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Abstract

In this note we define functions with geometrically intuitive graphs

whose limit along a prescribed polynomial path has value zero while

the limit along every other polynomial path has value one.

When teaching multi-variable calculus, we do our best to convince stu-
dents that the notion of a limit of a function of several variables is much
stronger than that of limits of a function of a single variable. To that end,
we provide examples of functions whose limiting value depends upon the
straight line path that passes through the point in question. Then we in-

evitably haul out an old chestnut like the function f(x, y) =
2x2y

x4 + y2
whose

limit is 0 along every line through the origin, but which has value 1 along
the curve y = x2.

While presenting such an example, a student asked what the graphs of
such functions looked like. Obviously one can draw the graph of the above
function, but the question begged for a more complete answer, especially in
terms of how natural the graph of such functions can be.

Seeking examples of functions analogous to f , having an isolated discon-
tinuity and limits with constant value along lines, but a distinct value along
some prescribed curve, would lead to complicated graphs. Instead, if one
chooses to introduce functions with many (but natural) discontinuities, the
examples become trivial to envision: a high plateau with a river running
through it.
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Theorem. Let p(x) be a polynomial of degree n > 1 with p(0) = 0. Define
the function f(x, y) by

f(x, y) =

{

0 if y = p(x)

1 if y 6= p(x)
.

Then the limit of f (as (x, y) → (0, 0)) along y = p(x) is zero, while the limit
along any line through the origin is one. Moreover, if q is any non-constant
polynomial passing through the origin with q 6= p, then the limit of f along
the graph of q(x) also has value one.

Proof. That the limit along y = p(x) is zero is obvious. We separate the
proof into two parts, lines through the origin and polynomials q of degree at
least two. This is done not only since calculus students will understand the
proof for lines, but also since the line x = 0 is not the graph of a (polynomial)
function.

The essential claim is that there is a disk D centered at the origin in
which the graphs of y = p(x) and of a given line or the graph of y = q(x)
do not intersect except at the origin. Given such a D, it is clear that on
D \ (0, 0), f has value one, establishing the theorem.

To see the claim, note that the graph of y = p(x) crosses the line x = 0
precisely once as p is a function. Any other line can be represented as y = kx

for some k, and equating p(x) = kx yields a polynomial equation of degree
n, and hence yielding at most n − 1 points of intersection other than (0, 0).
Choosing a disk centered at the origin small enough to exclude these points
has the desired property.

In the case of a general polynomial q of degree m, Bezout’s [1] theorem
guarantees at most mn points of intersection, so once again we may choose
a disk with the desired property.
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