

Linear Representations and Isospectrality

Ori Parzanchevski

Einstein Institute of Mathematics The Hebrew University of Jerusalem Ram Band

Department of Physics of Complex Systems The Weizmann Institute of Science

Quotients and representations

If a group G acts on a manifold M, Then $L_2(M)$ is a representation of G. For $H \leq G$, functions on the quotient M/H correspond to morphisms from 1_H , the trivial representation of H, to $L_2(M)$.

$$\underbrace{L_{2}\left(M/H\right)}_{\text{functions on }M/H} \cong \underbrace{L_{2}\left(M\right)^{\mathbf{1}_{H}}}_{H-\text{invariant functions on }M} \cong \underbrace{Hom_{\mathbb{C}H}\left(\mathbf{1}_{H},L_{2}\left(M\right)\right)}_{H-\text{equivariant morphisms}} \cong \underbrace{Hom_{\mathbb{C}H}\left(\mathbf{1}_{H},L_{2}\left(M\right)\right)}_{H-\text{equivariant morphisms}}$$

Frobenius Reciprocity

Allows us to compare *H*-morphisms with *G*-morphisms: $\operatorname{Hom}_{\mathbb{C}H}(\mathbf{1}_{H}, L_{2}(M)) \cong \operatorname{Hom}_{\mathbb{C}G}(\operatorname{Ind}_{H}^{G}\mathbf{1}_{H}, L_{2}(M))$

Corollary: Sunada's isospectral construction

If H,H' are subgroups of G satisfying the Sunada condition

$$\operatorname{Ind}_{H}^{G} \mathbf{1}_{H} \cong \operatorname{Ind}_{H'}^{G} \mathbf{1}_{H'}$$

then M/H and M/H' are isospectral.

Example: Gordon-Webb-Wolpert Drums

Quotients by representations

We replace 1_H by any representation R of H, and construct an object (denoted M/R) such that there is an isomorphism:

$$\underbrace{L_{2}\left(M/R\right)}_{\text{Functions on the new object}} \cong \operatorname{Hom}_{\mathbb{C}H}\left(R, L_{2}\left(M\right)\right) \cong \underbrace{L_{2}\left(M\right)^{R}}_{\text{If } R \text{ is one-dimensional}} \forall h \in H \\ hf = \rho_{R}\left(h\right)f\right)$$

Consequence: more isospectrality

If G acts on M, and H,H' are subgroups of G with corresponding representations R,R', then in the same manner (Frobenius Reciprocity)

 $\operatorname{Ind}_{H}^{G}R \cong \operatorname{Ind}_{H'}^{G}R'$

implies that M/R and M/R' are isospectral.

Example: drums with alternating boundary conditions (Jakobson, Levitin et al)

In the Gordon-Webb-Wolpert construction both H and H' are isomorphic to S₄. Taking their sign representations we obtain:

Sums and unions (Chapman)

 $L_2\left(M \cup M'\right) = L_2\left(M\right) \oplus L_2\left(M'\right)$ shows that $M/R \cup M/R' = M/R \oplus R'$.

Taking now four subgroups of
$$D_4$$

$$H_{xy} = \langle \tau_x, \tau_y \rangle \qquad H_{\bowtie} = \langle \tau_{\bowtie}, \tau_{\bowtie} \rangle$$

$$H_y = \langle \tau_y \rangle \qquad H_{\bowtie} = \langle \tau_{\bowtie} \rangle$$

 $\operatorname{Ind}_{H_{\aleph}}^{D_4} \mathbf{1}_{H_{\aleph}} \oplus \operatorname{Ind}_{H_{xy}}^{D_4} \mathbf{1}_{H_{xy}} \cong \operatorname{Ind}_{H_{\aleph}}^{D_4} \mathbf{1}_{H_{\aleph}} \oplus \operatorname{Ind}_{H_y}^{D_4} \mathbf{1}_{H_y}$

we get:

Isospectrality everywhere (or - things you can do with Z mod 2)

Yes! Even out of this humblest of groups isospectrality can be squeezed!

Taking $H=\{id\}$ and R=1Hwe obtain M/R=M/H=M

For H'=G and $R'=\mathbb{C}G\cong 1_G\oplus S$, where S is the nontrivial character of G, we obtain $M/R' = M/G \bigcup M/S$:

Transplantation

From $\operatorname{Ind}_H^G R \cong \operatorname{Ind}_{H'}^G R'$ a transplantation operator is induced between the quotients, by the composition of isomorphisms:

 $L_2\left(M/R\right) \cong \operatorname{Hom}_{\mathbb{C}H}\left(R, L_2\left(M\right)\right) \cong \operatorname{Hom}_{\mathbb{C}G}\left(\operatorname{Ind}_H^G R, L_2\left(M\right)\right) \cong$ $\operatorname{Hom}_{\mathbb{C}G}\left(\operatorname{Ind}_{H'}^GR', L_2\left(M\right)\right) \cong \operatorname{Hom}_{\mathbb{C}H'}\left(R', L_2\left(M\right)\right) \cong L_2\left(M/R'\right)$