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Abstract

In this paper, we investigate both arithmetic and combinatorial aspects of buildings
and associated Hecke operators for Spn(K) with K a local field. We characterize
the action of the affine Weyl group in terms of a symplectic basis for an apartment,
characterize the special vertices as those which are self-dual with respect to the induced
inner product, and establish a one-to-one correspondence between the special vertices
in an apartment and the elements of the quotient Zn+1/Z(2, 1, . . . , 1).

We then give a natural representation of the local Hecke algebra over K acting
on the special vertices of the Bruhat-Tits building for Spn(K). Finally, we give an
application of the Hecke operators defined on the building by characterizing minimal
walks on the building for Spn.

1 Introduction

Buildings play a large role in the study of classical groups [9] and, in particular, in the study
of Hecke algebras associated to these groups [4]. In [7], Serre defined Hecke operators acting
on trees (the building associated to SL2 over a local field), and this work was generalized
to SLn in [2]. In this paper, we investigate both arithmetic and combinatorial aspects of
buildings and associated Hecke operators for Spn(K) with K a local field.

Compared to the theory of buildings for the special linear group, the theory for the
symplectic group is far less developed, so the first part of this paper is devoted to giving
more concrete characterizations of the vertices in an apartment with particular attention to
the so-called special vertices. We note that in the case of SLn all vertices in the building are
special. We characterize the action of the affine Weyl group in terms of a symplectic basis
for an apartment, characterize the special vertices as those which are self-dual with respect
to the induced inner product, and establish a one-to-one correspondence between the special
vertices in an apartment and the elements of the quotient Zn+1/Z(2, 1, . . . , 1).
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We next establish connections between the symplectic elementary divisor theory of lat-
tices over the ring of integers O of K and double cosets of the group Γ = Spn(O). Using
this correspondence, we define Hecke operators on the building which act as generalized
adjacency operators on the underlying graph. We then give a natural (essentially faith-
ful) representation of the local Hecke algebra over K acting on the special vertices of the
Bruhat-Tits building for Spn(K). Finally, we give an application of the Hecke operators by
characterizing minimal walks on the 1-subcomplex of the building for Spn generated by the
special vertices.

2 The building for Spn

In this section, we consider the building for Spn over a local field and give intrinsic charac-
terizations of its apartments and special vertices. In particular, we give a concrete charac-
terization of the action of the affine Weyl group, C̃n, in terms of a symplectic basis for an
apartment. Moreover, after associating each vertex with a homothety class of a lattice in
the symplectic space, we show that special vertices are precisely those which are self-dual
with respect to the induced inner product. For our application to walks on the building, we
further establish a one-to-one correspondence between the special vertices in an apartment
and the elements of Zn+1/Z(2, 1, . . . 1), and interpret the induced group structure in terms
of walks on the building.

Throughout, let K be a local field, O its ring of integers, π ∈ O a uniformizing parameter,
k = O/πO the residue field, and (V, 〈∗, ∗〉) a symplectic (non-degenerate alternating) space
of dimension 2n over K. For an integer n ≥ 1, let In be the n × n identity matrix and Jn

the 2n×2n matrix
(

0 In

−In 0

)
. Define the group of symplectic similitudes of K as GSpn(K) =

{M ∈ M2n(K) | M tJnM = r(M)Jn} where r(M) ∈ K×. Note that Spn(K) consists of those
elements M ∈ GSpn(K) with r(M) = 1. Now let S = K×/O×; for convenience, we take
S = {πν | ν ∈ Z}. We will denote by GSpS

n(K) = {M ∈ GSpn(K) | r(M) ∈ S}. Finally, let
Γ = Spn(O).

The Bruhat-Tits building for Spn(K) is an n-dimensional simplicial complex, ∆n, whose
vertices are homothety classes of lattices in V . One defines an incidence relation on the
vertices, and the resulting flag complex is the building. In general, our focus will be on an
apartment in the building, and we will need a careful understanding of how the vertices are
indexed by classes of lattices. Some of the basic material can be found in Chapter 20 of [5],
which we supplement where germane.

Definition 2.1. An O-lattice Λ ⊂ V is a free O-module of rank 2n, and is called primitive
if 〈Λ, Λ〉 ⊆ O and 〈∗, ∗〉 induces a non-degenerate form on the alternating space Λ/πΛ over
k.

Following [5], we first give a general description of the building. We describe an
apartment system for the building as follows (see [5]). A frame is an unordered n-tuple
{λ1

1, λ
2
1}, . . . , {λ

1
n, λ2

n} of pairs of lines {λ1
i , λ

2
i } such that V =

∑n
1 (λ1

i + λ2
i ), (λ1

i + λ2
i ) is

orthogonal to (λ1
j + λ2

j) for i 6= j, and each (λ1
i + λ2

i ) is a hyperbolic plane. We say that
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the frame determines the apartment Σ. Vertices in Σ are homothety classes of lattices,
denoted [Λ]. A vertex [Λ] lies in Σ (determined by the above frame) if there are free
O-modules M j

i ⊂ λj
i such that Λ = ⊕i,jM

j
i for some (and hence every) representative Λ

of the homothety class. More concretely, vertices of the building are homothety classes of
lattices [Λ] which possess a representative Λ such that: there exists a lattice Λ0 with π−1Λ0

primitive, Λ0 ⊆ Λ ⊆ π−1Λ0, and 〈Λ, Λ〉 ⊆ πO; equivalently, Λ/Λ0 is a totally isotropic
k-subspace of the non-degenerate alternating space π−1Λ0/Λ0. To define the building, we
start with the set of vertices and define an incidence relation on them as follows: For vertices
t, t′, we say t ∼ t′ if there are lattices Λt ∈ t and Λt′ ∈ t′ and a lattice Λ0 such that π−1Λ0

is primitive, Λ0 ⊆ Λt, Λt′ ⊆ π−1Λ0, and either Λt ⊂ Λt′ or Λt′ ⊂ Λt. The associated flag
complex yields the building. The maximal simplices (chambers) are unordered (n+1)-tuples
[Λ0], [Λ1] . . . , [Λn] of homothety classes of lattices with representatives Λi satisfying: π−1Λ0

is primitive, Λ0 ⊆ Λi ⊆ π−1Λ0, and Λ1/Λ0 ⊂ Λ2/Λ0 ⊂ · · · ⊂ Λn/Λ0 is a maximal isotropic
flag of k-subspaces in π−1Λ0/Λ0.

Now we establish a more concrete realization of the apartment. Fix a symplectic basis
{u1, . . . , un, w1, . . . , wn} of V (〈ui, wj〉 = δij (Kronecker delta), 〈ui, uj〉 = 〈wi, wj〉 = 0), and
let Λ be the O-lattice Λ = Oπa1u1 ⊕ · · · ⊕ Oπanun ⊕ Oπb1w1 ⊕ · · · ⊕ Oπbnwn. We note
that 〈Λ, Λ〉 ⊆ O if and only if 〈πaiui, π

biwi〉 = πai+bi ∈ O, which is true if and only if
ai + bi ≥ 0. Given ai + bi ≥ 0, the induced alternating form on Λ/πΛ is non-degenerate over
k = O/πO if and only if ai + bi = 0 for all i. Since the basis and uniformizing parameter
will remain fixed throughout this paper, we shall lighten the notation, and for a lattice
Λ = Oπa1u1 ⊕ · · ·⊕Oπanun ⊕Oπb1w1 ⊕ · · ·⊕Oπbnwn, we will denote it and its class via the
exponents as Λ = (a1, . . . , an; b1, . . . , bn), and [Λ] = [a1, . . . , an; b1, . . . , bn], respectively.

Example 2.2. With the fixed symplectic basis {u1, . . . , un, w1, . . . , wn} for V , put λ1
i = Kui

and λ2
i = Kwi. The frame {λ1

i , λ
2
i } determines an apartment Σ. Let Λ0 = π(⊕Oui ⊕Owi).

Then π−1Λ0 is primitive. The following ascending chains of lattices determine two chambers
in Σ containing the vertex [Λ0].

Λ0 = (1, . . . , 1; 1, . . . , 1) ( Λ1 = (0, 1, . . . , 1; 1, . . . , 1) ( Λ2 = (0, 0, 1, . . . , 1; 1, . . . , 1) (

· · · ( Λn = (0, 0, . . . , 0; 1, . . . , 1) ( π−1Λ0.

Λ0 = (1, . . . , 1; 1, . . . , 1) ( Λ1 = (1, . . . , 1; 0, 1, . . . , 1) ( Λ2 = (1, . . . , 1; 0, 0, 1 . . . , 1) (

· · · ( Λn = (1, . . . , 1; 0, 0, . . . , 0) ( π−1Λ0.

To see how the rest of the apartment is laid out, one must understand the action of the
reflections which generate the Weyl group associated to the building on the lattices. The
affine Weyl group is of type C̃n which has Coxeter diagram:

•1 •2 •3 •n−1 •n •n+1

with (n + 1) vertices; the two endpoints are special vertices in the sense of [6], i.e, deleting
either of them produces a Coxeter diagram for the spherical Weyl group Cn. Associated
to each vertex i in the Coxeter diagram is a reflection si, and the collection of reflections
satisfy the standard rules s2

i = 1 and sisj has order mij, indicated by the Coxeter diagram
(m12 = mn(n+1) = 4, mi(i+1) = 3, for i 6= 1, n, and mij = 2 otherwise).
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Acting on the symplectic basis {u1, . . . , un, w1, . . . , wn}, define the reflections (any basis
vector not specified is fixed):

s1 : Interchange un and wn

sj(2 ≤ j ≤ n) : Interchange un−j+1 ↔ un−j+2 and wn−j+1 ↔ wn−j+2 (2.1)

sn+1 : u1 7→ πw1, w1 7→ π−1u1

That is, acting on a vertex [a1, . . . , an; b1, . . . , bn],

s1 takes [a1, . . . , an; b1, . . . , bn] to [a1, . . . , an−1, bn; b1, . . . , bn−1, an];

sj(2 ≤ j ≤ n) takes [a1, . . . , an; b1, . . . , bn] to

[a1, . . . , an−j, an−j+2, an−j+1, . . . , an; b1, . . . , bn−j , bn−j+2, bn−j+1, . . . , bn]; (2.2)

sn+1 takes [a1, . . . , an; b1, . . . , bn] to [b1 − 1, a2, . . . , an; a1 + 1, b2, . . . , bn].

The group C̃n is generated by s1, . . . , sn+1; one easily checks that the si satisfy the
prescribed Coxeter data. To label the apartment Σ, we first note that each chamber contains
two special vertices: one fixed by the reflections s1, . . . , sn and the other by s2, . . . , sn+1. It
is easily seen that the vertex v = [a1, . . . , an; b1, . . . , bn] is fixed by the first n reflections if
and only if ak = bl for all 1 ≤ k, l ≤ n. It is fixed by the last n reflections if and only if for
all 2 ≤ j ≤ n, an−j+1 = an−j+2, bn−j+1 = bn−j+2 and b1 = a1 + 1; in other words, if and only
if there is an integer m such that for all 1 ≤ k ≤ n, ak = m = bk − 1.

Since the group C̃n acts transitively on the chambers in the apartment, we facilitate a
labeling of the vertices of Σ by fixing a chamber C, which we will call the fundamental
chamber, and letting the group act on it. The chamber we choose is determined by the first
chain of lattices in Example 2.2: Λ0 = (1, . . . , 1; 1, . . . , 1) ( Λ1 = (0, 1, . . . , 1; 1, . . . , 1) (

Λ2 = (0, 0, 1, . . . , 1; 1, . . . , 1) ( · · · ( Λn = (0, 0, . . . , 0; 1, . . . , 1) ( π−1Λ0. Note that the
special vertices of this fundamental chamber are [Λ0] and [Λn]. The lattices Λi defined here
will be used in subsequent sections.

The codimension-one faces of this fundamental chamber may be labeled by the reflections
si so that their action on C generates the rest of the chambers in the apartment. We illustrate
this in the example below with n = 2.

Example 2.3. In labeling the chambers, it is natural to first establish the residue of the
special vertex [Λ0] in Σ; that is, the set of chambers in Σ containing it. The residue is
naturally associated with the link of the vertex (see [3]). The residue is simply obtained by

letting the spherical Weyl group Cn = 〈s1, . . . , sn〉 ( C̃n act on the fundamental chamber.
The Weyl group Cn is isomorphic to (Z/2Z)n o Sn (the signed permutation group) and
has order 2nn!, so for n = 2 we expect 8 chambers in the apartment containing the given
special vertex [Λ0]. Thus, we start with the fundamental chamber C given by the chain
Λ0 = (1, 1; 1, 1) ⊂ (0, 1; 1, 1) ⊂ (0, 0; 1, 1) ⊂ (0, 0; 0, 0) = π−1Λ0, and act on this chain with
the group C2 = 〈s1, s2〉 = {1, s1, s2, s2s1, s1s2, s1s2s1, s2s1s2, s2s1s2s1 = s1s2s1s2}. For ease
in labeling, we abbreviate the composition si1si2 · · · sik as si1i2···ik .
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We also indicate the action of the generators of C̃2. Continuing to apply the reflections
in this way admits a labeling of the vertices of Σ by classes of lattices:

[2, 0; 0, 2]

L
L

L
L

L
[2, 0; 0; 1] [2, 1; 0, 1]

r
r

r
r

r

L
L

L
L

L
[2, 1; 0, 0] [2, 2; 0, 0]

r
r

r
r

r

L
L

L
L

L
•

• [1, 0; 0, 1]

r
r

r
r

r s212C
L

L
L

L
L

[1, 1; 0, 1] [1, 1; 0, 0]

s1212C

r
r

r
r

r

L
L

L
L

L
[1, 2; 0, 0] [2, 3; 1, 0]

r
r

r
r

r

[1, 0; 1, 2]

L
L

L
L

L
[1, 0; 1, 1]

s21C
[1, 1; 1, 1]

s2C

Cr
r

r
r

r

s1C

s12C
L

L
L

L
L

s121C
[1, 1; 1, 0] [1, 2; 1, 0]

r
r

r
r

r

L
L

L
L

L
[2, 3; 2, 0]

• [0, 0; 1, 1]

s3C

r
r

r
r

r
r

L
L

L
L

L
[0, 1; 1, 1] [0, 1; 1, 0]

L
L

L
L

L

r
r

r
r

r

[0, 2; 1, 0] [1, 3; 2, 0]

r
r

r
r

r

• [0, 0; 2, 1] [0, 1; 2, 1] [0, 1; 2, 0] [0, 2; 2, 0] •

3 Special vertices and the associated 1-complex

We consider the subcomplex of the building ∆n obtained by restricting attention to the
special vertices. We give a lattice-theoretic characterization of the special vertices, show
that there is a natural group structure on the set of special vertices, and then investigate the
properties of the 1-complex one obtains from the building by restricting to special vertices.
In particular, we show that the 1-complex is connected.

We retain the notation of the previous section with our fixed basis of the symplectic space
V , apartment Σ, and fundamental chamber C. Since the building ∆n arises from a BN -pair,
we know (see Theorem p. 112 of [3]) that the action of Spn(K) on ∆n is type-preserving and
strongly transitive. We briefly explain these terms (see [3] for a detailed explanation). The
vertices of a building can be labeled in exactly the same sense that the vertices of a graph
can be colored — with no two vertices connected by an edge having the same color. That
the action is type-preserving means that it preserves the label (color) of the vertices. The
labels for the vertices in ∆n can be taken from the set {1, 2, . . . , n + 1}, corresponding to
the n + 1 vertices in a chamber. The action is strongly transitive in the sense (see [3]) that
Spn(K) acts transitively on the chambers of ∆n and that the stabilizer of a given chamber
C acts transitively on the set of apartments containing C. Equivalently, we can say that
Spn(K) acts transitively on the apartments of ∆n and the stabilizer of a given apartment Σ
acts transitively on the chambers in Σ.

In particular, because this action is type-preserving, special vertices are mapped to special
vertices. Moreover, in the fixed chamber C in Σ, the special vertex [Λ0] = [1, . . . , 1; 1, . . . , 1]
is mapped to the other special vertex [Λn] = [0, . . . , 0; 1, . . . , 1] by means of the matrix
diag(1, . . . , 1, π, . . . , π) ∈ GSpS

n(K). Because the action of Spn(K) is also transitive on the
chambers of ∆n, it is clear that every special vertex in the building is the image of [Λ0]
under the action of GSpS

n(K). The converse is also true; to see this, we give an alternate
characterization of special vertices as those which are self-dual.
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Using our shorthand notation for lattices (relative to our fixed basis) in V , let Λ be the
lattice Λ = (a1, . . . , an; b1, . . . , bn). The dual lattice Λ] is defined to be {v ∈ V | 〈v, Λ〉 ⊆ O}.
It too is a lattice, and it is easily seen from the bilinearity of the alternating form that
Λ] = (−b1, . . . ,−bn;−a1, . . . ,−an). It is also clear that (πνΛ)] = π−νΛ], so [Λ]] depends
only on [Λ], and in particular [Λ] = [Λ]] if and only if πµΛ] = Λ for some µ ∈ Z.

Proposition 3.1. Let Λ = (a1, . . . , an; b1, . . . , bn). Then [Λ] = [Λ]] if and only if there exists
an integer µ, such that for all i, ai + bi = µ. In this case we call the vertex self-dual.

Proof. Using our explicit characterization of the dual lattice, [Λ] = [Λ]] if and only if there
exists an integer µ such that πµΛ] = Λ; that is, if and only if µ − bi = ai and µ − ai = bi,
which is true if and only if µ = ai + bi for all i.

Proposition 3.2. If Λ = (a1, . . . , an; b1, . . . , bn) and [Λ] is self-dual, then its images under

the affine Weyl group C̃n are again self-dual vertices. Moreover, the image of any non-self
dual vertex is again not self-dual.

Proof. We need only check this for the generators si of the affine Weyl group, and all of
these assertions are obvious from the above definitions.

Proposition 3.3. The group GSpS
n(K) acts transitively on the special vertices in the building

∆n.

Proof. We have already observed that every special vertex in the building is the image of
[Λ0] under the action of GSpS

n(K). We need only observe that the action of GSpS
n(K) on

[Λ0] is always a special vertex. To see this, recall that Spn(K) acts in a type-preserving
manner on the vertices of ∆n; in particular, it takes special vertices to special vertices. Since
Γ = Spn(O) ⊂ Spn(K), we know that any element ξ ∈ GSpS

n(K) will act (on vertex type)
in the same way as any element of ΓξΓ. Thus by Lemma 4.1 (see below), we may assume
that ξ = diag(πa1 , . . . , πan , πb1 , . . . , πbn) with ai + bi constant. It is clear that the action
of this ξ on [Λ0] produces a self-dual vertex v0 in Σ. We need to show that this vertex is

special. If v0 is not special, then via C̃n, we can translate v0 back to a non-special vertex in
the fundamental chamber C. By examining the chain of lattices which define C, we see that
only two vertices are self-dual, and they are the special vertices. This means that v0 is not
self-dual, contradicting Proposition 3.2.

Corollary 3.4. A vertex in the building ∆n is special if and only if it is self-dual relative to
any apartment in which it is viewed.

Proof. Let v0 be a special vertex and Σ an apartment containing it. Let C ′ be any chamber
in Σ containing v0. For convenience of notation, we assume the same basis as before and
fix a fundamental chamber C. Since there is an element of the Weyl group C̃n ⊂ Spn(K)
that maps C ′ to C, v0 is mapped to one of the two special vertices of C, which are the only
self-dual vertices in C. By Proposition 3.2, v0 is self-dual. The converse follows from the
proof of Proposition 3.3.
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For our application to walks on the building, it is convenient here to make one further
characterization of the special vertices in an apartment. As above, we work in the fixed
apartment Σ with symplectic basis {ui, wi}. From the above discussion, we saw that given
a lattice Λ = Oπa1u1 ⊕ · · · ⊕ Oπanun ⊕ Oπb1w1 ⊕ · · · ⊕ Oπbnwn, the vertex v0 = [Λ] =
[a1, . . . , an; b1, . . . , bn] is special (self-dual) if and only if ai + bi = µ is constant. Moreover,
the lattice Λ is completely characterized by the data (µ, a1, . . . , an) ∈ Zn+1. For two special
vertices v0 and v′

0 = [a′
1, . . . , a

′
n; b′1, . . . , b

′
n], we have that v0 = v′

0 if and only if a′
i = ai + k

and b′i = bi + k for all i and some k ∈ Z. To try to avoid confusion between the two
different notations characterizing classes of lattices, we denote v0 by [(µ : a1, . . . , an)]. Then
[(µ : a1, . . . , an)] = [(µ′ : a′

1, . . . , a
′
n)] if and only if a′

i = ai + k and µ′ = µ + 2k. Thus there is
a one-to-one correspondence between the special vertices in the apartment and the elements
of the quotient Zn+1/Z(2, 1, . . . , 1).

Indeed the natural group operation defined on Zn+1/Z(2, 1, . . . , 1) induces one on the
special vertices of an apartment, and there is a natural geometric interpretation of this
group operation as well. We show that the subcomplex of ∆n obtained by restriction only
to special vertices is a connected 1-complex, and that the group operation corresponds to
certain walks on this graph. A characterization of minimal walks is given in the final section
of this paper.

Consider the special vertices in Σ in the residue of a fundamental chamber containing
[(0 : 0, . . . , 0)]. Using the reflections defined in equation 2.2, it is easy to see that the collection
of special vertices in this residue (excluding [(0 : 0, . . . , 0)] itself) consists of all vertices of the
form [(1 : ε1, . . . , εn)], where εi ∈ {0, 1}. That is, the special vertex [Λn] = [0, . . . 0; 1, . . . , 1]
in the fundamental chamber C can be mapped to [δ1, . . . , δn; 1 − δ1, . . . , 1 − δn] (δi ∈ {0, 1})
by applying the reflections s1, . . . , sn which generate the spherical Weyl group. For example,
if j is the smallest index such that δj = 1, then the composition sn−j+1 · · · s2s1 maps [Λn]
to [γ1, . . . , γn; 1 − γ1, . . . , 1 − γn] with γj = 1 and γi = 0 for i 6= j. Iterating in the obvious
manner produces the desired special vertex.

We now specify certain of these special vertices which offer us geometric insight into the
group operation induced on the special vertices. For 1 ≤ k ≤ n, denote by εk the special
vertex in the residue of [Λ0] having the form εk = [(1 : δ1, . . . , δn)] with δk = 1, and δi = 0 (for
i 6= k), and let ε0 = [(1 : 0, . . . , 0)]. Let [(µ : a1, . . . , an)] be an element of Zn+1/Z(2, 1, . . . , 1).
It is clear that as elements of the group, [(µ : a1, . . . , an)] = a1ε1 + a2ε2 + · · · + anεn + (µ −∑n

1 ai)ε0. The geometric interpretation we shall establish is that the εk represent directions
to walk from [Λ0] in the apartment Σ. As the vertices εk are adjacent to [Λ0], these are walks
of length one. We will show that any special vertex in the building is the endpoint of a walk,
and in particular, that the subcomplex of the building generated by the special vertices is
connected.

Example 3.5. For Sp2(K) we have the following (partial) labeling of the special vertices in
an apartment by elements of Z3/Z(2, 1, 1). Note that in considering the 1-subcomplex of the
apartment, we have removed all non-special vertices and the corresponding edges. Compare
with Example 2.3.
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[(2 : 2, 0)]

O
O

O
O

O
O

[(0 : 1, 0)]

o
o

o
o

o
o

O
O

O
O

O
O

[(0 : 1, 1)]

o
o

o
o

o
o

L
L

L
L

L

[(1 : 1, 0)] = ε1

o
o

o
o

o
o

O
O

O
O

O
O

[(1 : 1, 1)]

o
o

o
o

o
o

O
O

O
O

O
O

[(1 : 1, 2)]

r
r

r
r

r

[(2 : 1, 0)]

O
O

O
O

O
O

[(0 : 0, 0)]

o
o

o
o

o
o

O
O

O
O

O
O

O
O

O
O

O
O

[(0 : 0, 1)]

o
o

o
o

o
o

L
L

L
L

L

[(1 : 0, 0)] = ε0

o
o

o
o

o
o

O
O

O
O

O
O

[(1 : 0, 1)] = ε2

O
O

O
O

O
O

o
o

o
o

o
o

[(1 : 0, 2))]

r
r

r
r

r

[(2 : 0, 0)] [(2 : 0, 1)] [(2 : 0, 2)]

The special vertices in the residue of [(0 : 0, 0)] are labeled clockwise [(1 : 1, 1)], ε2 =
[(1 : 0, 1)], ε0 = [(1 : 0, 0)], and ε1 = [(1 : 1, 0)], and they define directions in which
to move (relative to [(0 : 0, 0)]) within the apartment consistent with the group law: For
example, ε2 − 2ε0 corresponds to a walk from [(0 : 0, 0)] moving one unit in the direction
indicated by ε2 and then two units in the opposite direction indicated by ε0, bringing us to
[(−1 : 0, 1)] = [(1 : 1, 2)]. Thus, we can think of a vertex [(µ : a1, . . . , an)] as the endpoint of
a walk along the 1-subcomplex of the apartment (consisting of only the special vertices and
associated edges) which is given by moving a certain number of units in the above mentioned
directions.

Proposition 3.6. The subcomplex generated by restricting to special vertices in ∆n is a
connected 1-complex.

Proof. Clearly, given any two special vertices, we may assume they lie in a given apartment,
so we use our fixed apartment Σ. It is clear that as elements of the group Zn+1/Z(2, 1, . . . , 1),
the element [(µ : a1, . . . , an)] = a1ε1 + a2ε2 + · · · + anεn + (µ −

∑n
1 ai)ε0, so it suffices to

show for any special vertex v0 = [(µ : a1, . . . , an)], that v0 ± εk (0 ≤ k ≤ n) is a special
vertex incident to v0 in ∆n (in fact, in Σ). We treat the case of v0 + εk; the case of v0 − εk

is analogous (if εk = [ai; bi], then v0 − εk = v0 + [bi; ai]).

To establish this, we return to the definition of the incidence relation defined in section
2. Given a special vertex v0 = [(µ : a1, . . . , an)], we may reduce modulo [(2 : 1, . . . , 1)] and
so assume µ = 0 or 1.

If µ = 0, let L be the lattice (a1, . . . , an;−a1, . . . ,−an). Note that v0 = [L] and that L is
a primitive lattice (see section 2). Being somewhat sloppy, we want to define Lk as a lattice
representing v0+εk. More precisely, let L0 = (a1, . . . , an; 1−a1, . . . , 1−an) and for 1 ≤ k ≤ n,
let Lk = (a1, . . . , ak−1, 1 + ak, ak+1, . . . , an; 1− a1, . . . , 1− ak−1,−ak, 1− ak+1, . . . , 1− an). In
terms of the group, v0 + εk = [Lk]. We note that πL ⊂ Lk ⊂ L and that L is primitive which
means [L] = v0 and [Lk] = v0 + εk are incident special vertices.

If µ = 1, the roles of L and Lk reverse as follows. Let L = (a1, . . . , an; 1− a1, . . . , 1− an).
Note that v0 = [L]. Let Lk be defined as above, and note that v0 + εk = [Lk] and that
Lk ⊂ L ⊂ π−1Lk with π−1Lk primitive; hence v0 = [L] and v0 +εk = [Lk] are incident special
vertices.
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We shall return to this 1-subcomplex in the final section of the paper where we make use
of Hecke operators to characterize the endpoints of minimal walks on this graph.

4 A representation of the local Hecke algebra

To produce operators acting on the building, we define an essentially faithful representation
of a local Hecke algebra acting on the special vertices of the building for Spn. This repre-
sentation is quite natural, generalizing both the notion of adjacency operators on a graph
and Serre’s action of the Hecke algebra on trees (see [7] for the case of SL2 and [2] for higher
rank generalizations). To start, we need to discuss how the lattices which define the special
vertices of the building are connected to elementary divisors and how the elementary divisors
are connected to double cosets of the Hecke algebra.

4.1 Symplectic lattices and elementary divisors

We begin with a short discussion about lattices and elementary divisors in the symplectic
setting. Retaining the notation of earlier sections, K is a local field, O its ring of integers,
π a fixed uniformizing parameter, and (V, 〈∗, ∗〉) a 2n-dimensional symplectic space over
K. Let S = K×/O×; for a convenient set of representatives we fix S = {πν | ν ∈ Z}.
As before, we denote by GSpS

n(K) = {M ∈ GSpn(K) | r(M) ∈ S}. We again note that
Spn(K) ⊂ GSpS

n(K), and put Γ = Spn(O).

Fix a symplectic basis {u1, . . . , un, w1, . . . , wn} of V satisfying 〈ui, wj〉 = δij (Kronecker
delta), 〈ui, uj〉 = 〈wi, wj〉 = 0. With obvious modification to the proof, the following is
Lemma 3.6 of [1].

Lemma 4.1. Let ξ ∈ GSpS
n(K). Then every double coset ΓξΓ has a unique representative

of the form sd(ξ) = diag(α1, . . . , αn, β1, . . . , βn), where αi, βi ∈ S satisfy αi | αi+1, αn | βn,
βi+1 | βi, and αiβi = r(ξ).

Remark 4.2. Classically, the diagonal representative of the double coset is called the Smith
normal form of the matrix ξ, while in more modern terms, this process reflects the p-adic
Cartan decomposition of the group.

We call a lattice symplectic if it has an O-basis which is a symplectic basis for V with
respect to the alternating bilinear form on V . The following proposition is easily established.
Note that in its statement and proof, we follow [8] and use a right action on lattices to
facilitate a cosmetically more pleasing result in Lemma 4.6.

Proposition 4.3. Let L be a symplectic lattice. Then Γ = Spn(O) can be identified with
{A ∈ GSpS

n(K) | LA = L}, where A acts on L as the matrix of a linear transformation with
respect to a fixed basis of L.
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To set up the correct analog of elementary divisor theory, we need to fuss a bit more than in
the general linear case. To begin, fix a symplectic lattice L and put R = RL = {LA | A ∈
GSpS

n(K)}. Note that in the general linear case, GSpn would be replaced by GL2n, and R
would be the set of all lattices of full rank in V , and so R would not need to be defined at
all.

Lemma 4.4. Let M and N be lattices in R. Then there exists a symplectic basis
{u1, . . . , un, w1, . . . , wn} of V and elements αi, βi ∈ S satisfying β1O ⊂ · · · ⊂ βnO ⊂ αnO ⊂

· · · ⊂ α1O and βiαi = r ∈ S such that M =
n⊕

i=1

Oui⊕
n⊕

i=1

Owi and N =
n⊕

i=1

Oαiui⊕
n⊕

i=1

Oβiwi.

Remark 4.5. The ideals αiO and βjO are called the symplectic divisors of N in M
and coincide with the standard elementary divisors {M : N} since Γ ⊂ SL2n(O). That
is, if we choose two lattices from R and consider their elementary divisors in the tradi-
tional sense, they are in fact symplectic elementary divisors with the above-stated additional
properties. In particular, if M and N are as in the lemma, we will write {M : N} =
{α1, . . . , αn, β1, . . . , βn} to mean there exist bases of M and N as in the lemma.

Proof. Since M and N are in R, there exists an A ∈ GSpS
n(K) with N = MA. Identify Γ

with the stabilizer of M. By Lemma 4.1, sd(A) = diag(α1, . . . , αn, β1, . . . , βn) = γ1Aγ2 for
some γi ∈ Γ, where sd(A) is the symplectic divisor matrix of A. Finally, since Mγi = M,
it is clear that {M : N} = {Mγ1 : Mγ1A} = {Mγ1γ2 : Mγ1Aγ2} = {M : Msd(A)} =
{α1, . . . , αn, β1, . . . , βn}, from which the lemma follows.

Lemma 4.6. For A and B in GSpS
n(K), ΓA = ΓB if and only if LA = LB.

Proof. Note that ΓA = ΓB if and only if AB−1 ∈ Γ, which by Proposition 4.3 is true if and
only if L = LAB−1.

Lemma 4.7. Let M and N be lattices in R. The elementary divisors of M and N in L
satisfy {L : M} = {L : N} if and only if there exists an A ∈ Γ such that MA = N .

Proof. The result is clear if there exists an A ∈ Γ such that MA = N . To prove the converse,
we note that by definition of the symplectic elementary divisors, there exist elements αi,
βi ∈ S satisfying β1O ⊂ · · · ⊂ βnO ⊂ αnO ⊂ · · · ⊂ α1O and βiαi = r ∈ S and symplectic
O-bases

{u(j)
1 , . . . , u(j)

n , w
(j)
1 , . . . , w(j)

n } (j = 1, 2)

of L such that

L =
n⊕

i=1

Ou
(1)
i ⊕

n⊕
i=1

Ow
(1)
i , M =

n⊕
i=1

Oαiu
(1)
i ⊕

n⊕
i=1

Oβiw
(1)
i ,

L =
n⊕

i=1

Ou
(2)
i ⊕

n⊕
i=1

Ow
(2)
i , N =

n⊕
i=1

Oαiu
(2)
i ⊕

n⊕
i=1

Oβiw
(2)
i .

Let A be the matrix of the linear transformation (with respect to either basis) taking u
(1)
i 7→

u
(2)
i , and w

(1)
i 7→ w

(2)
i . Clearly A ∈ Spn(K) ⊂ GSpS

n(K) as it maps one symplectic basis to
another. Since LA = L, A ∈ Γ by Proposition 4.3. Since A obviously maps M to N , the
proof is complete.
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Proposition 4.8. Let L ∈ R, Γ the stabilizer of L, A ∈ GSpS
n(K), and

ΓAΓ = Γsd(A)Γ = Γ diag(α1, . . . , αn, β1, . . . , βn)Γ.

Then Γξ 7→ Lξ gives a one-to-one correspondence between the cosets Γξ in ΓAΓ and lattices
M ∈ R with {L : M} = {α1, . . . , αn, β1, . . . , βn}.

Proof. We may assume that A = diag(α1, . . . , αn, β1, . . . , βn). If Γξ = ΓAδ with δ ∈ Γ,
then Lξ ∈ R and we have {L : Lξ} = {L : LAδ} = {L : LA} = {α1, . . . , αn, β1, . . . βn}.
Conversely, if M ∈ R and {L : M} = {α1, . . . , αn, β1, . . . βn}, then by Lemma 4.7, there
exists an element B ∈ Γ such that M = LAB. Clearly, ΓAB ⊂ ΓAΓ. The correspondence
is one-to-one since by Lemma 4.6, Γξ = Γζ if and only if Lξ = Lζ.

4.2 The representation

We now give a natural representation of the local Hecke algebra in which the Hecke operators
act on the special vertices of the building for Spn(K). In addition, we shall show how the
operators in this representation space correspond to adjacency operators on the associated
1-subcomplex of the building. In the next section, we use these operators to characterize
minimal walks on this subset of the building.

Often in the context of buildings, especially as so much of the theory is related to the
representation theory of classical p-adic groups, one considers the local Hecke algebra as
a convolution algebra of compactly supported Γ-bi-invariant functions GSpn(K) → C [4].
In this setting, the classical double cosets considered in the previous section are viewed
as characteristic functions associated to the double cosets. In large part, the purpose is
then to obtain a natural action of the Hecke algebra on the set of compactly supported
functions which act on the vertices of the building in question. Usually this occurs by
identifying the set of vertices in the building with a quotient such as GSpn(K)/Γ. While
this perspective affords a rather general context in which to view many similar problems,
we have not chosen this perspective as it would move the exposition a good deal farther
from the concrete characterizations of special vertices in terms of lattices. Indeed, given the
explicit lattice-theoretic characterization of special vertices, Lemma 4.7 and Proposition 4.8
provide a transparent connection between the right cosets comprising a given double coset
and sublattices of a given lattice with a prescribed set of elementary divisors. An operator
which sums over right cosets of a given double coset is a classically defined Hecke operator
in the sense of [8], while the notion of summing over (classes of) lattices is the immediate
analog of Serre’s original work on trees [7], as well as its generalizations [2].

To define the representation, let E be any field of characteristic zero, and con-
sider the local Hecke algebra H generated as a vector space over E by the double
cosets ΓξΓ with ξ ∈ GSpS

n(K). By Lemma 4.1, we may assume all ξ have the form
ξ = diag(πa1 , . . . , πan , πb1 , . . . , πbn), where a1 ≤ · · · ≤ an ≤ bn ≤ · · · ≤ b1. To introduce the
algebra structure on H, we give its multiplication law (e.g., see section 3.1 of [8]):
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Let ξ1 = diag(πa1 , . . . , πan , πb1 , . . . , πbn) and ξ2 = diag(πc1 , . . . , πcn , πd1 , . . . , πdn) be ele-
ments of GSpS

n(K), and write Γξ1Γ as the disjoint union ∪Γαi and Γξ2Γ as the disjoint union
∪Γβj. Then

(Γξ1Γ)(Γξ2Γ) = Γξ1Γξ2Γ =
∑

ΓξΓ

c(ξ)ΓξΓ,

where the sum is over all double cosets ΓξΓ ⊂ Γξ1Γξ2Γ and c(ξ) is the number of pairs (i, j)
for which Γαiβj = Γξ.

We have previously noted that the vertices of the building, Vert(∆n), are in one-to-
one correspondence with homothety classes of certain lattices in our fixed vector space V ;
however, our action will only be on the special vertices. So we let B be the vector space over
E with basis consisting of the special vertices in Vert(∆n).

Let L be a lattice in V with [L] a special vertex in ∆n, and identify Γ = Spn(O)
with the stabilizer of L in GSpS

n(K). Let ξ = diag(πa1 , . . . , πan , πb1 , . . . , πbn) ∈ GSpS
n(K).

By Proposition 4.8, we know that the double coset ΓξΓ determines a collection of right
cosets {Γξν} which are in one-to-one correspondence with the collection of lattices {M}
with {L : M} = {πa1 , . . . , πan ; πb1 , . . . , πbn}. Note that all of these lattices M are contained
in R = {LA | A ∈ GSpS

n(K)}, and hence by the discussion above, their classes are all special
vertices.

In the context of Hecke operators acting on modular forms, the natural action of a
double coset on the modular form is to sum the actions on the form by the right cosets
comprising the double coset. Using the notation above, it is then natural to define the
operator TB(πa1 , . . . , πan ; πb1 , . . . , πbn) ∈ End(B) induced by

TB(πa1 , . . . , πan ; πb1 , . . . , πbn)([L]) =
∑

{L:M}={πa1 ,...,πan ,πb1 ,...,πbn}

[M ],

where the sum is over all (special) vertices in the building with prescribed elementary divisors.
For brevity, we shall write TB(ξ)([L]) =

∑
{L:M}=ξ[M ]. The map is clearly well-defined and

(by definition) linear.

Theorem 4.9. The correspondence ΓξΓ 7→ TB(ξ) induces a representation Ψ : H → End(B),
whose kernel consists of double cosets of the form ΓξΓ with ξ = πµI2n, µ ∈ Z.

Proof. We first verify that Ψ is a ring homomorphism. Using the notation above, we have

TB(ξ1)TB(ξ2)([L]) = TB(ξ1)(
∑

{L:M}=ξ2

[M ])

=
∑

{L:M}=ξ2

∑

{M :N}=ξ1

[N ].
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By Proposition 4.8, each lattice M for which {L : M} = ξ2 is of the form M = Lβj. Now

{M : N} = ξ1 ⇐⇒ {Lβj : N} = ξ1 ⇐⇒ {L : Nβ−1
j } = ξ1.

Let P be such that {L : P} = ξ1. Then, again by Proposition 4.8, P = Lαi for some i. But
then P = Nβ−1

j , so N = Pβj = Lαiβj.

Thus, TB(ξ1)TB(ξ2)([L]) =
∑

{L:M}=ξ2

∑

{M :N}=ξ1

[N ] =
∑

i,j

[Lαiβj]. From the discussion preceding

the theorem (and once again Proposition 4.8), this last sum is exactly
∑

ΓξΓ c(ξ)TB(ξ)([L]),
which is the image of (Γξ1Γ)(Γξ2Γ).

To compute the kernel of Ψ, suppose
∑

ΓξΓ c(ξ)TB(ξ) is the trivial map. Then

∑

ΓξΓ

c(ξ)TB(ξ)([L]) =
∑

ΓξΓ

c(ξ)
∑

{L:M}=ξ

[M ] = [L]

for all special vertices [L] ∈ Vert(∆n). But since the special vertices [M ] ∈ Vert(∆n) are a
basis for B, we have only one ξ, and for that ξ, c(ξ) = 1. Thus,

∑
{L:M}=ξ[M ] = [L] for all

[L]. Now, if ΓξΓ = ∪Γξν , then by Proposition 4.8,
∑

{L:M}=ξ[M ] =
∑

ν [Lξν ] = [L], so there

can be only one right coset: ΓξΓ = Γξ, and [Lξ] = [L]. Since {L : Lξ} = ξ, we must have
ξ = πµI2n for some integer µ.

We have suggested that the operator TB can be interpreted as an adjacency operator. To
give a flavor of things, we begin with an example. The reader should refer to Example 2.3
for the labeling of the vertices.

Example 4.10. For Sp2, there are three generators of the algebra H, T (π) = Γ diag(1, 1, π, π)Γ,
T 2

1 (π2) = Γ diag(1, π, π2, π)Γ and T 2
2 (π2) = Γ diag(π, π, π, π)Γ whose images under the repre-

sentation are respectively TB(1, 1, π, π), TB(1, π, π2, π), and TB(π, π, π, π). The last operator
acts trivially, but the first two are of real interest. Restricted to the fundamental apartment
(see Example 2.3), TB(1, 1, π, π) sums the four special vertices closest to [1, 1; 1, 1], namely
[0, 0; 1, 1] + [0, 1; 1, 0] + [1, 1; 0, 0] + [1, 0; 0, 1], while TB(1, π, π2, π) sums the four special
vertices “next closest” to [1, 1; 1, 1], namely [0, 1; 2, 1] + [1, 2; 1, 0] + [2, 1; 0, 1] + [1, 0; 1, 2].
Thus, both operators act as adjacency operators on the underlying 1-complex.

We amplify this example with some general considerations. An adjacency operator is
often defined as a sum of vertices at a fixed distance from a given vertex, where the definition
of distance can vary. In the context of a building, there are many notions of distance, some
abstract, and others tied to the characterization of the building as a chamber complex. We
focus on two: length of edge path (since we are looking at the underlying 1-complex of
special vertices) and gallery length (the number of codimension-one faces crossed in moving
from one chamber to another). The first adjacency operator in the example corresponds to
identifying special vertices which are edge distance one (gallery distance zero) from the given
vertex, while the second corresponds to special vertices edge distance two (gallery distance
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one) from the given vertex. We examine this in some detail, reducing the considerations to
our fixed apartment Σ.

Recall that we defined our fundamental chamber C by means of the lattices: Λ0 ⊂ Λ1 ⊂
· · · ⊂ Λn ⊂ π−1Λ0, where [Λ0] and [Λn] are the two special vertices in C. In the affine Weyl

group C̃n = 〈s1, . . . , sn+1〉, the subgroup Cn = 〈s1, . . . , sn〉 is the stabilizer of the vertex [Λ0],
and the image of C under this subgroup generates the residue (in Σ) of that vertex. More
explicitly, the chambers in the residue of [Λ0] in Σ have the form γC, corresponding to the
chain of lattices Λ0 ⊂ γΛ1 ⊂ · · · ⊂ γΛn ⊂ π−1Λ0.

To analyze the situation further, consider the subgroup W of Cn that fixes Λn. Thus,
W is the stabilizer in C̃n of the edge with vertices [Λ0] and [Λn]. Using the standard poset
isomorphism between faces of the fundamental chamber and special subgroups of Cn (gen-
erated by subsets of {s1, . . . , sn}), we see that W = 〈s2, . . . , sn〉. The group W is a spherical
Weyl group of type An−1 and hence is isomorphic to the symmetric group on n letters. Thus,
within the apartment, the special vertices in the residue of [Λ0] have the form [γΛn], where
γ ∈ Cn/W , producing 2n such vertices. One can, in fact, be completely explicit.

In Equations 2.2, we describe the action of the reflections si on the vertices [a1, . . . , an; b1, . . . , bn].
Identifying (a1, . . . , an, b1, . . . , bn) with (1, 2, . . . , 2n) in the obvious manner, we rewrite the
si (1 ≤ i ≤ n) as elements of the symmetric group on 2n letters written as the product of
disjoint transpositions:

s1 : (n 2n)

sj(2 ≤ j ≤ n) : ((n − j + 1) (n − j + 2)) ((2n − j + 1) (2n − j + 2)) (4.1)

It is easy to see that s2, . . . , sn act as the transpositions (n− 1 n), (n− 2 n− 1), . . . , (1 2)
on the first n entries of the lattice (with mirrored action on the last n entries), so they clearly
generate the symmetric group on n letters. Acting on Λn = (0, . . . , 0; 1, . . . , 1), we see that
s1 takes Λn to (0, . . . , 0, 1; 1, . . . , 1, 0), and then acting repeatedly by elements of W and s1

produces the 2n representatives of the form γΛn = (a1, . . . , an; b1, . . . , bn) with ai, bi ∈ {0, 1}
and ai + bi = 1 for all i.

Next, consider the adjacency operator corresponding to special vertices which are gallery
distance one from [Λ0]. Notice that the reflection sn+1 fixes the vertices [Λk] for 1 ≤ k ≤ n,
so sn+1 takes the fundamental chamber C to sn+1C given by the chain of lattices: sn+1Λ0 ⊂
Λ1 ⊂ · · · ⊂ Λn ⊂ π−1sn+1Λ0. The chamber sn+1C contains the special vertex sn+1Λ0 =
[0, 1, . . . , 1; 2, 1, . . . , 1] and shares the codimension-one face generated by the [Λk] for 1 ≤ k ≤
n; hence, the special vertices [Λ0] and sn+1[Λ0] are gallery distance one apart. The translation
of C to γC (γ ∈ Cn) produces the set of all special vertices in Σ which are gallery distance one
from [Λ0], namely γsn+1[Λ0]. The distinct vertices correspond to γ ∈ Cn/(Cn ∩ sn+1Cnsn+1).
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5 Hecke Operators and Walks

In Example 3.5, we first suggested a connection between the labeling of special vertices and
walks on the 1-subcomplex of the building generated by the special vertices. In this last
section, we characterize minimal walks in the building of a prescribed length in terms of the
action of the Hecke operators defined in the previous section.

Fix an apartment in the building by specifying a symplectic basis {u1, . . . , un, w1, . . . , wn}.
We showed previously that the special vertices in the apartment are in one-to-one correspon-
dence with the elements of Zn+1/Z(2, 1, . . . , 1). Recall the Hecke operators

TB(πa1 , . . . , πan ; πb1 , . . . , πbn)([L]) =
∑

{L:M}={πa1 ,...,πan ;πb1 ,...,πbn}

[M ]

Restricted to our given apartment, this sum is fairly easy to characterize. All lattices
M in the apartment have the form [c1, . . . , cn; d1, . . . , dn]. For simplicity, normalize L =
[0, . . . , 0; 0, . . . , 0]. Then {L : M} = {a1, . . . , an, b1, . . . , bn} means that the ci and di are
chosen from among the ai and bi. But the choices are more constrained. For each i, ci

is either some aσ(i) or some bσ(i) for σ ∈ Sn. But then di is determined by the choice of
ci since ci + di is constant. In particular (assuming the normalization of L as above), the
set of lattices M with the prescribed elementary divisors are those obtained by acting on
[a1, . . . , an; b1, . . . , bn] by all the elements of the spherical Weyl group Cn.

The interpretation of TB(πa1 , . . . , πan ; πb1 , . . . , πbn) on the building ∆n is a bit more com-
plicated. By a minimal walk between two vertices, we simply mean a walk (a sequence of
vertices {v1, . . . , vm} in which each pair {vi, vi+1} is connected by an edge) between the two
vertices which is of minimal length. Again we reiterate that we are considering only the
1-subcomplex of the building spanned by the special vertices. We characterize the endpoints
of minimal walks in the building in the following theorem.

Theorem 5.1. Let v0 = [L] be a special vertex in the Bruhat-Tits building ∆n for Spn(K).
The set of special vertices in the building which are endpoints of minimal walks of length m
from v0 are the summands of

∑

0≤a2≤···≤an≤m/2

TB(1, πa2 , . . . , πan ; πm, πm−a2 , . . . , πm−an)([L]).

Proof. Consider a minimal walk, γ, between two vertices v0 and vm in ∆n. Denote the walk
by the sequence of vertices through which it passes: γ = {v0, v1, . . . , vm}. Choose chambers
C0 and Cm with v0 ∈ C0 and vm ∈ Cm, and let Σ be an apartment containing C0 and Cm.
Finally, let ρ = ρΣ,C0 be the canonical retraction of ∆n onto Σ centered at C0. The canonical
retraction ρ is the unique chamber map (a simplicial map which preserves dimensions of
simplices) from ∆n → Σ that fixes C0 pointwise and preserves gallery distances from C0 (see
chapter 4 of either [3] or [5]).

Since the retraction ρ is a simplicial map, it takes the walk γ to another walk ρ(γ) =
{ρ(v0), ρ(v1), . . . , ρ(vm−1), ρ(vm)} contained in Σ. But v0 and vm are both in Σ, so they are
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fixed pointwise by ρ, making ρ(γ) a walk in Σ from v0 to vm. Moreover, it is clear that ρ(γ)
has length at most m, since it is a walk defined by m + 1 (not necessarily distinct) vertices,
and hence, by at most m + 1 distinct vertices. Finally, since m is the length of any minimal
walk from v0 to vm, ρ(γ) must have length m and hence, is a minimal walk in Σ from v0 to
vm.

Since our interest is only to count the endpoints of minimal walks of length m, we may
assume from the argument above that any such walk is wholly contained in an apartment.
Thus, we need only characterize the vertices of an apartment which are the endpoints of
minimal walks (in that apartment) of length m. Let v = [a1, . . . , an; b1, . . . , bn] (ai+bi = µ) be
such a vertex. The Weyl group acting on the apartment will take any walk in the apartment
to another of the same length. Since we will use the Weyl group to count endpoints of
minimal walks in the apartment, there is no loss of generality in assuming that v is chosen
with 0 ≤ a1 ≤ · · · ≤ an ≤ bn ≤ · · · ≤ b1. Moreover, since the vertex is defined by the
homothety class of a lattice, we may assume that a1 = 0. Recall that there is a one-to-one
correspondence between the vertices of an apartment and elements in Zn+1/Z(2, 1, 1, . . . , 1).
Our normalized v has the form v = [(µ : 0, a2, . . . , an)], where 0 ≤ a2 ≤ · · · ≤ an ≤ µ. In fact
all the ai ≤ µ/2 since ai ≤ an ≤ bn and an + bn = µ. We claim that µ = m. Define elements
of Zn+1: δ0 = (1, 0, . . . , 0), δ1 = (1, 0, . . . , 0, 1), . . . , δn−1 = (1, 0, 1, . . . , 1). First note that the
directions [δ0], [δ1], . . . , [δn−1] are independent in the sense that

∑n−1
k=0 ckδk ∈ Z(2, 1, . . . , 1) if

and only if
∑n−1

k=0 ckδk = 0 if and only if ck = 0 for all k. Now we return to our vertex v =
[(µ : 0, a2, . . . , an)] as above. If µ = 1 then 0 ≤ a2 ≤ · · · ≤ an ≤ 1/2, so v = [(1 : 0, . . . , 0)]
is one of the special vertices in the residue of [(0 : 0, . . . , 0)] and hence, is the endpoint of a
walk of length one.

Next consider the case µ > 1. Then

v = [(µ : 0, a2, . . . , an)] = a2[δn−1] + (a3 − a2)[δn−2] + · · · + (an − an−1)[δ1] + (µ − an)[δ0].

Each summand has the form c[δi] and so represents a walk of length c in the direction [δi].
By the independence of the [δi], we conclude that the above walk is minimal (and of length
µ); hence, µ = m.

For a vertex v, denote by vCn the orbit of v under the action of the spherical Weyl
group. Then in a given apartment, the endpoints of minimal walks of length m starting
from [(0 : 0, . . . , 0)] are given by the summands of

∑

0≤a2≤···≤an≤m/2

[(m : 0, a2, . . . , an)]Cn .

From this, the theorem follows immediately.
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