
AN OVERVIEW OF CLASS FIELD THEORY
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1. Introduction

In these notes, we try to give a reasonably simple exposition on the question of
what is Class Field Theory. We strive more for an intuitive discussion rather than
complete accuracy on all points. A great deal of what follows has been lifted without
proper reference from the two very informative papers by Garbanati and Wyman
[?],[?]. The questions which we shall pose and try to answer in the next section are:

1. What is Class Field Theory?
2. What are the goals of Class Field Theory?
3. What are the main results of Class Field Theory over Q?

2. The Origins of Class Field Theory

In examining the work of Abel, Kronecker (1821 – 1891) observed that certain
abelian extensions of imaginary quadratic number fields are generated by the ad-
junction of special values of automorphic functions arising from elliptic curves. For
example, if K is an imaginary quadratic number field and A = Zω1 + Zω2 is an ideal
of K with Im(ω1/ω2) > 0, then K(j(ω1/ω2)) is an abelian extension of K, where j is
the modular function.

Kronecker wondered whether all abelian extensions of K could be obtained in
this manner (Kronecker’s Jugendtraum). This leads to the question of “finding” all
abelian extensions of number fields. Kronecker conjectured and Weber (1842 – 1913)
proved:

Theorem (Kronecker–Weber (1886–1887)). Every abelian extension of Q is con-
tained in a cyclotomic extension of Q.

To Kronecker and Weber, Class Field Theory was the task of finding all abelian ex-
tensions, and of finding a generalization of Dirichlet’s theorem on primes in arithmetic
progressions which is valid in number fields.

Hilbert saw that Class Field Theory is much more — that it is the theory of abelian
extensions. In his famous address to the ICM in Paris in 1900, Hilbert posed numerous
questions two of which are the focus of the endeavors in Class Field Theory.
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Hilbert’s 9th: To develop the most general reciprocity law in an arbitrary number
field, generalizing Gauss’ law of quadratic reciprocity.
— For abelian extensions, this is the Artin reciprocity law
— For non-abelian extensions, the question is still open and one

cannot expect an answer similar to the one in the abelian case.
In particular, “congruence conditions will not suffice”.

Hilbert’s 12th: Generalize Kronecker’s Jugendtraum.

2.1. What is a reciprocity law? Let f ∈ Z[X] be monic and irreducible, and let
Kf be the splitting field of f over Q. Then Kf/Q is a finite Galois extension. Let
p ∈ Z be a prime and Fp = Z/pZ. Reducing f mod p gives a polynomial fp ∈ Fp[X].
If fp factors into distinct linear factors over Fp then we say that f splits completely
modulo p. Define Spl(f) = { p ∈ Z | f splits completely modulo p }. With finite
exceptions, Spl(f) = { p ∈ Z | p splits completely in Kf } via the Dedekind-Kummer
theorem (see §4).

By a reciprocity law, we intend a means by which to describe the factorization of
fp as a function of p, or somewhat less demanding, a “rule” which determines which
primes belong to Spl(f). First, why is this of interest? In response, we have the
Inclusion theorem:

Theorem (Inclusion Theorem). Let f , g be irreducible polynomials in Z[X] with
splitting fields Kf , Kg respectively. Then Kf ⊃ Kg if and only if Spl(f) ⊂∗ Spl(g).

Here ⊂∗ means with finitely many exceptions. Thus Kf = Kg if and only if Spl(f) =∗

Spl(g), that is the set Spl(f) captures the Galois extension.

Proof. (⇒) This direction is straightforward. If p ∈ Spl(f) then e(Kf/Q) = 1 and
f(Kf/Q) = 1. Since Kf ⊃ Kg and e and f are multiplicative in towers, we have
e(Kg/Q) = 1 and f(Kg/Q) = 1, and hence p ∈ Spl(g).

(⇐) This direction follows from the Tchebotarev density theorem.

We give an example.

Example. Let p be a prime p ≡ 1 (mod 4), f(X) = X2 − p, and g(X) = Xp − 1.
Then Kf = Q(

√
p) and Kg = Q(ζp) where ζp is a primitive p-th root of unity. Since

p ≡ 1 (mod 4), we have Kf ⊂ Kg. We must show that Spl(f) ⊃∗ Spl(g). It is well-
known that a prime q ∈ Spl(g) (i.e., q splits completely in Q(ζp)) iff q ≡ 1 (mod p)

and q ∈ Spl(f) (i.e., q splits completely in Q(
√

p)) iff
(

q
p

)

= 1 (via the Dedekind-

Kummer theorem). Clearly any prime q satisfying q ≡ 1 (mod p) satisfies
(

q
p

)

= 1,

hence Spl(f) ⊃ Spl(g).

Another theorem of great importance is the
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Theorem (Abelian Polynomial Theorem). The set Spl(f) can be described by con-
gruences with respect to a modulus depending only on f (Kf) if and only if Kf is an
abelian extension of Q.

The Artin reciprocity law is a precise version of (⇐), and (⇒) says that “congruence
conditions” will not suffice to characterize a reciprocity law for non-abelian extensions.

Examples:

1. Let p ∈ Z be an odd prime, and consider the quadratic polynomial f(X) = X2−q
where q is an odd prime. Then modulo p, three things can happen:
(a) fp(X) = l(X)2, linear l(X)
(b) fp(X) = l1(X)l2(X) distinct linear factors (f splits completely modulo p)
(c) fp is irreducible.
(a) occurs iff x2 ≡ q (mod p) has one solution iff p = q.

(b) occurs iff x2 ≡ q (mod p) has two solutions iff
(

q
p

)

= +1.

(c) occurs iff x2 ≡ q (mod p) has no solutions iff
(

q
p

)

= −1.

To determine for which p the congruence x2 ≡ q (mod p) is solvable, is apriori
an infinite problem. On the other hand, it is one from which the traditional form
of quadratic reciprocity rescues us.

Suppose q = 17 in the above example. Then
(

17
p

)

= +1 iff
(

p
17

)

= +1

iff p ≡ 1, 2, 4, 8, 9, 13, 15, 16 (mod 17). Thus p ∈ Spl(x2 − 17) iff (with finite
exceptions) p ≡ 1, 2, 4, 8, 9, 13, 15, 16 (mod 17).

2. Next consider the cyclotomic polynomials, Φn. Let ζ be a primitive nth root of
unity and Φn the irreducible polynomial of ζ over Q. We know that the degree
of Φn is φ(n) and that xn−1 =

∏

d|n Φd. To describe Spl(Φn) we need to answer

which primes split completely in KΦn
= Q(ζ). If p - n then for any prime of KΦn

lying above p, we know e = 1 and fg = φ(n). Moreover, f is determined by the
relation that it is the smallest positive integer such that pf ≡ 1 (mod n). Thus
p splits completely in KΦn

iff f = 1, hence p ∈ Spl(Φn) iff (wfe) p ≡ 1 (mod n),
characterizing Spl(Φn) by congruence conditions.

Let us loosely define the arithmetic of a number field K to be the study of the
ideals of K and the quotient rings determined by the ideals of K as well as the study
of the ideal class group and groups isomorphic to subgroups or quotient groups of the
ideal class group.

Goals of Class Field Theory:

1. Describe all finite abelian extensions of K in terms of the arithmetic of K.
2. Canonically realize Gal(L/K) in terms of the arithmetic of K whenever Gal(L/K)

is abelian.
3. Describe the decomposition of a prime ideal from K to L in terms of the arith-

metic of K whenever L/K is abelian (i.e., provide a reciprocity law).
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2.2. Summary of Class Field Theory over Q. Notation: Qm = Q(e2πi/m). We
may assume that m 6≡ 2(4). For if m ≡ 2 (mod 4) with m = 2m0, then we easily
observe that −e2πi/m0 is a primitive mth root of unity, and hence that Qm = Qm0

.
Over Q, the Kronecker-Weber Theorem motiviates the following definition:

Definition . Let L/Q be a finite abelian extension. A positive integer m is called
a defining modulus or an admissible modulus of L if L ⊂ Qm. Such an m exists by
the Kronecker-Weber theorem. The conductor of L, fL, is the smallest admissible
modulus of L.

Examples:

1. L = Qm. Then fL = m, since Qm ⊂ Qn implies that Qm = Qm ∩ Qn = Q(m,n)

implies that m | n.
2. Let L be the maximal real subfield of Qm. Then L = Q(ζ+ζ−1) where ζ = e2πi/m

(it is the fixed field of complex conjugation). Note that if m = 3, 4, then L = Q.
For m ≥ 5, fL = m. For m = 3, 4, fL = 1.

3. L = Q(
√

d), d square-free integer, |d| > 1. Then

fL = |disc(L)| =
{

|d| if d ≡ 1 (mod 4)

|4d| if d ≡ 2, 3 (mod 4).

To gain some feeling for why the last example holds, recall that if L = Qp (p an

odd prime), then disc(L) = (−1)
p−1

2 pp−2 is the square of an integer in OL, thus

Q
(

√

(−1)
p−1

2 p
)

⊂ Qp.

It follows that for a prime p

Q(
√

p) ⊂











Qp if p ≡ 1 (mod 4)

Q4p if p ≡ 3 (mod 4)

Q8 if p = 2.

Moreover, if d = ±2νp1p2 · · · pr is squarefree, then Q(
√

d) ⊂ Q(
√

2ν,
√

p1,
√

p2, . . . ,
√

pr) ⊂
Q(ζ4·2ν )Q(ζp1

, ζp2
, . . . , ζpr

, ζ4) = Q(ζ4d).

Theorem . Let L/Q be a finite abelian extension, and m an admissible modulus of
L. Then fL | m.

Proof. L ⊂ Qm ∩QfL = Q(fL,m) which implies fL | m.

Let L be an abelian extension of Q, and let m be an admissible modulus of L.

Then L ⊂ Qm. Let a ∈ Z with (a, m) = 1, and denote by

(

L

a

)

the Artin symbol,
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the automorphism of L obtained by restricting to the field L the automorphism of
Qm determined by (ζ 7→ ζa). Then the Artin map is the homomorphism

(

L

∗

)

: (Z/mZ)× → Gal(L/Q).

The Artin map is onto since every automorphism of L extends to one of Qm which

has the above form. Denote the kernel of

(

L

∗

)

by IL,m. Identifying (Z/mZ)× with

Gal(Qm/Q), we see that IL,m is identified with Gal(Qm/L), so under the Galois
correspondence (see diagram below), L is the fixed field of the subgroup IL,m of
(Z/mZ)×.

Qm {1}

L IL,m

Q (Z/mZ)×

��

��

��

This information is summarized in the

Theorem (Artin Reciprocity). Let L/Q be a finite abelian extension with defining
modulus m. Then the following sequence is exact:

1 → IL,m ↪→ (Z/mZ)× → Gal(L/Q) → 1.

Thus, the Artin map induces an isomorphism between Gal(L/Q) and (Z/mZ)×/IL,m

thus canonically realizing Gal(L/Q) in terms of the arithmetic of Q. In particular,
this says that every abelian extension is given in terms of the arithmetic of Q, and so
realizes one of the primary goals of Class Field Theory.

As a special case, if L is a quadratic extension of Q contained in Qm, then Gal(L/Q)
is isomorphic to {±1}, and identifying the isomorphic groups, the Artin map essen-

tially can be defined by
(

L
,

)

a =
(

a
m

)

. To make clearer what we mean, we examine

some typical cases in the examples below.

Examples:

1. Let p be an prime p ≡ 1 (mod 4). Then Q(
√

p) ⊂ Qp. If L = Q(
√

p), then since
[L : Q] = 2, IL,p is a subgroup of index two in (Z/pZ)×. Since (Z/pZ)× is cyclic,
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there is a unique such subgroup, namely the squares (or quadratic residues) mod
p. For any a prime to p,

(

L
a

)

= ±1, and IL,p is the kernel of
(

L
∗
)

. With IL,p

identified as the group of squares mod p and Gal(L/Q) identified with {±1}, it

is clear that
(

L
a

)

=
(

a
p

)

.

2. A considerably more complicated example is L = Q(
√

7). Clearly the conductor
of L is 28, so take m = 28 in the setup above. Here we will see that

(

L
a

)

is almost
(

a
28

)

. The only real difficulty in interpreting the quadratic residue symbol
(

a
2

)

,
so we digress for a moment.

Recall that
(

a
2

)

is defined by

(a

2

)

=











1 if a ≡ 1 (mod 8)

−1 if a ≡ 5 (mod 8)

0 otherwise.

In particular, if a is squarefree and p is any prime, then
(

a
p

)

is 1, −1 or 0

depending upon whether p splits, is inert, or ramifies in Q(
√

a). The difficulty we

encounter is that if a ≡ 3 (mod 4), then
(

a
4

)

=
(

a
2

)2 6=
(

a2

2

)

, the first expression

equalling zero, while the last equals 1.
To continue, let ζm = e2πi/m, and consider the tower of fields below.

Q(ζ28)

Q(ζ4) Q(
√
−1,

√
−7) Q(ζ7)

Q(
√
−1) Q(

√
7) Q(

√
−7)

Q

�
�

�
�

��

�
�

�
�

� �

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

By the Galois correspondence, there is a corresponding lattice of groups.
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H(ζ28)

H(ζ4) H(
√
−1,

√
−7) H(ζ7)

H(
√
−1) H(

√
7) H(

√
−7)

H(1)

�
�

�
�

��

�
�

�
�

� �

�
�

�
�

��

�
�

�
�

� �

�
�

�
�

� �

�
�

�
�

��

Here we set the notation by putting H(1) = (Z/28Z)× (and H(ζ28) = {1}).
Then for example, H(

√
−7) is the subgroup of (Z/28Z)× corresponding to

Gal(Q(ζ28)/Q(
√
−7)).

Our purpose is to calculate IL,28 where L = Q(
√

7), and to compare the values

of
(

L
a

)

with those of
(

a
28

)

. The subgroup IL,28 will simply be H(
√

7).

If we consider the tower Q ⊂ Q(
√
−7) ⊂ Q(ζ7), then as a subgroup of

(Z/7Z)×, Q(
√
−7) corresponds to the subgroup of quadratic residues mod 7

(as in example 1), that is to {1, 2, 4}. Modulo 28 (i.e. a ≡ 1, 2, 4 (mod 7)
and a ≡ 1, 3 (mod 4)), this yields H(

√
−7) = {1, 9, 11, 15, 25, 23} ⊂ (Z/28Z)×.

The tower Q ⊂ Q(
√
−1) = Q(ζ4) is degenerate yielding the trivial subgroup

of (Z/4Z)× corresponding to Q(
√
−1), or {a|a ≡ 1 (mod 4)}. Modulo 28 (i.e.,

a ≡ 1 (mod 4) and a 6≡ 0 (mod 7)), this yields H(
√
−1) = {1, 5, 9, 13, 17, 25}.

As Q(
√
−1,

√
−7) is the compositum of Q(

√
−1) and Q(

√
−7), Galois theory

tells us that H(
√
−1,

√
−7) = H(

√
−1) ∩H(

√
−7) = {1, 9, 25}. For the record,

we note that
(

a
28

)

= +1 if and only if (a, 28) = 1 and
(

a
7

)

=
(

a
4

)

, which is true if

and only if a ≡ 1, 2, 4 (mod 7) and a ≡ 1 (mod 4). Note that since
(

a
4

)

=
(

a
2

)2
,

(

a
4

)

is never equal to −1. Thus {a|
(

a
28

)

= 1} = {1, 9, 25}, and is not equal

to H(
√

7) = IL,28 which has order 6. It is now a trivial matter to deduce that

H(
√

7) = {1, 3, 9, 19, 25, 27}.
3. To handle more general examples like L = Q(

√
±35), we need only consider

one of the two tower of fields below and use the techniques of the preceding
examples.

If L = Q(
√
−35), we consider the tower
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Q(ζ35)

Q(ζ7) Q(
√
−7,

√
5) Q(ζ5)

Q(
√
−7) Q(

√
−35) Q(

√
5)

Q

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

whereas if L = Q(
√

35), we consider the tower

Q(ζ140)

Q(ζ28) Q(
√

7,
√

5) Q(ζ5)

Q(
√

7) Q(
√

35) Q(
√

5)

Q

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�

and proceed as in the previous examples.
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To continue our investigation of class fields, we have the following theorem which
gives information about the conductor of an abelian extension.

Theorem (Conductor–Ramification Theorem). If L is a finite abelian extension of
Q, then a prime p of Q ramifies in L if and only if p | fL.

Corollary . If L 6= Q is a finite abelian extension of Q, then at least one prime p
ramifies in L.

Proof. Since L 6= Q, L * Q1 = Q, hence fL > 1, and so is divisible by at least one
prime.

For contrast, we have the result of Minkowski that a prime p of Q ramifies in a
number field L if and only of p | disc(L). This says that for abelian extensions,
there should be a connection between the conductor and the discriminant (see the
conductor-discriminant formula below).

Theorem (Decomposition Theorem). Let m be a defining modulus of L. If p - m
(in particular p is unramified) then the order of pIL,m in (Z/mZ)×/IL,m is f , the
residue class degree.

Notice that this generalizes the theorem about the decomposition of primes in cyclo-
tomic fields. If we choose L = Qm, then IL,m = 1, and we are reduced to talking
about the order of p in (Z/mZ)×.
Let m = fL in the above theorem. Since efg = [L : Q],

p ∈ Spl(L/Q) ⇔ e = 1, f = 1

⇔ p - fL, p ∈ IL,fL

the first condition because e = 1 and the second because f = 1 via the Decomposition
theorem.

If IL,fL = {a1, . . . as} with ai ∈ Z and (ai, fL) = 1, then p ∈ Spl(L/Q) ⇔ p ≡ ai

(mod fL) for some i. This acomplishes the goal of describing Spl(L/Q) in terms
of congruence conditions, and hence the decomposition of primes in terms of the
arithmetic of Q.

2.3. Duality. Let Xm denote the character group of (Z/mZ)×. That is χ ∈ Xm

implies that χ : (Z/mZ)× → C× is a homomorphism.

Definition . We say that d is a defining modulus for χ if a ≡ 1 (mod d) implies that
χ(a) = 1. The conductor of χ, denoted fχ, is the smallest defining modulus for χ.

If m is a defining modulus for a finite abelian extension L, let

XL,m = {χ ∈ Xm|χ(h) = 1 for all h ∈ IL,m}
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Recall that IL,m is the subgroup of (Z/mZ)× ∼= Gal(Qm/Q) corresponding to the
subfield L ⊂ Qm via the Galois correspondence. That is, IL,m

∼= Gal(Qm/L), and
from duality we see that

XL,m
∼= Gal(Qm/L)⊥ ∼= ̂Gal(Qm/Q)/Gal(Qm/L) ∼= ̂Gal(L/Q).

Finally, we have the

Theorem (Conductor–Discriminant Formula). Let m be an admissible modulus for
a finite abelian extension L of Q. Then

fL = lcm{fχ|χ ∈ XL,m}
and

|disc(L)| =
∏

χ∈XL,m

fχ.

In particular, fL | disc(L), and so we always have the tower of fields:

Q ⊂ L ⊂ QfL ⊂ Q|disc(L)|.

3. Global Class Field Theory

In order to generalize Class Field Theory to ground fields other than Q, several
issues need to be addressed:

1. The Kronecker-Weber theorem is valid only for ground field Q, so we need a
new notion of admissible modulus (a very deep theorem).

2. We need to handle all the infinite primes.
3. We need a generalized notion of congruence.
4. With what shall we replace (Z/mZ)× and Qm?

Let M be a modulus and let M0 denote its finite part. For a number field K, let
IM
K denote the group of fractional ideals of K relatively prime to M0. Let

KM,1 = {α ∈ K× | α ≡ 1 (mod ∗M) }.
Recall that α ≡ 1 (mod ∗M) means that

ordp(α− 1) ≥ ordp(M0) for all p | M0 and

α > 0 at each real prime dividing M

Let RM = {αOK | α ∈ KM,1 }. RM is called the ray mod M. Let CM = IM
K /RM,

the ray class group. Special cases are familiar. If M = 1, then the ray class group C1

is just the ideal class group of the field K. If K = Q and M = mp∞, where m is a
positive integer, then CM

∼= (Z/mZ)×.

Let L/K be a Galois extension and let M be a K-modulus. Define IM
L = IM0OL

L

and
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LM,1 = {α ∈ L× |α ≡ 1 (mod ∗M0OL)

and where α > 0 at each real prime of L

dividing a real prime occuring in M }.

Finally let RL,M = {αOL | α ∈ LM,1 }, and CL,M = IM
L /RL,M.

Recall that the norm of an ideal relative to a Galois extension L/K is defined as
follows: If p is a prime of K and P is a prime of L lying above p with inertial degree
f , then we define the norm of P to be NL/K(P) = pf . We extend the definition of the
norm to the group of fractional ideals by multiplicativity. Note that when K = Q,
NL/K(P) = pf = pfZ for the prime pZ = P ∩ Z, while the absolute norm of P is
equal the cardinality of the residue class field OL/P which is pf , so this definition
provides a natural generalization of the absolute norm.

One can show that NL/K(RL,M) ⊂ RM, and so the definition of the norm can be
extended to CL,M by defining NL/K(ARL,M) = NL/K(A)RM. Put

IL/K,M = NL/K(CL,M) < CM.

For example, if K = Q and L ⊂ Qm (i.e. m is an admissible modulus of L), then we
have the diagram:

Qm {1}

L IL,m

Q (Z/mZ)×

��

��

��

If we let M = mp∞, then it can be shown that IL/K,M
∼= IL,m. Notice also that

CM
∼= (Z/mZ)× and that [CM : IL/Q,M] = [L : Q] by the Galois correspondence.

Generalizing this fact, we have the deep theorem:

Theorem . Let M be a K-modulus and L/K an abelian extension of number fields.
Then there exists a unique K-modulus fL/K such that [CM : IL/K,M] = [L : K] iff
fL/K | M.

The unique modulus fL/K is called the conductor of L/K and any K-modulus divisible
by fL/K is called an admissible modulus of L/K.
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This is not a very intuitive theorem because we don’t have something natural like
the Kronecker-Weber theorem with which to define the conductor. The theorem is
proved in two steps. The first inequality to be established was that [CM : IL/K,M] ≤
[L : K] for all moduli M. This was done by Weber (1897-8). It is now known as the
“second inequality”. In 1920, Tagaki showed that [CM : IL/K,M] ≥ [L : K] for some
modulus M, now known as the “first inequality”.
One can also show that

fL/Q =

{

(fL) if L ⊂ R
(fL)p∞ if L 6⊂ R

Now we need an analog of the cyclotomic fields and the Kronecker-Weber theorem.

Theorem (Existence). Given a K-modulus M and a subgroup IM of the ray class
group CM, there exists a unique abelian extension L/K such that

1. M is an admissible modulus of L/K
2. IL/K,M = NL/K(CL,M) = IM or
3. The kernel of the Artin map IM

K → Gal(L/K) is HM where IM = HM/RM.

L is called the class field of the subgroup IM. When IM = RM, the trivial subgroup,
the class field L is called the ray class field and is denoted K(RM). If K = Q and
M = mp∞, then K(RM) = Qm, that is the cyclotomic fields are the ray class fields
for the moduli M = mp∞. The ray class field for the modulus M = m is the maximal
real subfield of Qm.

We have two more important theorems:

Theorem . Given an abelian extension L/K, there exists a K-modulus M so that
L ⊂ K(RM).

As a consequence, we recover the Kronecker-Weber theorem.

Theorem . Given an abelian extension L/K, the conductor fL/K is the “smallest”
K-modulus M such that L ⊂ K(RM). Moreover, M is an admissible modulus of L/K
iff L ⊂ K(RM).

Thus it follows that every abelian extension of K is a subfield of a ray class field
for K. We have classified the abelian extensions, but we have not constructed them.
More later.

We have the following generalization of Dirichlet’s theorem on primes in arithmetic
progressions.

Theorem . Let IM be a subgroup of the ray class group CM. Then IM = HM/RM

where RM ⊂ HM ⊂ IM
K . Then there are an infinite number of primes in each coset of

IM
K /HM. In fact, the primes in the coset have density 1/[IM

K : HM].

If K = Q and M = mp∞, then CM
∼= (Z/mZ)×. If we choose HM = RM, then

IM
K /HM = CM

∼= (Z/mZ)×, and we have recovered the Dirichlet theorem over Q.
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It can be shown that if M is an admissible modulus for an abelian extension of

number fields L/K, then the Artin map,

(

L/K

∗

)

, is trivial on the ray mod M, RM,

and so the definition of the Artin map can be extended to the ray class group, CM.
In 1927, Artin proved

Theorem (Artin Reciprocity). Let L/K be an abelian extension of number fields,
and let M be an admissible modulus of L/K. Then the following sequence is exact:

1 → IL/K,M = NL/K(CL/K,M) ↪→ CM → Gal(L/K) → 1.

Corollary . Let M be an admissible modulus of the abelian extension L/K. Then
L ⊂ K(RM), Gal(K(RM)/K) ∼= CM and Gal(K(RM)/L) ∼= IL/K,M.

Definition . The Hilbert class field of a number field K is the ray class field K(R1),
and will be denoted K̃.

From above we see that Gal(K̃/K) ∼= C1, the ideal class group of K. Thus much

work is done in trying to understand subfields of K̃ to help understand the structure
of the ideal class group.

Theorem . A K-prime p ramifies in L iff p | fL/K.

Theorem . The Hilbert class field K̃ is the maximal abelian unramified extension of
K.

Proof. Since K̃ = K(R1), fK̃/K = (1). If L is an unramified extension of K, then

fL/K = (1) by the above theorem. Since (1) is an admissible modulus for L/K, we

have L ⊂ K(R1) = K̃.

Theorem . Each fractional ideal of K becomes principal in K̃.

This does not say that K̃ has class number one. Instead it suggests the “class tower
problem”. Let K0 = K and Ki = K̃i−1 for i ≥ 1. Does there exist a j such that
Kj = Kj−1? This would imply that the class number of Kj−1 equals 1. Golod and

Shafarevich (1964) showed that any imaginary quadratic field Q(
√
−d) where d is a

positive integer divisible by at least six primes has an infinite class field tower.

4. Equivalence of the reciprocity laws.

We consider the case of a prime p, p ≡ 1 (mod 4), and q an odd prime, q 6= p.

Gauss’ law says that
(

p
q

)

=
(

q
p

)

.

Wyman asks for a rule which describes the primes q which split completely in
Q(
√

p).
Artin says that

1 → H ↪→ Ipp∞
Q → Gal(Q(

√
p)/Q) → 1
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for an appropriately defined subgroup H is exact where the map Ipp∞
Q → Gal(Q(

√
p)/Q)

is the Artin map.
Consider the diagram:

L = Qp {1}

K = Q(
√

p) Gal(Qp/Q(
√

p))

Q Gal(Qp/Q)

��

��

��

The Artin map which we need to consider is

(

K/Q
∗

)

. However, from the properties

of the Frobenius automorphism, we know that

(

K/Q
∗

)

=

(

L/Q
∗

)
∣

∣

∣

∣

K

, so we compute
(

L/Q
∗

)

instead.

Lemma . Let m > 0, q a prime with q - m, and Q a prime of Qm lying above q.
Then the m-th roots of unity are distinct modulo Q.

Proof. Let ζm be a primitve m-th root of unity. Then

Xm − 1 =

m−1
∏

j=0

(X − ζj
m)

implies

Xm−1 + · · ·+ X + 1 =
m−1
∏

j=1

(X − ζj
m)

and hence

m =

m−1
∏

j=1

(1− ζj
m).

If ζj
m ≡ ζk

m (mod Q), then (1− ζ l
m) ≡ 0 (mod Q) for some l, hence (m,Q) 6= 1. Since

Q is prime, we have Q | mO and hence mO ⊂ Q. Thus m ∈ Q ∩ Z = qZ which
implies q | m, a contradiction.

Now let σ : Imp∞
Q → Gal(Qm/Q) be the Artin map, and denote by σa the automor-

phism σ(a) ∈ Gal(Qm/Q) characterized by σa(ζm) = ζa
m. σq is the element of the

Galois group, Gal(Qm/Q), which satisfies σq(x) ≡ xq (modQ) for all x ∈ Z[ζm]. In
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particular, σq(ζm) ≡ ζq
m (modQ), and since every automorphism of Gal(Qm/Q) is

characterized by τ(ζm) = ζa
m for some a, we have by the lemma that σq(ζm) = ζq

m.

Theorem . The following are equivalent:

1.
(

p
q

)

= 1.

2. X2 −X +
1− p

4
≡ 0 (mod q) is solvable.

3. q splits in Q(
√

p) = Q
(1 +

√
p

2

)

.

4.
(

K/Q

q

)

= 1.

5.
(

q
p

)

= 1.

Proof. The equivalence of (1) and (2) can be seen directly. If
(

p
q

)

= 1, then p ≡

α2 ( mod q) for some α ∈ Z. X ≡ 1 + α

2
(mod q) solves X2 −X +

1− p

4
≡ 0 (mod q).

Conversely, if X2 −X +
1− p

4
≡ (X − α)(X − β) (mod q), then (α− β)2 ≡ p (mod

q), hence
(

p
q

)

= 1. Note that this is really pretty obvious if we think of α, β ≡ 1±√p

2
,

the real roots of the quadratic.
The equivalence of (2) and (3) is a consequence of the Dedekind-Kummer theorem.

Theorem (Dedekind-Kummer). Let A be a Dedekind domain with quotient field K,
let E/K be a finite separable extension, and let B be the integral closure of A in E.
Suppose that B = A[α] for some α ∈ E and let f(X) be the irreducible polynomial

for α over K. Let p be a prime ideal of A. Let f(X) denote the reduction of f(X)
modulo p. Suppose

f(X) = P1(X)
e1 · · ·Pg(X)

eg

is the factorization of f(X) modulo p into powers of distinct monic irreducible polyno-
mials in (A/p)[X]. Let Pi(X) ∈ A[X] be a monic polynomial in A[X] which reduces

mod p to Pi(X). Let Pi be the ideal of B generated by p and Pi(α). Then Pi is a
prime ideal of B lying above p, ei is the ramification index, the Pi’s are distinct, and

pB = Pe1

1 · · ·Peg

g

is the factorization of p in B.

We merely note that the roots of X2 −X + 1−p
4

are
1±√p

2
which generate the ring of

integers of Q(
√

p). For the converse, observe that if X2 − X + 1−p
4

was irreducible
mod q, then q would be inert in Q(

√
p).

The equivalence of (3) and (4) is an elementary property of the Frobenius auto-
morphism.
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The equivalence of (4) and (5) is where the fun is. Recall that for any integer a

not divisible by p, we denote by σa the automorphism

(

L/Q
a

)

of Gal(Qp/Q). From

above, we know that σa(ζp) = ζa
p , and from elementary properties of the Frobenius

that σa|K =

(

K/Q
a

)

. The map a ↔ σa gives the isomorphism between (Z/pZ)× and

Gal(Qp/Q). Consider the diagram modified from above:

L = Qp {1}

K = Q(
√

p) {squares}

Q (Z/pZ)×

��

��

��

By the Galois correspondence,

Gal(Q(
√

p)/Q) ∼= Gal(Qp/Q)/Gal(Qp/Q(
√

p)) ∼= (Z/pZ)×/{squares}
Now (4) is true if and only if σq|K = 1 in Gal(Q(

√
p)/Q), hence if and only if σq ∈

Gal(Qp/Q(
√

p)), hence under the correspondence above if and only if q ∈ {squares}
if and only if (5).

5. Examples of Hilbert Class Fields

1. K = Q. Then K̃ = Q since any proper extension of Q is ramified (as a conse-
quence of Minkowski’s bound on the discriminant).

2. K = Q(
√
−15). Then K̃ = Q(

√
−3,

√
5). To see this we need to do a little

work. Let L = Q(
√
−3,

√
5) and consider the tower of fields:

Q(
√
−3,

√
5)

Q(
√
−15) Q(

√
5) Q(

√
−3)

Q

�
�

�
�

�

�
�

�
�

�

�
�

�
�

� �

�
�

�
�

��
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First, we show that L/K is an unramified extension of fields. Consider the
infinite primes first. Since both primes of K are complex, there can be no
ramification from K to L at the infinite places. Observe that ∆K/Q = −15
hence 3 and 5 are the only primes which ramifiy in K. It is then clear that 3
and 5 ramify in L. Moreover, these are the only finite primes p of Q which ramify
in L, since if p 6= 3, 5 is prime, then (by checking discriminants) p is unramified
in both Q(

√
−3) and Q(

√
5), and hence in the compositum L. Thus the only

primes which can ramify from K to L are the primes in K lying above 3 and 5.
Consider a prime P of L lying above 3. Note that since L/Q is Galois (it is

the compositum of Galois extensions), it doesn’t really matter which prime P

we choose. Let p = P ∩K, and p′ = P ∩Q(
√

5). We know that

e(P/3) = e(P/p)e(p/3) = e(P/p′)e(p′/3)

and that e(p′/3) = 1, e(p/3) = 2, and that e(P/p′) ≤ [L : Q(
√

5)] = 2. This
implies that e(P/p) = 1. This together with an analogous argument for the
prime 5 shows us that L/K is an unramified (necessarily abelian) extension.
Thus L ⊂ K̃.

Out of the study of Dirichlet L-series come various analytic formulae for the
class number of number fields (see Borevich and Shafarevich for example). The
significance is that Gal(K̃/K) is isomorphic to the ideal class group of K, and

hence [K̃ : K] = hK .
If K = Q(

√
−d) with d > 2 and the conductor fK of K (in the old sense –

ignoring the infinite prime) is odd, then

hK =
1

2−
(

2
d

) ·
∑

0<a<fK/2
(a,fK )=1

(a

d

)

.

Here

(

2

n

)

= (−1)
n2
−1

8 .

Recall that ∆K/Q = −15, fK | ∆K/Q and fK is divisible by every finite prime
of Q which ramifies in K. Thus it is immediate that fK = 15. It is now trivial
to check that

hK =
1

2− (1)
·
[(

1

15

)

+

(

2

15

)

+

(

4

15

)

+

(

7

15

) ]

= 2.

Thus K ⊂ L ⊂ K̃ and [K̃ : K] = 2 and hence K̃ = L = Q(
√
−3,

√
5), as

claimed.
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