may be of interest in the context of Siegel modular forms.

3. Finally, we note that for the case of n = 2, Andrianov and Zhuravlev [1] define a family
of Hecke operators T 2(p`) whose images under the (Satake) spherical map Ω (from Hp

to Q[x±1
0 , x±1

1 , x±1
2 ]W2) satisfy

∑

`≥0

Ω(T 2(p`))v` =
(1− p−1x2

0x1x2v
2)

(1− x0v)(1− x0x1v)(1− x0x2v)(1− x0x1x2v)
,

The operators t20(p
`) have a generating function whose sum has the same denominator

as Ω(T 2(p`)), but with numerator 1.
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Remark 3.5. Since the generating series
∑

`≥0 tnk(p`)v` has the form qk(v)−1 for a polynomial

qk(v), the relation qk(v) ·
∑

`≥0 tnk(p`)v` = 1 prescribes recursion relations to the operators

tnk(p`). Given these relations and the requisite base cases, one can define classical Hecke
operators in terms of double cosets which will have exactly the same generating series by
inverting the Satake isomorphism. For analogous operators on GLn, this has been done in
[4]. For Spn, this work has been done in [5].

4 Connections to the Satake map

We have taken advatage of the isomorphism provided by the Satake map between the local
Hecke algebra, Hp, and the ring of polynomials Q[x±1

0 , . . . , x±1
n ] which are invariant under

the Weyl group Wn, though this correspondence (at least at the level of cosets mapping to
polynomials) is far from intuitive.

In this final section we give a labeling of the special vertices in an apartment of the
Bruhat-Tits building for Spn(Qp) by monomials in Q[x±1

0 , . . . , x±1
n ] which corresponds in a

natural way to the labeling of vertices in terms of a symplectic basis for the underlying space.
This is turn [6] gives a correspondence with double cosets and hence a classical Hecke algebra
which makes the connection between the Hecke algebra and polynomilas seem natural. On
the other hand, it does not appear that this correspondence is the Satake map, but at least
provides (another) intuition that there should be such a correspondence.

Actually, our labeling of vertices will be by elements in Q[x±1
0 , . . . , x±1

n ] modulo the
relation x2

0x1 · · ·xn = 1, which will mirror that the vertices are themselves labeled by
homothety classes of lattices. This is also a very natural condition in terms of the
Satake parameters. Recall that the variables xi are playing the role of the Satake p-
parameters αi(p) which, for a simultaneous Hecke eigenform of weight k for Spn(Z),
satisfy α0(p)2α1(p) · · ·αn(p) = pnk−n(n+1)/2. Thus, modulo the power of p which is “in-
visible” at the level of an apartment, this is exactly the same condition. Finally, since
Hp
∼= Q[x±1

0 , . . . , x±1
n ]Wn ∼= Q[x0, . . . , xn]Wn [(x2

0x1 · · ·xn)−1] (see [1]), reducing by the relation
x2

0x1 · · ·xn = 1 produces a subring of Q[x0, x1, . . . , xn]Wn ∼= Hp, the integral local Hecke
algebra.

Using the notation of [6], fix a (fundamental) apartment Σ in the building by means of
a frame and symplectic basis {u1, . . . , un, w1, . . . , wn}. Let [Λ0] be the class of the lattice
Λ0 = Zpu1⊕· · ·⊕Zpun⊕Zpw1⊕· · ·⊕Zpwn, labeling a fixed special vertex in the apartment
Σ. In [6], we saw that a typical vertex [Λ] in Σ is special iff the vertex is self-dual, that is
Λ = Zpp

a1u1 ⊕ · · · ⊕ Zpp
anun⊕ Zpp

b1w1⊕ · · · ⊕ Zpp
bnwn for which there is an integer µ with

µ = ai + bi for all i. With this notation, we now have a one-to-one correspondence between
the classes of lattices (labeling special vertices), and monomials in Q[x±1

0 , . . . , x±1
n ] given by:

[pa1 , . . . , pan ; pb1 , . . . , pbn ]←→ xµ
0x

a1

1 · · ·x
an

n

modulo the relation x2
0x1 · · ·xn = 1 which corresponds to the class [p, . . . , p; p, . . . , p] = [Λ0].

That is, if Λ is replaced by pcΛ, then xµ
0x

a1

1 · · ·x
an
n is replaced by (x2

0x1 · · ·xn)cxµ
0x

a1

1 · · ·x
an
n ,



8 Thomas R. Shemanske

so that classes of lattices correspond to classes of monomials. To keep the notation from
getting too involved, we will simply write xµ

0x
a1

1 · · ·x
an
n rather than [xµ

0x
a1

1 · · ·x
an
n ]. This avoids

obvious confusion in statements like Q[x±1
0 , . . . , x±1

n ]Wn = Q[x0, . . . , xn]Wn[(x2
0x1 · · ·xn)−1].

On the other hand, with the given notation, there is an obvious correspondence
with the local Hecke algebra: Given, [pa1 , . . . , pan ; pb1, . . . , pbn ] ←→ xµ

0x
a1

1 · · ·x
an
n with

µ = ai + bi, we immediately note that diag(pa1 , . . . , pan ; pb1 , . . . , pbn) ∈ GSpn(Qp), so that
Γ diag(pa1 , . . . , pan; pb1 , . . . , pbn)Γ is in the local Hecke algebra Hp. Thus there is a clear
connection between the Hecke operator Γ diag(pa1 , . . . , pan ; pb1, . . . , pbn)Γ and the mono-
mial xµ

0x
a1

1 · · ·x
an
n . Sadly, this correspondence does not appear to be a homomorphism,

nonetheless it offers some motivation that there should be a natural correspondence.

Here we provide a labeling of a piece of the apartment Σ for Sp2, corresponding to our
previous labeling by classes of lattices (Example 2.4 of [6]):

Example 4.1. A partial labeling of the special vertices in an apartment for Sp2(Qp) by
(classes of) monomials

x1x
−1
2

G
G

G
G

G
• x1

z
z

z
z

z

G
G

G
G

G
• x1x2

u
u

u
u

u
u

I
I

I
I

I
•

• x0x1

w
w

w
w

w

D
D

D
D

D
• x0x1x2

w
w

w
w

w
w

I
I

I
I

I
I

• x0x1x
2
2

u
u

u
u

u

x−1
2

G
G

G
G

G
• 1

z
z

z
z

z

G
G

G
G

G
G • x2

u
u

u
u

u
u

I
I

I
I

I •

• x0

w
w

w
w

w

D
D

D
D

D
• x0x2

I
I

I
I

I

w
w

w
w

w
• x0x

2
2

u
u

u
u

u

x2
0 • x−1

1 • x−1
1 x2 •

Remark 4.2. We make one final connection of these monomials to the Hecke algebra. We
began this paper by defining polynomial Hecke operators tn

k(p`). Consider the generators tn
k(p)

when n = 2 so that we can use the above labelings given in Example 4.1 of this paper and
Example 2.4 of [6].

t20(p) = x0 + x0x1 + x0x2 + x0x1x2 = [1, 1; p, p] + [p, 1; 1, p] + [1, p; p, 1] + [p, p; 1, 1]

t21(p) = x1 + x−1
1 + x2 + x−1

2 = [p2, p; 1, p] + [1, p; p2, p] + [p, p2; p, 1] + [p, 1, ; p, p2]

t22(p) = x1x2 + x1x
−1
2 + x−1

1 x2 + x−1
1 x−1

2 = [p2, p2; 1, 1] + [p2, 1; 1, p2] + [1, p2; p2, 1] + [1, 1; p2, p2]

That is, the operator tn
k(p) is a formal sum of monomials. Viewed as a sum of classes

of monomials, these sums correspond exactly to the sums over classes of lattices in the
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fundamental apartment, and in particular again look like adjacency operators. Finally, note
that the difference between the actual monomials and their classes is the same as the difference
between the abstract Hecke algebra and its representation space acting on lattices or modular
forms.



10 Thomas R. Shemanske

References
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