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The Set Up

I Let B be a planar, polygonal domain, not necessarily
convex. Let V denote the set of vertices of B, and let
∆B denote the Dirichlet or the Neumann Laplacian
on L2(B).
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The Nonconcentration Theorem

I Theorem
Let B be as above and let U be any neighbourhood of V .
Then there exists c = c(U) > 0 such that, for any
L2-normalized eigenfunction u of the Dirichlet (or
Neumann) Laplacian ∆B, we have∫

U
|u|2 ≥ c.

That is, U is a control region for B.
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Applicable Billiards

I

Figure: Examples of polygonal billiards for which the
Theorem is applicable with Dirichlet or Neumann boudary
conditions on the solid lines and periodic boundary
conditions on the dashed lines.
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Motivation

I

Figure: A square billiard constructed by
Crommie-Lutz-Eigler at IBM.



Strichartz
estimates on

polygonal domains

Jeremy L.
Marzuola

Preliminaries

Previous Results

Strichartz
Estimates

Euclidean
Surfaces with
Conic Singularities

Outline of Proof for
the Strichartz
Estimates

Square Function
Estimates

Possibilities for
Future Work

Motivation Cont.

I This goes back to the topic of Quantum Ergodicity,
related to the question of Quantum/Classical
Correspondence.

I Previous work in this area goes back to
Burq-Zworski, Zelditch-Zworski, Gérard-Leichtman,
Lindenstrauss, Sarnak, Melrose-Sjöstrand, de
Verdiére,...

I Results proving “scarring” on hyperbolic manifolds
like the quantum cat map have been studied in
several results by Anantharaman and
Nonnenmacher et al.
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Partially Rectangular Billiards

I Theorem (Burq-Zworski)
Let Ω be a partially rectangular billiard with the
rectangular part R ⊂ Ω, ∂R = Γ1 ∪ Γ2, a decomposition
into parallel components satisfying Γ2 ⊂ ∂Ω. Let ∆ be the
Dirichlet or Neumann Laplacian on Ω. Then for any
neighbourhood of Γ1 in Ω, V , there exists C such that

−∆u = λu =⇒
∫

V
|u(x)|2dx ≥ 1

C

∫
R
|u(x)|2dx ,

that is, no eigenfuction can concentrate in R and away
from Γ1.
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Partially Rectangular Billiards Cont.

I

Figure: Control regions in which eigenfunctions have
positive mass and the rectangular part for the Bunimovich
stadium.
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Motivation

I

Figure: A stadium billiard constructed by a team at IBM.
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Billiards with Obstacles

I Theorem (Burq-M-Zworski)
Let V be any open neighbourhood of the convex
boundary, ∂O, in a Sinai billiard, S. If ∆ is the Dirichlet or
Neumann Laplace operator on S then there exists a
constant, C = C(V ), such that

− h2∆u = E(h)u =⇒
∫

V
|u(x)|2dx ≥ 1

C

∫
S
|u(x)|2dx ,

for any h and |E(h)− 1| < 1
2 .
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Nonconcentration Proof Ideas

I Assume there exists a sequence of eigenfunctions
concentrating on a periodic orbit away from the
obstacle.

I This trajectory can be trapped in a periodic cylinder.
I Contradiction argument using semiclassical defect

measures and control theory estimates for solutions
to inhomogeneous elliptic equations on rectangles.
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Billiards with Obstacles

I

y

x

p
(ma)2 + n2

θ

θ

a

1

p
(ma)2 + n2

Figure: A maximal rectangle in a rational direction,
avoiding the obstacle. Because the parrallelogram is
certainly periodic and our region has uniform width, it is
clear that the resulting rectangle is periodic.
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Billiards with Slits

I Theorem (M)
Let γ be an x-bounded trajectory on P = T2 \ S. If ∆ is
the Dirichlet Laplace operator on P then there exists no
microlocal defect measure obtained from the
eigenfunctions on P such that supp (dµ) = γ.
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Billiards with Slits Cont.

I
V2

V1

S

Figure: A pseudointegrable billiard P consisting of a torus
with a slit, S, along which we have Dirichlet boundary
conditions. We would like to show that eigenfunctions of
the Laplacian on this torus must have concentration in the
shaded regions V1 and V2.
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Billiards with Slits Cont.

I c. and d. represent x-unbounded trajectories.

a.

c.

b.

d.

Above, a. and b. represent typical x-bounded trajectories, while

Figure: Some examples of x-bounded and x-unbounded
trajectories.
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Billiards with Slits Cont.

I

In bold, we have γ1 in C0

γ1 in C2 after
another reflection.

γ1 as a periodic trajectory in R2 after a final reflection and multiplication
by a microlocal cut-off function.

reflection will be supported along the blue lines. Note also that we
have elected to show only γ1 for simplicity.

γ1 in the strip C̃1. The inhomogeneity resulting from

The union of all trajectories here gives γ̃.
In bold, we haveγ1 in the plane.

Figure: This diagram describes how we "unfold" the
eigenfunctions in order to derive a contradiction.
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Nonconcentration Proof Ideas

I Geometric condition classifying periodic orbits that
miss the control region.

I Generalize to a Euclidean Surface with Conic
Singularities with the geometric condition satisfied.

I Contradiction argument using semiclassical defect
measures and control theory estimates for solutions
to inhomogeneous elliptic equations on rectangles.
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The Set Up for Strichartz

I Suppose u(t , x) : [−T ,T ]× Ω −→ C is a solution to
the initial value problem for the Schrödinger equation
on Ω:

I {
(Dt + ∆) u(t , x) = 0

u(0, x) = f (x).

I Here, u satisfies either Dirichlet or Neumann
homogeneous boundary conditions,

u
∣∣
[−T ,T ]×∂Ω

= 0 or ∂nu
∣∣
[−T ,T ]×∂Ω

= 0.
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The Strichartz Estimates

I These are a family of space-time integrability bounds
of the form

‖u‖Lp([−T ,T ];Lq(Ω)) ≤ CT ‖f‖Hs(Ω)

with p > 2 and 2
p + 2

q = 1.
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The Strichartz Estimates

I More precisely, this self-adjoint operator possesses a
sequence of eigenfunctions forming a basis for
L2(Ω).

I We write the eigenfunction and eigenvalue pairs as
∆ϕj = λ2

j ϕj , where λj denotes the frequency of
vibration.

I The Sobolev space of order s can then be defined as
the image of L2(Ω) under (1 + ∆)−s with norm

‖f‖2Hs(Ω) =
∞∑

j=1

(
1 + λ2

j

)s ∣∣〈f , ϕj
〉∣∣2 .

I Here, 〈·, ·〉 denotes the L2 inner product.
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The Strichartz Estimates

I Strichartz estimates are well-established when the
domain Ω is replaced by Euclidean space.

I In that case, one can take s = 0, and by scaling
considerations, this is the optimal order for the
Sobolev space; see for example Strichartz (1977),
Ginibre and Velo (1985), Keel and Tao (1998), etc.
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The Strichartz Estimates

I When Ω is a compact domain or manifold, much less
is known about the validity and optimality of these
estimates.

I The finite volume of the manifold and the presence of
trapped geodesics appear to limit the extent to which
dispersion can occur.

I In addition, the imposition of boundary conditions
complicate many of the known techniques for proving
Strichartz estimates.

I Nonetheless, estimates on general compact domains
with smooth boundary have been shown by Anton
(2008) and Blair-Smith-Sogge (2008). Both of these
works build on the approach for compact manifolds
of Burq-Gérard-Tzvetkov (2004).
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The Theorem

I Theorem
Let Ω be a compact polygonal domain in R2, and let ∆
denote either the Dirichlet or Neumann Laplacian on Ω.
Then for any solution u = exp(−it∆) f to the Schrödinger
IBVP with f in H

1
p (Ω), the Strichartz estimates

‖u‖Lp([−T ,T ];Lq(Ω)) ≤ CT ‖f‖
H

1
p (Ω)

hold provided p > 2, q ≥ 2, and 2
p + 2

q = 1.
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Remarks

I In this work, the Neumann Laplacian is taken to be
the Friedrichs extension of the Laplace operator
acting on smooth functions which vanish in a
neighborhood of the vertices.

I In this sense, our Neumann Laplacian imposes
Dirichlet conditions at the vertices and Neumann
conditions elsewhere.

I The Dirichlet Laplacian is taken to be the typical
Friedrichs extension of the Laplace operator acting
on smooth functions which are compactly supported
in the interior of Ω.
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Remarks

I We note that our estimates have a loss of s = 1
p

derivatives as in Burq-Gérard-Tzvetkov (2004), which
we believe is an artifact of our methods.

I Given specific geometries, there are results showing
that such a loss is not sharp. For instance, when Ω is
replaced by a flat rational torus, the Strichartz
estimate with p = q = 4 holds for any s > 0, as was
shown by Bourgain (1993); see also Bourgain (2007)
for results in the case of irrational tori.

I However, we also point out that in certain geometries
a loss of derivatives is expected due to the existence
of gliding rays, as shown by Ivanovici (2008).
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The Definition

I Definition
A Euclidean surface with conical singularities (ESCS) is a
topological space X possessing a decomposition
X = X0 t P for a finite set of singular points P ( X such
that

1. X0 is an open, smooth two-dimensional Riemannian
manifold with a locally Euclidean metric g, and

2. each singular point pj of P has a neighborhood Uj
such that Uj \ {pj} is isometric to a neighborhood of
the tip of a flat Euclidean cone C(S1

ρj
) with pj mapped

to the cone tip.
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The Real Theorem

I Theorem
Let X be a compact ESCS, and let ∆g be the Friedrichs

extension of ∆g

∣∣∣
C∞c (X0)

. Then for any solution

u = exp
(
−it∆g

)
f to the Schrödinger IVP on X with initial

data f in H
1
p (X ), the Strichartz estimates

‖u‖Lp([−T ,T ];Lq(X)) ≤ CT ‖f‖
H

1
p (X)

hold provided p > 2, q ≥ 2, and 2
p + 2

q = 1.
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Littlewood-Paley

I Choose a nonnegative bump function β in C∞c (R)
supported in

(1
4 ,4
)

and satisfying
∑

k≥1 β
(
2−k ζ

)
= 1

for ζ ≥ 1.

I Taking βk (ζ)
def
= β

(
2−k ζ

)
for k ≥ 1 and

β0(ζ)
def
= 1−

∑
k≥1 βk (ζ), we define the frequency

localization uk of u in the spatial variable by

uk
def
= βk

(√
∆g

)
u.

I The operator βk
(√

∆g
)

is defined using the
functional calculus with respect to ∆g . Hence,
u =

∑
k≥0 uk , and in particular, u0 is localized to

frequencies smaller than 1.
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Square Function Estimates

I With this decomposition, we have the following
square function estimate for elements a of Lq(X ),∥∥∥∥∥∥∥

∑
k≥0

∣∣∣βk

(√
∆g

)
a
∣∣∣2
 1

2

∥∥∥∥∥∥∥
Lq(X)

≈ ‖a‖Lq(X) ,

with implicit constants depending only on q.
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Proof Using Square Function Estimates

I Delaying the proof of the square function estimate,
we have by Minkowski’s inequality that

‖u‖Lp([−T ,T ];Lq(X)) .

∑
k≥0

‖uk‖2Lp([−T ,T ];Lq(X))

 1
2

since we are under the assumption that p,q ≥ 2.
I We now claim that for each k ≥ 0,

‖uk‖Lp([−T ,T ];Lq(X)) . 2
k
p ‖uk (0, ·)‖L2(X) .
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Proof Using Square Function Estimates
I Assuming this for the moment, we have by

orthogonality and the localization of β that

2
2k
p ‖uk (0, ·)‖2L2(X) = 2

2k
p

∞∑
j=1

βk (λj)
2 ∣∣〈u(0, ·), ϕj

〉∣∣2
.
∞∑

j=1

(
1 + λ2

j

)1/p
βk (λj)

2 ∣∣〈u(0, ·), ϕj
〉∣∣2 .

I We now sum this expression over k ; after exchanging
the order of summation in k and j , we obtain∑

k≥0

2
2k
p ‖uk (0, ·)‖2L2(X) . ‖u(0, ·)‖2

H
1
p (X)

.

I Combining this with Minkowski, we have reduced the
proof of our Theorem to showing the dyadic
Strichartz claim.
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Proof Using Square Function Estimates

I We observe that the claim follows from

‖uk‖Lp([0,2−k ];Lq(X)) . ‖uk (0, ·)‖L2(X).

I Indeed, if this estimate holds, then time translation
and mass conservation imply the same estimate
holds with the time interval [0,2−k ] replaced by
[2−km,2−k (m + 1)]. Taking a sum over all such
dyadic intervals in [−T ,T ] then yields the desired
estimate.



Strichartz
estimates on

polygonal domains

Jeremy L.
Marzuola

Preliminaries

Previous Results

Strichartz
Estimates

Euclidean
Surfaces with
Conic Singularities

Outline of Proof for
the Strichartz
Estimates

Square Function
Estimates

Possibilities for
Future Work

Proof Using Square Function Estimates

I We observe that the claim follows from

‖uk‖Lp([0,2−k ];Lq(X)) . ‖uk (0, ·)‖L2(X).

I Indeed, if this estimate holds, then time translation
and mass conservation imply the same estimate
holds with the time interval [0,2−k ] replaced by
[2−km,2−k (m + 1)]. Taking a sum over all such
dyadic intervals in [−T ,T ] then yields the desired
estimate.



Strichartz
estimates on

polygonal domains

Jeremy L.
Marzuola

Preliminaries

Previous Results

Strichartz
Estimates

Euclidean
Surfaces with
Conic Singularities

Outline of Proof for
the Strichartz
Estimates

Square Function
Estimates

Possibilities for
Future Work

Proof Using Square Function Estimates

I We localize our solution in space using a finite
partition of unity

∑
` ψ` ≡ 1 on X such that supp(ψ`)

is contained in a neighborhood U` isometric to either
an open subset of the plane R2 or a neighborhood of
the tip of a Euclidean cone C(S1

ρ).
I It now suffices to see that if ψ is an element of this

partition and U denotes the corresponding open set
in R2 or C(S1

ρ), then

‖ψ uk‖Lp([0,2−k ];Lq(U)) . ‖uk (0, ·)‖L2(U) .
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Proof Using Square Function Estimates

I Observe that ψ uk solves the equation(
Dt + ∆g

)
(ψ uk ) =

[
∆g, ψ

]
uk

over R2 or C(S1
ρ).

I Letting S(t) denote the Schrödinger propagator
either on Euclidean space or the Euclidean cone,
depending on which space U lives in, we have for
t ≥ 0 that

ψ uk (t , ·) = S(t)
(
ψ uk (0, ·)

)
+∫ 2−k

0
1{t>s}(s) S(t − s)

([
∆g, ψ

]
uk (s, ·)

)
ds.
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Proof Using Square Function Estimates

I On the plane, estimates on the Schrödinger operator
are well known.

I On the cone, we apply the Strichartz estimates for
the Schrödinger operator on the Euclidean cone
without loss from Ford (2009).

I Once we have the estimates on the propagator, the
dyadic Strichartz estimate follows in a standard
fashion.
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Proof of Square Function Estimates

I The estimate is actually valid for any exponent
1 < q <∞. If X0 were compact, the estimate in
Seeger-Sogge (1989) would suffice for our purpose.

I Extra care must be taken in our case, however, as X0
is an incomplete manifold. Thus, we take advantage
of a spectral multiplier theorem that allows us to
employ a classical argument appearing in Stein
(1970). This method is also treated in
Ivanovici-Planchon (2008) and in the thesis of Blair
(2005).
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Proof of Square Function Estimates

I The multiplier theorem we use is due to Alexopolous
(2004) and treats multipliers defined with respect to
the spectrum of a differential operator on a manifold,
see also the work of Duong, Ouhabaz, and Sikora
(2002).

I It requires that the Riemannian measure is doubling
and that the heat kernel P(t , x , y) generated by ∆g
should satisfy a Gaussian upper bound of the form

P(t , x , y) .
1∣∣∣B(x ,
√

t
)∣∣∣ exp

(
−

b distg(x , y)2

t

)
,

where
∣∣∣B(x ,

√
t
)∣∣∣ is the volume of the ball of radius

√
t about x and b > 0 is a constant.

I We prove that this estimate holds on any ESCS.
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Proof of Square Function Estimates

I The multiplier theorem we use is due to Alexopolous
(2004) and treats multipliers defined with respect to
the spectrum of a differential operator on a manifold,
see also the work of Duong, Ouhabaz, and Sikora
(2002).

I It requires that the Riemannian measure is doubling
and that the heat kernel P(t , x , y) generated by ∆g
should satisfy a Gaussian upper bound of the form

P(t , x , y) .
1∣∣∣B(x ,
√

t
)∣∣∣ exp

(
−

b distg(x , y)2

t

)
,

where
∣∣∣B(x ,

√
t
)∣∣∣ is the volume of the ball of radius

√
t about x and b > 0 is a constant.

I We prove that this estimate holds on any ESCS.
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Proof of Square Function Estimates

I We use a theorem of Grigor’yan (1997) that
establishes Gaussian upper bounds on arbitrary
Riemannian manifolds.

I His result implies that if P(t , x , y) satisfies
on-diagonal bounds

P(t , x , x) . max
(

1
t
,C
)

for some constant C > 0 then there exists b > 0
such that

P(t , x , y) . max
(

1
t
,C
)

exp
(
−

b distg(x , y)2

t

)
.

I Since
∣∣∣B(x ,

√
t
)∣∣∣ ≈ t for bounded t , this is equivalent

to the heat kernal bound.
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Proof of Square Function Estimates

I The proof relies on an argument of Cheeger (1983)
relating the heat kernel of a model space to that of
an intrisic kernel on X0.

I Then, on the Euclidean cone, we bound the heat
kernel using an explicit formula for the heat kernel
derived in Cheeger-Taylor I,II (1982) and specifically
a form of the heat kernel writted down in Li (2003).
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Proof of Square Function Estimates

I The proof relies on an argument of Cheeger (1983)
relating the heat kernel of a model space to that of
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Wave??

I The machinery presented here is generally
applicable to any problem with know Strichartz
estimates on the Euclidean cone.

I Hence, the authors hope to extend the result of Ford
(2009) from the Schrödinger equation to the Wave
equation, which our result then allows us to extend to
any ESCS and hence any polygonal domain.
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