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Abstract

1 Introduction

In his book on Associate Algebras [2], Richard Pierce characterizes the Albert-Brauer-Hasse-
Noether theorem as “the most profound result in the theory of central simple algebras.”
The theorem has numerous formulations in the literature (some repeated here), but even the
most general one stated in this note is not the most general which appeared in 1932 papers of
Brauer-Hasse-Noether and Albert-Hasse. There is a wonderful historical and mathematical
discussion of the Albert-Brauer-Hasse-Noether theorem in the book by Roquette [4].

This note simply represents some background for a talk I gave recently at a local sem-
inar; it is far from complete in scope or detail, but intended only to draw attention to the
remarkable confluence of ideas which this theorem embodies. The focus here is restricted
to the quaternion case. There are many good reasons for this including accessibility in a
seminar talk, the quaternion context affords many alternate characterizations of the main
theorem which do not generalize to higher dimensions, and last but not least because the first
version of this theorem ever stated to the author concerned embedding quadratic extensions
in quaternion algebras. As an embedding theorem, I have only rarely seen it stated in the
literature, never proven, and a bit more surprisingly not even stated in the standard books
on books treating the subject, e.g., [2], [3].

It is quite surprising to those who have not seen the theorem before that while the main
theorem characterizes division algebras over number fields, it is completely equivalent to the
Hasse Norm theorem which concerns only extensions of number fields.

2000 Mathematics Subject Classification. Primary 11R52
Key Words and Phrases. Cyclic Algebra, Quaternion Algebra, Class Field Theory

1



2 Thomas R. Shemanske

2 Background on Quaternion Algebras

Let F be a field, a, b ∈ F×. Denote by A =

(

a, b

F

)

the quaternion algebra over F with

basis {1, i, j, k} and defining relations i2 = a, j2 = b, ij = k = −ji. A quaternion algebra
is a central simple algebra of dimension 4 over F , and except when F has characteristic 2,
any 4-dimensional central simple algebra over F is a quaternion algebra. In our case we are
interested when F is a number field or one of its completions, all of which have characteristic
zero.

Associated to A is an involution α 7→ ᾱ, defined by

ᾱ = w + xi + yj + zk = w − xi − yj − zk

with which we define a (reduced) norm and trace A → F :

N(α) = αᾱ = w2 − ax2 − by2 + abz2 and Tr(α) = α + ᾱ = 2w.

It is easy to check that an element α ∈ A is invertible iff N(α) 6= 0 in which case α−1 =
ᾱ/N(α). The subset A0 = {α ∈ A | Tr(α) = 0} is called the set of pure quaternions.

Theorem 2.1 (Theorem II.2.7 [1]). Let F be a field, a, b ∈ F×, and A =

(

a, b

F

)

. The

following are equivalent:

1. A ∼=
(

1,−1

F

)

∼= M2(F ).

2. A is not a division algebra.
3. A is isotropic as a quadratic space (i.e., there exists α 6= 0 in A with N(α) = 0).
4. A0 (pure quaternions) is isotropic as a quadratic space.
5. ax2 + by2 = 1 is solvable over F .
6. a ∈ NE/F (E), where E = F (

√
b), and NE/F is the field norm.

If any of these conditions holds for A, we say A is split or A splits over F .

Remark 2.2. Note that this theorem says many interesting things. The theory of quaternion
algebras over fields is only really interesting in the context of division algebras, as all other
quaternion algebras are isomorphic to M2(F ).

When F = Qp the field of p-adic numbers,

(

a, b

Qp

)

is usually associated to the Hilbert

symbol, (a, b)p. We write (a, b)p = 1 iff ax2+by2 = 1 is solvable over Qp. The Hilbert symbols

satisfy what is known as the Hilbert reciprocity law which says for a, b ∈ Q×,
∏

p≤∞

(a, b)p = 1.

In particular, (a, b)p = −1 for a finite even number of primes. Said another way, given a

quaternion algebra A =

(

a, b

Q

)

, the local algebra Ap =

(

a, b

Qp

)

is a division algebra at a

finite even (we shall see not zero) number of primes. This association will be clearer when
we state the Albert-Brauer-Hasse-Noether theorem.
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Proof. While essentially all of the above criteria are needed for what follows, I sketch only a
couple of implications as the proofs of many depend on some basic quadratic forms theory.

Clearly (1) implies (2), and given that α ∈ A is invertible iff N(α) 6= 0, we see (2) iff (3).
The interest for this talk lies in the equivalence of (1), (5), (6).

To show the equivalence of (5) and (6), we may assume that b is not a square in F×,
otherwise both statements are obvious. Suppose ax2 + by2 = 1. We have that x 6= 0 since b
is not a square, thus a + b(y/x)2 = 1/x2 or a = (1/x)2 − b(y/x)2 = NE/F (1/x + (y/x)

√
b).

Conversely, suppose that a = x2 − by2 is the norm of an element in E. If x 6= 0, we have
a(1/x)2 + b(y/x)2 = 1. If x = 0, a = −by2, and we need to fuss a bit more. The equation
au2 + bv2 = 1 is solvable iff −by2u2 + bv2 = b(v2 − y2u2) = 1 is solvable. As y cannot
also be zero, using the change of variable v′ = v, u′ = yu, we need only show that v′2 − u′2

represents the value 1/b. In fact, this quadratic form (actually the associated quadratic
space) is a “hyperbolic plane” which represents everything as is clear from the change of
variable (assuming χ(F ) 6= 2): v′ = (U + V )/2, u′ = (U −V )/2 in which case v′2 −u′2 = UV
which clearly represents all elements of F .

Finally it is clear that (5) implies (1), since if ax2+by2 = 1, then the norm of α = 1+xi+yj
is 1 − ax2 − by2 = 0, so α has no inverse and A is not a division algebra.

We can now state two versions of the theorem of interest to me.

Theorem 2.3 (Albert-Brauer-Hasse-Noether). Let A be a central simple algebra over an
algebraic number field F . Then A splits over F iff Ap splits over Fp for all primes of F
(including the infinite ones).

For quaternion algebras, the above theorem implies and is often restated as:

Theorem 2.4. Let A be a quaternion algebra over a number field F , and let L be a quadratic
extension of F . Then there is an embedding of L into A over F iff no prime of F which
ramifies in A splits in L.

One key to the connection of these two theorems is the following standard result:

Theorem 2.5 (Theorem III.4.1 [1]). Let F be a field, a, b ∈ F×, and A =

(

a, b

F

)

. For

c ∈ F× \ (F×)2, let K = F (
√

c) be a quadratic field extension of F . The following are
equivalent:

1. A splits over K.

2. A ∼=
(

c, d

F

)

for some d ∈ F×.

3. K can be embedded (over F ) in A.

Proof. Again we only indicate some of the implications.

(1) implies (2) needs quadratic form theory.
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(2) implies (3) is easy: If A ∼=
(

c, d

F

)

, then i ∈ A satisfies i2 = c and K = F (
√

c) ∼=
F [i] = F (i) ⊂ A (since the center of A is F ).

For (3) implies (1), assume without loss of generality that F ⊂ K ⊂ A. Then as K-
algebras, we have (the last isomorphism by the Chinese Remainder Theorem),

K ⊗F A ⊇ K ⊗F K ∼= K ⊗F F [x]/(x2 − c) ∼= K[x]/(x2 − c) ∼= K ⊕ K

which contains zero divisors.

Crucial to the classification of simple (even semisimple) algebras over a field is the famous
theorem of Wedderburn.

Theorem 2.6 (Wedderburn). Let A be a simple algebra over a field F . Then A ∼= Mn(D)
where D is a division algebra over F . The integer n is unique, and D uniquely determined
up to isomorphism.

For central simple algebras, more can be said.

Theorem 2.7. Let A be a central simple algebra over a field F with A ∼= Mn(D). Then
[D : F ] = m2 and so [A : F ] = n2m2. The integer m is called the index of A.

Remark 2.8. Every central simple algebra A of dimension 4 over a field (at least if the
characteristic is not two) is a quaternion algebra, and for [A : F ] = 4 = n2m2 we have but
two cases:

• n = 1,m = 2 in which case A ∼= D is a division algebra
• n = 2,m = 1 in which case A ∼= M2(F ) is split.

It is here that Brauer’s contributions are quite visible. For central simple algebras A ∼=
Mn(D), A′ ∼= Mn′(D′) over a fixed field K, we call A and A′ similar (denoted A ∼ A′)
if their associated division rings D and D′ are isomorphic as K-algebras. Similarity is an
equivalence relation, and the elements of the Brauer group of K are the similarity classes of
central simple algebras over K. The group law is [A][B] = [A ⊗K B] with [K] = [Mn(K)]
the identity, and [Aop] the inverse of [A].

The index plays a critical role in the splitting of central simple algebras (sections 13.3
and 13.4 of [2], and (7.15) of [3]). In particular, we have the following proposition:

Proposition 2.9. Let A be a central simple algebra over a field F . If E/F is a finite field
extension so that E splits A, then the index m of A divides [E : F ]. Conversely, if E/F is
a finite extension of fields with F ⊂ E ⊂ A, and [E : F ] = m, then E splits A.

It turns out that the index is an exponent for [A] in the Brauer group. Another absolutely
critical theorem which we show is equivalent to the ABHN theorem in the quaternion case
(and deeply connected in the general case) is the Hasse Norm Theorem.
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Theorem 2.10 (Hasse Norm Theorem [2]). Let L/K be a finite cyclic extension of number
fields. Then an element a ∈ K is in the image of the norm NL/K if and only if a is in the
image of each norm NLP/Kp

for each prime p of K (including the infinite ones) and for each
prime P of L lying above p.

Remark 2.11. It turns out that since the Galois group Gal(L/K) acts transitively on the
primes P of L lying above p, for any two such primes P and P′, the completions LP

∼= LP′

over Kp, from which it follows that NLP/Kp
= NLP′/Kp

.

It is also quite easy to see that if an element is in the image of the global norm, it is also
a local norm, so the content of the Hasse theorem is the converse.

3 Implications and equivalences of the ABHN theorem

3.1 Implications

First we show that the Albert-Brauer-Hasse-Noether theorem in the context of quaternion
algebras implies Theorem 2.4. Actually it is only required for one direction.

Suppose that A =

(

a, b

F

)

is a quaternion algebra over a number field F and that L/F a

quadratic extension of fields with F ⊂ L ⊂ A. It is quite easy to see that the condition ‘no
prime of F which ramifies in A splits in L’ is necessary: Let p be a prime of F with ramifies in

A, i.e., Ap = Fp⊗A ∼=
(

a, b

Fp

)

is a division algebra. Then Fp⊗F F ∼= Fp ⊂ Fp⊗F L ⊂ Fp⊗F A.

The following are two standard results in algebraic number theory: Given an extension
of number fields L/F , and p a prime of F , Fp ⊗F L ∼= ⊕P|pLP, the direct sum being over
all completions of L at primes P of L lying over p. The second result is for a prime p of F ,
pOL = Pe1

1 · · ·Peg

g with
∑g

i=1
eifi = [L : F ]. Appropriate interpretations also exist for the

infinite primes.

For quadratic extensions, the possibilities are quite simple:

• pOL = P2 (p ramifies),
• pOL = P is prime (p is inert),
• pOL = P1P2 (p splits).

Only in the last case is Fp ⊗F L a direct sum of fields producing zero divisors within the
division algebra Fp ⊗ A. The case of a complex prime p (Fp = C) cannot occur, Ap is split.
If P is a real prime (Fp = R) which ramifies in A, then Ap is Hamilton’s quaternions. If p

split in L, once again Fp ⊗F L = R ⊗F L ∼= R ⊕ R producing zero divisors in the division
algebra. Thus it is clear that no prime of L which ramifies in A can split in L.

Conversely, assume Theorem 2.3, and that no prime of F which ramifies in A splits in L.

By Theorem 2.5, L can be embedded in A over F iff L splits A, that is

(

a, b

L

)

is split. By

Theorem 2.3, L splits A iff LP splits AP for every prime P of L.
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Let P a prime of L and p = OF ∩ P the unique prime of F lying below it. We have the
following inclusions (see diagram): Fp ⊂ LP ⊂ AP and Fp ⊂ Ap ⊂ AP since AP = LP⊗LA ∼=
LP ⊗Fp

Fp ⊗F A ∼= LP ⊗Fp
Ap. Now if Fp splits Ap, then LP splits LP ⊗Fp

Ap
∼= AP (i.e.,

Ap
∼= M2(Fp) implies LP ⊗Fp

Ap
∼= M2(LP).)

AP

LP

|
|

|
|

|
|

|
|

Ap

Fp

|
|

|
|

|
|

|
|

If Fp does not split Ap, then Ap is a division algebra over Fp (i.e., p ramifies in A), so
p does not split in L by assumption. That [LP : Fp] = ef and p does not split in L means
either e = 2 or f = 2, so [LP : Fp] = 2. Moreover, p not split in L means there is only
one prime of L lying above p so Fp ⊗ L ∼= LP ⊂ Fp ⊗ A = Ap. Since Fp ⊂ LP ⊂ Ap and
[LP : Fp] = 2, Proposition 2.9 implies LP splits Ap, i.e., LP ⊗Fp

Ap = AP is split. Thus, LP

splits AP for every prime P of L, and by Theorem 2.3, A is split over L which means L is
embeddable in A. This completes this direction of the proof.

3.2 Equivalent formulations

Here we show that the Albert-Brauer-Hasse-Noether theorem is equivalent to the Hasse
Norm theorem in the context of quaternion algebras. The equivalence is true more generally.

Let A be a quaternion algebra over F . Since F is contained in each of its completions, if
F splits A, it follows easily that Fp splits Ap for all primes p since F ⊗F A ∼= M2(F ) implies
Ap = Fp ⊗F A ∼= (Fp ⊗F F ) ⊗F A ∼= Fp ⊗F M2(F ) ∼= M2(Fp).

Now we assume that Fp splits Ap for all primes p in F , and write A =

(

a, b

F

)

. By

Theorem 2.1, Fp splits Ap iff a ∈ NEp/Fp
(Ep) with Ep = Fp(

√
b). Now let E = F (

√
b). To

apply the Hasse norm theorem, we have to know a ∈ NEP/Fp
(EP) for all primes p in F and

all primes P in E lying above p (actually since E/F is Galois, it suffices for any P lying
above a given p).

For any P lying above a given p, we have [EP : Fp] = ef so [EP : Fp] = 1 iff p splits in
E and is 2 otherwise. In the split case, for each of the two primes P lying above p we have
EP = Fp contains

√
b (since E ⊂ EP). In the nonsplit case, [EP : Fp] = 2, so

√
b /∈ Fp. Thus√

b ∈ Fp iff p is split. It now follows that for all p , EP = Ep. Thus a is a local norm at all

primes and by the Hasse norm theorem, a ∈ NE/F (E) which means that A =

(

a, b

F

)

is split

as required.
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Conversely, we assume the validity of the Albert-Brauer-Hasse-Noether theorem. Let
E/F be a quadratic extension of number fields, say E = F (

√
b). If a ∈ NE/F (E) then it

follows easily that a is a local norm at all primes. So suppose that a ∈ F is in the image of

the norm NEP/Fp
for all primes P | p of E. Consider the quaternion algebra A =

(

a, b

F

)

.

By Theorem 2.1, the local norm condition is equivalent to Ap splitting over each completion
Fp. By the Albert-Brauer-Hasse-Noether theorem, A is split over F , and by Theorem 2.1
once again, a ∈ NE/F (E).

3.3 Implications of Hilbert Reciprocity

Recall the characterization of the Hilbert symbol. Let F be a number field and a, b ∈ F , p

a prime of F . The Hilbert symbol (a, b)p = ±1 with value +1 iff ax2 + by2 = 1 is solvable in

Fp, which by Theorem 2.1 is true iff

(

a, b

Fp

)

is split.

As we have mentioned before, the Hilbert Reciprocity Law says that
∏

p≤∞

(a, b)p = 1. The

Albert-Brauer-Hasse-Noether theorem says that

(

a, b

F

)

is split iff (a, b)p = 1 for all p. In

particular,

(

a, b

F

)

is a division algebra iff (a, b)p = −1 for at least two (and always a finite

even number of) primes in F .

Interestingly given any choice of a finite even number of primes, there is (up to isomor-
phism) a unique quaternion algebra over F ramified at precisely those primes.

3.4 Hasse-Minkowski Theorem

The quaternion algebra

(

a, b

K

)

is split iff the norm form w2 − ax2 − by2 + abz2 is isotropic

(i.e., represents zero nontrivially). Hasse-Minkowski says that over a global field, a quadratic
form is isotropic iff it is isotropic over all completions providing yet another local-global
characterization of the main theorem (at least in the quaternion case).
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