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Quotients and representations Quotients by representations

If a group G acts on a manifold M, Then L:(M) is a representation .
of G. For H<G, functions on the quotient M/H correspond to We replace 1+ by any representation R of H, and construct an

morphisms from 14, the trivial representation of H, to L.(M). object (denoted M/R) such that there is an isomorphism:
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Sums and unions (Chapman)

Lo (MUM') = Ly (M) @ Lo (M') shows that M/rM/r’ = M/rer’.

Taking now four subgroups of D.
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Hy = (7y) Hy = (7 )

we get:

Consequence: more isospectrality

If G acts on M, and H,H" are subgroups of G with corresponding
representations R,R’, then in the same manner (Frobenius

Reciprocity)
Home (17, Ly (M) = Hom (IndGl o5 M) -
catla, Lo (M) = Homes \genglate (M) nd$ R = Ind, R

implies that M/R and M/R" are isospectral.

Frobenius Reciprocity

Allows us to compare H-morphisms with G-morphisms:
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Corollary: Sunada’s isospectral construction

If H,H' are subgroups of G satisfying the Sunada condition

Indg ]-H = Indg, ]-H’

Isospectrality everywhere
Example: drums with alternating boundary (or - things you can do with Z mod 2)

conditions (Jakobson, Levitin et al)
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quotient of the fga' Dirichlet (Dark blue) Neumann (Nifty red) y / .
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“%&ﬂ"“ In the Gordon-Webb-Wolpert construction both H and H' are between the quotients
isomorphic to Si. Taking their sign representations we obtain: ’

by the composition of
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