ORBIFOLDS

July 16, 2010

ORBIFOLDS

Orbifolds as quotients of manifolds by Lie group actions

<ロト < 同ト < 三ト

Orbifolds as quotients of manifolds by Lie group actions

ъ

What is an orbifold?

Definition

An *n*-dimensional orbifold O is a second countable Hausdorff topological space together with a maximal *n*-dimensional orbifold atlas.

Definition

An orbifold atlas is a collection of mutually compatible orbifold charts whose images cover \mathcal{O} .

So what's an orbifold chart?

What is an orbifold?

Definition

An *n*-dimensional orbifold O is a second countable Hausdorff topological space together with a maximal *n*-dimensional orbifold atlas.

Definition

An orbifold atlas is a collection of mutually compatible orbifold charts whose images cover O.

So what's an orbifold chart?

ヘロト ヘアト ヘビト ヘビト

What is an orbifold?

Definition

An *n*-dimensional orbifold O is a second countable Hausdorff topological space together with a maximal *n*-dimensional orbifold atlas.

Definition

An orbifold atlas is a collection of mutually compatible orbifold charts whose images cover O.

So what's an orbifold chart?

(日)

Orbifold charts

Definition

An orbifold chart or uniformizing system (U, Γ_U, π_U) on a connected open set U is given by

- \widetilde{U} is a connected open subset of \mathbf{R}^n
- Γ_U is a finite group acting on \tilde{U} by diffeomorphisms
- $\pi_U : \widetilde{U} \to U$ is a continuous map inducing a homeomorphism from the orbit space $\Gamma_U \setminus \widetilde{U}$ onto U.

Orbifold charts

Definition

An orbifold chart or uniformizing system (U, Γ_U, π_U) on a connected open set U is given by

- \tilde{U} is a connected open subset of \mathbf{R}^n
- Γ_U is a finite group acting on U by diffeomorphisms
- $\pi_U : U \to U$ is a continuous map inducing a homeomorphism from the orbit space $\Gamma_U \setminus \widetilde{U}$ onto U.

Orbifold charts

Definition

An orbifold chart or uniformizing system (U, Γ_U, π_U) on a connected open set U is given by

- \tilde{U} is a connected open subset of \mathbf{R}^n
- Γ_U is a finite group acting on U by diffeomorphisms
- $\pi_U : \widetilde{U} \to U$ is a continuous map inducing a homeomorphism from the orbit space $\Gamma_U \setminus \widetilde{U}$ onto U.

Orbifold charts

Definition

An orbifold chart or uniformizing system (U, Γ_U, π_U) on a connected open set U is given by

where

- \widetilde{U} is a connected open subset of \mathbf{R}^n
- Γ_U is a finite group acting on \widetilde{U} by diffeomorphisms

• $\pi_U : \widetilde{U} \to U$ is a continuous map inducing a homeomorphism from the orbit space $\Gamma_U \setminus \widetilde{U}$ onto U.

Orbifold charts

Definition

An orbifold chart or uniformizing system (U, Γ_U, π_U) on a connected open set U is given by

- \widetilde{U} is a connected open subset of \mathbf{R}^n
- Γ_U is a finite group acting on \widetilde{U} by diffeomorphisms
- $\pi_U : \widetilde{U} \to U$ is a continuous map inducing a homeomorphism from the orbit space $\Gamma_U \setminus \widetilde{U}$ onto U.

Orbifold charts

Definition

An orbifold chart or uniformizing system (U, Γ_U, π_U) on a connected open set U is given by

- \widetilde{U} is a connected open subset of \mathbf{R}^n
- Γ_U is a finite group acting on \widetilde{U} by diffeomorphisms
- $\pi_U : \widetilde{U} \to U$ is a continuous map inducing a homeomorphism from the orbit space $\Gamma_U \setminus \widetilde{U}$ onto U.

Isomorphic charts

Definition

An isomorphism between two charts $(\widetilde{U}, \Gamma_U, \pi_U)$ and $(\widetilde{U}', \Gamma_{U'}, \pi_{U'})$ on the same open set U is a diffeomorphism $\phi : \widetilde{U} \to \widetilde{U}'$ such that $\pi_{U'} \circ \phi = \phi \circ \pi_U$.

Necessarily $\Gamma_U \simeq \Gamma_{U'}$ and φ is equivariant.

ORBIFOLDS

イロン 不得 とくほ とくほう 一座

Isomorphic charts

Definition

An isomorphism between two charts $(\widetilde{U}, \Gamma_U, \pi_U)$ and $(\widetilde{U}', \Gamma_{U'}, \pi_{U'})$ on the same open set U is a diffeomorphism $\phi : \widetilde{U} \to \widetilde{U}'$ such that $\pi_{U'} \circ \phi = \phi \circ \pi_U$.

Necessarily $\Gamma_U \simeq \Gamma_{U'}$ and φ is equivariant.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

Automorphisms of charts

Proposition

Every automorphism (ϕ, Γ_U) of a chart $(\widetilde{U}, \Gamma_U, \pi_U)$ is inner. *l.e.*,

ORBIFOLDS

Automorphisms of charts

Proposition

Every automorphism (ϕ, Γ_U) of a chart $(\widetilde{U}, \Gamma_U, \pi_U)$ is inner. *I.e.*,

 $\varphi \in \Gamma_U.$

ORBIFOLDS

Automorphisms of charts

Proposition

Every automorphism (ϕ, Γ_U) of a chart $(\widetilde{U}, \Gamma_U, \pi_U)$ is inner. *I.e.*,

 $\varphi \in \Gamma_U.$

ORBIFOLDS

Injections of charts

Definition

An injection $(\widetilde{V}, \Gamma_V, \pi_V) \to (\widetilde{U}, \Gamma_U, \pi_U)$ of charts on $V \subseteq U$ is an open embedding $\varphi : \widetilde{V} \to \widetilde{U}$ such that the diagram

commutes.

Given such an injection, there exists a monomorphism $\lambda : \Gamma_V \to \Gamma_U$ such that $\varphi \circ \gamma = \lambda(\gamma) \circ \varphi$ for all $\gamma \in \Gamma_U$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

Injections of charts

Definition

An injection $(\widetilde{V}, \Gamma_V, \pi_V) \to (\widetilde{U}, \Gamma_U, \pi_U)$ of charts on $V \subseteq U$ is an open embedding $\varphi : \widetilde{V} \to \widetilde{U}$ such that the diagram

commutes.

Given such an injection, there exists a monomorphism $\lambda : \Gamma_V \to \Gamma_U$ such that $\varphi \circ \gamma = \lambda(\gamma) \circ \varphi$ for all $\gamma \in \Gamma_U$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

Induced charts

Proposition

Given a chart $(\widetilde{U}, \Gamma_U, \pi_U)$ on an open set U and given a connected open subset $W \subset U$, there exists a unique up to isomorphism chart $(\widetilde{W}, \Gamma_W, \pi_W)$ on W that injects into $(\widetilde{U}, \Gamma_U, \pi_U)$. This is the chart induced on W by $(\widetilde{U}, \Gamma_U, \pi_U)$.

ORBIFOLDS

イロト イポト イヨト イヨト 三連

Induced charts

Proposition

Given a chart $(\widetilde{U}, \Gamma_U, \pi_U)$ on an open set U and given a connected open subset $W \subset U$, there exists a unique up to isomorphism chart $(\widetilde{W}, \Gamma_W, \pi_W)$ on W that injects into $(\widetilde{U}, \Gamma_U, \pi_U)$. This is the chart induced on W by $(\widetilde{U}, \Gamma_U, \pi_U)$.

ORBIFOLDS

ヘロト ヘアト ヘビト ヘビト

Compatibility of charts

Definition

Two charts $(\widetilde{U}, \Gamma_U, \pi_U)$ and $(\widetilde{U}', \Gamma_{U'}, \pi_{U'})$ on open subsets U and U' are said to be compatible if for every $x \in U \cap U'$, there exists a neighborhood

 $x \in W \subset U \cap U'$

such that $(\tilde{U}, \Gamma_U, \pi_U)$ and $(\tilde{U}', \Gamma_{U'}, \pi_{U'})$ induce isomorphic charts on W.

Caution: There's a subtlety here.

イロン イボン イヨン

Compatibility of charts

Definition

Two charts $(\widetilde{U}, \Gamma_U, \pi_U)$ and $(\widetilde{U}', \Gamma_{U'}, \pi_{U'})$ on open subsets U and U' are said to be compatible if for every $x \in U \cap U'$, there exists a neighborhood

 $x \in W \subset U \cap U'$

such that $(\widetilde{U}, \Gamma_U, \pi_U)$ and $(\widetilde{U}', \Gamma_{U'}, \pi_{U'})$ induce isomorphic charts on W.

Caution: There's a subtlety here.

イロト イヨト イヨト イ

What is an orbifold?

Definition

An orbifold atlas is a collection of mutually compatible orbifold charts whose images cover \mathcal{O} .

Definition

An *n*-dimensional orbifold \mathcal{O} is a second countable Hausdorff topological space together with a maximal *n*-dimensional orbifold atlas.

ORBIFOLDS

ヘロト ヘ戸ト ヘヨト ヘヨト

What is an orbifold?

Definition

An orbifold atlas is a collection of mutually compatible orbifold charts whose images cover \mathcal{O} .

Definition

An *n*-dimensional orbifold O is a second countable Hausdorff topological space together with a maximal *n*-dimensional orbifold atlas.

イロト イポト イヨト イヨト

Good versus Evil

An orbifold is good if it is of the form

 $\mathcal{O} = \Gamma ackslash M$

where Γ is a discrete group acting properly discontinuously on M.

(Γ does not have to be finite.)

Otherwise \mathcal{O} is bad.

イロト イポト イヨト イヨト

Good versus Evil

An orbifold is good if it is of the form

 $\mathcal{O} = \Gamma ackslash M$

where Γ is a discrete group acting properly discontinuously on M.

ORBIFOLDS

イロト イポト イヨト イヨト

(Γ does *not* have to be finite.)

Otherwise \mathcal{O} is bad.

Good versus Evil

An orbifold is good if it is of the form

 $\mathcal{O} = \Gamma ackslash M$

where Γ is a discrete group acting properly discontinuously on M.

(Γ does *not* have to be finite.)

Otherwise \mathcal{O} is bad.

イロン イボン イヨン イヨン

Singular points

Definition

A point $x \in \mathcal{O}$ is said to be singular if in a chart $(\hat{U}, \Gamma_U, \pi_U)$ on a neighborhood U of x, the isotropy group

$$lso(\widetilde{x}) = \{\gamma \in \Gamma_U : \gamma(\widetilde{x}) = \widetilde{x}\}$$

is non-trivial. The group $Iso(\tilde{x})$ is the abstract isotropy group of x.

Exercise

The isotropy group of x is well-defined (up to isomorphism) independently of the choice of chart.

ヘロト ヘアト ヘビト ヘ

.≣⇒

Riemannian orbifolds

Definition

A Riemannian metric g on an orbifold \mathcal{O} is given by specifying

a Γ_U -invariant Riemannian metric $g_{\widetilde{U}}$ on each chart $(\widetilde{U}, \Gamma_U, \pi_U)$

subject to the compatibility condition: each injection $\phi: \widetilde{U} \to \widetilde{V}$ of charts is an isometric embedding.

Theorem

Every orbifold admits Riemannian metrics.

ORBIFOLDS

Riemannian orbifolds

Definition

A Riemannian metric g on an orbifold \mathcal{O} is given by specifying a Γ_U -invariant Riemannian metric $g_{\widetilde{U}}$ on each chart $(\widetilde{U}, \Gamma_U, \pi_U)$ subject to the compatibility condition:

each injection $\phi: U \to V$ of charts is an isometric embedding.

Theorem

Every orbifold admits Riemannian metrics.

ORBIFOLDS

Riemannian orbifolds

Definition

A Riemannian metric g on an orbifold \mathcal{O} is given by specifying a Γ_U -invariant Riemannian metric $g_{\widetilde{U}}$ on each chart $(\widetilde{U}, \Gamma_U, \pi_U)$ subject to the compatibility condition: each injection $\phi : \widetilde{U} \to \widetilde{V}$ of charts is an isometric embedding.

Theorem

Every orbifold admits Riemannian metrics.

ORBIFOLDS

Riemannian orbifolds

Definition

A Riemannian metric g on an orbifold \mathcal{O} is given by specifying a Γ_U -invariant Riemannian metric $g_{\widetilde{U}}$ on each chart $(\widetilde{U}, \Gamma_U, \pi_U)$ subject to the compatibility condition: each injection $\phi : \widetilde{U} \to \widetilde{V}$ of charts is an isometric embedding.

Theorem

Every orbifold admits Riemannian metrics.

ORBIFOLDS

くロト (過) (目) (日)

Geodesic charts

Definition

We will say that a chart $(\tilde{U}, \Gamma_U, \pi_U)$ is a geodesic chart if \tilde{U} is a convex geodesic ball.

In this case, the entire group Γ_U fixes the center \tilde{x} of \tilde{U} , so $Iso(x) = \Gamma_U$.

Remark

The orthogonal action of Γ_U on $\mathcal{T}_{\tilde{X}}(\tilde{U})$ gives a representation of Iso(x) as a subgroup of O(n). Up to conjugacy, this subgroup is unique and is even independent of the choice of Riemannian metric on \mathcal{O} .

Thus "*lso*(x) < O(n)".

イロト イポト イヨト イヨト

Geodesic charts

Definition

We will say that a chart $(\tilde{U}, \Gamma_U, \pi_U)$ is a geodesic chart if \tilde{U} is a convex geodesic ball.

In this case, the entire group Γ_U fixes the center \tilde{x} of \tilde{U} , so $Iso(x) = \Gamma_U$.

Remark

The orthogonal action of Γ_U on $\mathcal{T}_{\tilde{X}}(\tilde{U})$ gives a representation of Iso(x) as a subgroup of O(n). Up to conjugacy, this subgroup is unique and is even independent of the choice of Riemannian metric on \mathcal{O} .

Thus "*lso*(x) < O(n)".

イロト イポト イヨト イヨト

Geodesic charts

Definition

We will say that a chart $(\tilde{U}, \Gamma_U, \pi_U)$ is a geodesic chart if \tilde{U} is a convex geodesic ball.

In this case, the entire group Γ_U fixes the center \tilde{x} of \tilde{U} , so $Iso(x) = \Gamma_U$.

Remark

The orthogonal action of Γ_U on $T_{\tilde{x}}(\tilde{U})$ gives a representation of Iso(x) as a subgroup of O(n). Up to conjugacy, this subgroup is unique and is even independent of the choice of Riemannian metric on \mathcal{O} .

Thus "Iso(x) < O(n)".

イロト イポト イヨト イヨト

Smooth mappings

Definition

Let \mathcal{O} and \mathcal{O}' be orbifolds. A continuous map $f : \mathcal{O} \to \mathcal{O}'$ is said to be a smooth map if for each $p \in \mathcal{O}$, there exist charts $(\widetilde{U}, \Gamma_U, \pi_U)$ and $(\widetilde{V}, \Gamma_V, \pi_V)$ on neighborhoods U of p and V of f(p) with $f(U) \subset V$ and a smooth lift

(The lift \tilde{f} will necessarily be equivariant with respect to Γ_U and Γ_V .)

<ロ> (四) (四) (三) (三) (三)

In particular, a continuous function $f : \mathcal{O} \to \mathbf{R}$ is smooth if and only if for each chart $(\widetilde{U}, \Gamma_U, \pi_U)$ on \mathcal{O} the map $f \circ \pi_U$ is smooth.

イロト イポト イヨト イヨト

Orbifold covering maps

A smooth map

$$\varrho:\mathcal{O}'\to\mathcal{O}$$

is an orbifold covering map if each $x \in \mathcal{O}$ has a chart

 $x \in U \sim \Gamma_U ackslash \widetilde{U}$

such that

$$\varrho^{-1}(U) = \sqcup V_i$$

where

 $V_i \sim \Gamma_i ackslash \widetilde{U}$

with $\Gamma_i < \Gamma_U$. *k*-sheeted cover For regular points x, $\sharp(\varrho^{-1}(x)) = k$.

イロト イポト イヨト イヨト 三連

Orbifold covering maps

A smooth map

$$\varrho:\mathcal{O}'\to\mathcal{O}$$

is an orbifold covering map if each $x \in \mathcal{O}$ has a chart

 $x \in U \sim \Gamma_U ackslash \widetilde{U}$

such that

$$\varrho^{-1}(U) = \sqcup V_i$$

where

 $V_i \sim \Gamma_i ackslash \widetilde{U}$

with $\Gamma_i < \Gamma_U$. *k*-sheeted cover For regular points x, $\sharp(\varrho^{-1}(x)) = k$.

ヘロト ヘ回ト ヘヨト ヘヨト

Orbifold covering maps

A smooth map

$$\varrho:\mathcal{O}'\to\mathcal{O}$$

is an orbifold covering map if each $x \in \mathcal{O}$ has a chart

 $x \in U \sim \Gamma_U ackslash \widetilde{U}$

such that

$$\varrho^{-1}(U) = \sqcup V_i$$

where

 $V_i \sim \Gamma_i ackslash \widetilde{U}$

with $\Gamma_i < \Gamma_U$. *k*-sheeted cover For regular points x, $\sharp(\varrho^{-1}(x)) = k$.

ヘロト ヘ回ト ヘヨト ヘヨト

Definition and Examples of Orbifolds

Orbifolds as quotients of manifolds by Lie group actions Stratification of orbifolds

ORBIFOLDS

Theorem

Every orbifold \mathcal{O} has a universal cover \widetilde{O} . This is a regular cover and $\mathcal{O} = \Gamma \setminus \widetilde{O}$. The orbifold \mathcal{O} is good if and only if \widetilde{O} is a manifold. Γ is the fundamental group of \mathcal{O} .

Remark

One can realize the fundamental group as homotopy classes of loops based at a point. However, the notion of smooth map is inadequate for the notion of homotopy. One needs the concept of orbifold morphisms.

Outline

Orbifolds as quotients of manifolds by Lie group actions

< ロ > < 同 > < 三 >

≣ ▶

Theorem

Every orbifold can be realized as the quotient of a manifold by a proper action of a Lie group.

ORBIFOLDS

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Outline

Definition and Examples of Orbifolds

2 Orbifolds as quotients of manifolds by Lie group actions

ORBIFOLDS

(日)

ъ

Strata

Definition

A smooth stratification of a manifold or orbifold \mathcal{O} is a locally finite partition of M into locally closed submanifolds, called the strata, satisfying: For each stratum N, the closure of N is the union of N with a collection of lower dimensional strata.

The strata of maximal dimension are open in $\mathcal O$ and their union has full measure in $\mathcal O$.

ORBIFOLDS

ヘロト ヘアト ヘビト ヘビト

Strata

Definition

A smooth stratification of a manifold or orbifold O is a locally finite partition of M into locally closed submanifolds, called the strata, satisfying: For each stratum N, the closure of N is the union of N with a collection of lower dimensional strata.

The strata of maximal dimension are open in \mathcal{O} and their union has full measure in \mathcal{O} .

ORBIFOLDS

Consider a smooth action of a Lie group G on a manifold M.

Definition

We say two points in M have the same G-isotropy type if their isotropy groups are conjugate in G. The set of all points of a given isotropy type is a union of G-orbits.

For $x \in G \setminus M$, the isotropy type of x is defined to be the isotropy type of the associated G-orbit in M.

< ロ > < 同 > < 三 >

Consider a smooth action of a Lie group G on a manifold M.

Definition

We say two points in M have the same G-isotropy type if their isotropy groups are conjugate in G. The set of all points of a given isotropy type is a union of G-orbits. For $x \in G \setminus M$, the isotropy type of x is defined to be the isotropy type of the associated G-orbit in M.

Theorem

The action of G gives a stratification of M in which each stratum is a connected component of the set of all points of a given isotropy type. The closure of a stratum N is the union of N with lower dimensional strata with isotropy "containing" that of N.

Theorem

Let $\mathcal{O} = G \setminus M$ be an orbifold. The connected components of the sets of points with given isotropy type stratify \mathcal{O} . The regular points form the strata of maximal dimension. The singular strata have lower dimension.

Theorem

The action of G gives a stratification of M in which each stratum is a connected component of the set of all points of a given isotropy type. The closure of a stratum N is the union of N with lower dimensional strata with isotropy "containing" that of N.

Theorem

Let $\mathcal{O} = G \setminus M$ be an orbifold. The connected components of the sets of points with given isotropy type stratify \mathcal{O} . The regular points form the strata of maximal dimension. The singular strata have lower dimension.

イロト イポト イヨト イヨト 三油

Orientability

Definition

A manifold is orientable if it admits a covering by of compatibly oriented charts $(\tilde{U}, \Gamma_U, \pi_U)$ such that the action of Γ_U on \tilde{U} is orienation-preserving.

Theorem

If \mathcal{O} is orientable, then each singular stratum has co-dimension at least two in \mathcal{O} .

