Parseval frames of exponentially decaying Wannier functions

Peter Kuchment

Supported by NSF
"Tight frames of exponentially decaying Wannier functions"
J. Phys. A: Math. Theor. 42 (2009), 025203

International Conference on Spectral Geometry July 19-23, 2010 Dartmouth College

Peter Kuchment

Parseval frames

H-Hilbert space

Parseval frames

H - Hilbert space, ψ_{j} - sequence of vectors.

Parseval frames

H - Hilbert space, ψ_{j} - sequence of vectors.
Definition
$\left\{\psi_{j}\right\}$ - Parseval frame

Parseval frames

H - Hilbert space, ψ_{j} - sequence of vectors.
Definition
$\left\{\psi_{j}\right\}$ - Parseval frame, if for any $f \in H$

Parseval frames

H - Hilbert space, ψ_{j} - sequence of vectors.
Definition
$\left\{\psi_{j}\right\}$ - Parseval frame, if for any $f \in H$

$$
\|f\|^{2}=\sum_{j}\left|\left(f, \psi_{j}\right)\right|^{2}
$$

Parseval frames

H - Hilbert space, ψ_{j} - sequence of vectors.

Definition

$\left\{\psi_{j}\right\}$ - Parseval frame, if for any $f \in H$

$$
\|f\|^{2}=\sum_{j}\left|\left(f, \psi_{j}\right)\right|^{2}
$$

Theorem (D. Larson)

Parseval frames

H - Hilbert space, ψ_{j} - sequence of vectors.

Definition

$\left\{\psi_{j}\right\}$ - Parseval frame, if for any $f \in H$

$$
\|f\|^{2}=\sum_{j}\left|\left(f, \psi_{j}\right)\right|^{2}
$$

Theorem (D. Larson)

There exists a larger Hilbert space H_{1} and its ortho-normal basis $\left\{e_{j}\right\}$

Parseval frames

H - Hilbert space, ψ_{j} - sequence of vectors.

Definition

$\left\{\psi_{j}\right\}$ - Parseval frame, if for any $f \in H$

$$
\|f\|^{2}=\sum_{j}\left|\left(f, \psi_{j}\right)\right|^{2}
$$

Theorem (D. Larson)

There exists a larger Hilbert space H_{1} and its ortho-normal basis $\left\{e_{j}\right\}$ s.t.

$$
\psi_{j}=P_{H}^{\perp} e_{j}
$$

Parseval frames

H - Hilbert space, ψ_{j} - sequence of vectors.

Definition

$\left\{\psi_{j}\right\}$ - Parseval frame, if for any $f \in H$

$$
\|f\|^{2}=\sum_{j}\left|\left(f, \psi_{j}\right)\right|^{2}
$$

Theorem (D. Larson)

There exists a larger Hilbert space H_{1} and its ortho-normal basis $\left\{e_{j}\right\}$ s.t.

$$
\psi_{j}=P_{H}^{\perp} e_{j}
$$

$P_{H}^{\perp}: H_{1} \mapsto H$ - orthogonal projector. (Converse statement clearly also holds.)

Uses of frames

The uses of frames are numerous

Uses of frames

The uses of frames are numerous and I know next to nothing

Uses of frames

The uses of frames are numerous and I know next to nothing
about them
One unavoidable use:

Uses of frames

The uses of frames are numerous and I know next to nothing
about them
One unavoidable use: $\mathcal{E} \mapsto K-m$-dimensional vector bundle over a compact K.

Uses of frames

The uses of frames are numerous and I know next to nothing

One unavoidable use: $\mathcal{E} \mapsto K-m$-dimensional vector bundle over a compact K.

No continuous basis

Uses of frames

The uses of frames are numerous and I know next to nothing
about them
One unavoidable use: $\mathcal{E} \mapsto K$ - m-dimensional vector bundle over a compact K.

No continuous basis

If \mathcal{E} is non-trivial

Uses of frames

The uses of frames are numerous and I know next to nothing about them
One unavoidable use: $\mathcal{E} \mapsto K$ - m-dimensional vector bundle over a compact K.

No continuous basis

If \mathcal{E} is non-trivial, i.e. not isomorphic to $K \times \mathbb{C}^{m}$

Uses of frames

The uses of frames are numerous and I know next to nothing about them
One unavoidable use: $\mathcal{E} \mapsto K$ - m-dimensional vector bundle over a compact K.

No continuous basis

If \mathcal{E} is non-trivial, i.e. not isomorphic to $K \times \mathbb{C}^{m}$, then there is no continuous basis $e_{1}(k), \ldots, e_{m}(k)$ in the fiber.

Uses of frames

The uses of frames are numerous and I know next to nothing
about them
One unavoidable use: $\mathcal{E} \mapsto K$ - m-dimensional vector bundle over a compact K.

No continuous basis

If \mathcal{E} is non-trivial, i.e. not isomorphic to $K \times \mathbb{C}^{m}$, then there is no continuous basis $e_{1}(k), \ldots, e_{m}(k)$ in the fiber.

Remedy:

Continuous frame

Uses of frames

The uses of frames are numerous and I know next to nothing
about them
One unavoidable use: $\mathcal{E} \mapsto K$ - m-dimensional vector bundle over a compact K.

No continuous basis

If \mathcal{E} is non-trivial, i.e. not isomorphic to $K \times \mathbb{C}^{m}$, then there is no continuous basis $e_{1}(k), \ldots, e_{m}(k)$ in the fiber.

Remedy:

Continuous frame

There always exists a continuous Parseval frame $\psi_{j}(k)$ in the fibers of \mathcal{E}.

Uses of frames

The uses of frames are numerous and I know next to nothing
about them
One unavoidable use: $\mathcal{E} \mapsto K$ - m-dimensional vector bundle over a compact K.

No continuous basis

If \mathcal{E} is non-trivial, i.e. not isomorphic to $K \times \mathbb{C}^{m}$, then there is no continuous basis $e_{1}(k), \ldots, e_{m}(k)$ in the fiber.

Remedy:

Continuous frame

There always exists a continuous Parseval frame $\psi_{j}(k)$ in the fibers of \mathcal{E}.

Indeed

Uses of frames

The uses of frames are numerous and I know next to nothing
about them

One unavoidable use: $\mathcal{E} \mapsto K$ - m-dimensional vector bundle over a compact K.

No continuous basis

If \mathcal{E} is non-trivial, i.e. not isomorphic to $K \times \mathbb{C}^{m}$, then there is no continuous basis $e_{1}(k), \ldots, e_{m}(k)$ in the fiber.

Remedy:

Continuous frame

There always exists a continuous Parseval frame $\psi_{j}(k)$ in the fibers of \mathcal{E}.

Indeed, embed \mathcal{E} into a trivial finite-dimensional Hilbert bundle $k \times H$

Uses of frames

The uses of frames are numerous and I know next to nothing
about them

One unavoidable use: $\mathcal{E} \mapsto K$ - m-dimensional vector bundle over a compact K.

No continuous basis

If \mathcal{E} is non-trivial, i.e. not isomorphic to $K \times \mathbb{C}^{m}$, then there is no continuous basis $e_{1}(k), \ldots, e_{m}(k)$ in the fiber.

Remedy:

Continuous frame

There always exists a continuous Parseval frame $\psi_{j}(k)$ in the fibers of \mathcal{E}.

Indeed, embed \mathcal{E} into a trivial finite-dimensional Hilbert bundle $k \times H$ (always possible)

Uses of frames

The uses of frames are numerous and I know next to nothing
about them

One unavoidable use: $\mathcal{E} \mapsto K$ - m-dimensional vector bundle over a compact K.

No continuous basis

If \mathcal{E} is non-trivial, i.e. not isomorphic to $K \times \mathbb{C}^{m}$, then there is no continuous basis $e_{1}(k), \ldots, e_{m}(k)$ in the fiber.

Remedy:

Continuous frame

There always exists a continuous Parseval frame $\psi_{j}(k)$ in the fibers of \mathcal{E}.

Indeed, embed \mathcal{E} into a trivial finite-dimensional Hilbert bundle $k \times H$ (always possible) and project an o.-n. basis into \mathcal{E}.

Plane waves vs δ-functions

Plane waves vs δ-functions

Two common functional "bases" in \mathbb{R}^{n} :

Plane waves vs δ-functions

Two common functional "bases" in \mathbb{R}^{n} : Plane waves

Plane waves vs δ-functions

Two common functional "bases" in \mathbb{R}^{n} : Plane waves $e^{i x \cdot \xi}, \quad \xi \in \mathbb{R}^{n}$.

Plane waves vs δ-functions

Two common functional "bases" in \mathbb{R}^{n} :
Plane waves $e^{i x \cdot \xi}, \quad \xi \in \mathbb{R}^{n}$.
Expansion: Fourier transform (FT)

Plane waves vs δ-functions

Two common functional "bases" in \mathbb{R}^{n} :
Plane waves $e^{i x \cdot \xi}, \quad \xi \in \mathbb{R}^{n}$.
Expansion: Fourier transform (FT)

$$
f \mapsto \int_{\mathbb{R}^{n}} f(x) e^{i x \cdot \xi} d x
$$

Plane waves vs δ-functions

Two common functional "bases" in \mathbb{R}^{n} :
Plane waves $e^{i x \cdot \xi}, \quad \xi \in \mathbb{R}^{n}$.
Expansion: Fourier transform (FT)

$$
f \mapsto \int_{\mathbb{R}^{n}} f(x) e^{i x \cdot \xi} d x
$$

δ-functions

Plane waves vs δ-functions

Two common functional "bases" in \mathbb{R}^{n} :
Plane waves $e^{i x \cdot \xi}, \quad \xi \in \mathbb{R}^{n}$.
Expansion: Fourier transform (FT)

$$
f \mapsto \int_{\mathbb{R}^{n}} f(x) e^{i x \cdot \xi} d x
$$

δ-functions $\delta\left(x-x_{0}\right), \quad x_{0} \in \mathbb{R}^{n}$.

Two common functional "bases" in \mathbb{R}^{n} :
Plane waves $e^{i x \cdot \xi}, \quad \xi \in \mathbb{R}^{n}$.
Expansion: Fourier transform (FT)

$$
f \mapsto \int_{\mathbb{R}^{n}} f(x) e^{i x \cdot \xi} d x
$$

δ-functions $\delta\left(x-x_{0}\right), \quad x_{0} \in \mathbb{R}^{n}$.
Expansion: function values

Two common functional "bases" in \mathbb{R}^{n} :
Plane waves $e^{i x \cdot \xi}, \quad \xi \in \mathbb{R}^{n}$.
Expansion: Fourier transform (FT)

$$
f \mapsto \int_{\mathbb{R}^{n}} f(x) e^{i x \cdot \xi} d x
$$

δ-functions $\delta\left(x-x_{0}\right), \quad x_{0} \in \mathbb{R}^{n}$.
Expansion: function values

$$
f \mapsto f\left(x_{0}\right)
$$

Plane waves $\Leftrightarrow \quad \delta$-functions relation: $e^{i x \cdot \xi_{0}} \stackrel{F T}{\Leftrightarrow} \delta\left(\xi-\xi_{0}\right)$

Periodic PDEs and Floquet-Bloch expansion - a crash course of solid state physics

Periodic PDEs and Floquet-Bloch expansion - a crash course of solid state physics

Periodic Schrödinger operator $L(x, D):=-\Delta+V(x)$

Periodic PDEs and Floquet-Bloch expansion - a crash course of solid state physics

Periodic Schrödinger operator $L(x, D):=-\Delta+V(x)$, V - potential periodic w.r.t. \mathbb{Z}^{n}-shifts.

Periodic PDEs and Floquet-Bloch expansion - a crash course of solid state physics

Periodic Schrödinger operator $L(x, D):=-\Delta+V(x)$, V - potential periodic w.r.t. \mathbb{Z}^{n}-shifts.
(More general operators L and lattices Γ are possible).

Periodic PDEs and Floquet-Bloch expansion - a crash course of solid state physics

Periodic Schrödinger operator $L(x, D):=-\Delta+V(x)$, V - potential periodic w.r.t. \mathbb{Z}^{n}-shifts.
(More general operators L and lattices Γ are possible).
Fundamental domain $W:=[0,1]^{n}$

Periodic PDEs and Floquet-Bloch expansion - a crash course of solid state physics

Periodic Schrödinger operator $L(x, D):=-\Delta+V(x)$, V - potential periodic w.r.t. \mathbb{Z}^{n}-shifts.
(More general operators L and lattices Γ are possible).
Fundamental domain $W:=[0,1]^{n}$ and torus $\mathbb{T}:=\mathbb{R}^{n} / \mathbb{Z}^{n}$.

Periodic PDEs and Floquet-Bloch expansion - a crash course of solid state physics

Periodic Schrödinger operator $L(x, D):=-\Delta+V(x)$, V - potential periodic w.r.t. \mathbb{Z}^{n}-shifts.
(More general operators L and lattices Γ are possible).
Fundamental domain $W:=[0,1]^{n}$ and torus $\mathbb{T}:=\mathbb{R}^{n} / \mathbb{Z}^{n}$.
Dual lattice $\Gamma^{*}:=2 \pi \mathbb{Z}^{n}$.

Periodic PDEs and Floquet-Bloch expansion - a crash course of solid state physics

Periodic Schrödinger operator $L(x, D):=-\Delta+V(x)$, V - potential periodic w.r.t. \mathbb{Z}^{n}-shifts.
(More general operators L and lattices Γ are possible).
Fundamental domain $W:=[0,1]^{n}$ and torus $\mathbb{T}:=\mathbb{R}^{n} / \mathbb{Z}^{n}$.
Dual lattice $\Gamma^{*}:=2 \pi \mathbb{Z}^{n}$.
Its fundamental domain: Brillouin zone $B=[-\pi, \pi]^{n}$.

Periodic PDEs and Floquet-Bloch expansion - a crash course of solid state physics

Periodic Schrödinger operator $L(x, D):=-\Delta+V(x)$, V - potential periodic w.r.t. \mathbb{Z}^{n}-shifts.
(More general operators L and lattices Γ are possible).
Fundamental domain $W:=[0,1]^{n}$ and torus $\mathbb{T}:=\mathbb{R}^{n} / \mathbb{Z}^{n}$.
Dual lattice $\Gamma^{*}:=2 \pi \mathbb{Z}^{n}$.
Its fundamental domain: Brillouin zone $B=[-\pi, \pi]^{n}$.
Dual torus
$\mathbb{T}^{*}:=\mathbb{R}^{n} / 2 \pi \mathbb{Z}^{n} \approx\left\{e^{i k}=z=\left(z_{1}, \ldots, z_{n}\right)| | z_{j} \mid=1\right\} \subset \mathbb{C}^{n}$.

Periodic PDEs and Floquet-Bloch expansion - a crash course of solid state physics

Periodic Schrödinger operator $L(x, D):=-\Delta+V(x)$, V - potential periodic w.r.t. \mathbb{Z}^{n}-shifts.
(More general operators L and lattices Γ are possible).
Fundamental domain $W:=[0,1]^{n}$ and torus $\mathbb{T}:=\mathbb{R}^{n} / \mathbb{Z}^{n}$.
Dual lattice $\Gamma^{*}:=2 \pi \mathbb{Z}^{n}$.
Its fundamental domain: Brillouin zone $B=[-\pi, \pi]^{n}$.
Dual torus
$\mathbb{T}^{*}:=\mathbb{R}^{n} / 2 \pi \mathbb{Z}^{n} \approx\left\{e^{i k}=z=\left(z_{1}, \ldots, z_{n}\right)| | z_{j} \mid=1\right\} \subset \mathbb{C}^{n}$.
Floquet-Bloch direct integral decomposition:

$$
L^{2}\left(\mathbb{R}^{n}\right)=\int_{B}^{\oplus} L^{2}(W) d k=\int_{\mathbb{T}^{*}}^{\oplus} L^{2}(W) d z
$$

Floquet-Bloch theory continued

Floquet-Bloch theory continued

Over $z \in \mathbb{T}^{*}$

Floquet-Bloch theory continued

Over $z \in \mathbb{T}^{*}-z$-automorphic functions $f(x+p)=z^{p} f(x), p \in \mathbb{Z}^{n}$

Floquet-Bloch theory continued

Over $z \in \mathbb{T}^{*}-z$-automorphic functions $f(x+p)=z^{p} f(x), p \in \mathbb{Z}^{n}$ Or Bloch functions $f(x)=e^{i k \cdot x} u(x)$ with periodic u.

Floquet-Bloch theory continued

Over $z \in \mathbb{T}^{*}-z$-automorphic functions $f(x+p)=z^{p} f(x), p \in \mathbb{Z}^{n}$ Or Bloch functions $f(x)=e^{i k \cdot x} u(x)$ with periodic u.

Floquet-Bloch-Gelfand transform

Floquet-Bloch theory continued

Over $z \in \mathbb{T}^{*}-z$-automorphic functions $f(x+p)=z^{p} f(x), p \in \mathbb{Z}^{n}$ Or Bloch functions $f(x)=e^{i k \cdot x} u(x)$ with periodic u.

Floquet-Bloch-Gelfand transform

$$
f(x) \mapsto \widehat{f}(k, x)=\sum_{\gamma \in \Gamma} f(x+\gamma) e^{-i k \cdot \gamma}
$$

Floquet-Bloch theory continued

Over $z \in \mathbb{T}^{*}$ - z-automorphic functions $f(x+p)=z^{p} f(x), p \in \mathbb{Z}^{n}$ Or Bloch functions $f(x)=e^{i k \cdot x} u(x)$ with periodic u.

Floquet-Bloch-Gelfand transform

$$
f(x) \mapsto \widehat{f}(k, x)=\sum_{\gamma \in \Gamma} f(x+\gamma) e^{-i k \cdot \gamma}
$$

Its inversion:

$$
f(x)=\int_{\mathbb{T}^{*}} \widehat{f}(k, x) d k
$$

Floquet-Bloch theory continued

Floquet-Bloch theory continued

Operator $L(z)=L(k)$ in the fiber - the restriction of L.

Operator $L(z)=L(k)$ in the fiber - the restriction of L. Dispersion relation: graph of $\sigma(L(z)), z \in \mathbb{T}$.

Floquet-Bloch theory continued

Operator $L(z)=L(k)$ in the fiber - the restriction of L.
Dispersion relation: graph of $\sigma(L(z)), z \in \mathbb{T}$.

Floquet-Bloch theory continued

Operator $L(z)=L(k)$ in the fiber - the restriction of L.
Dispersion relation: graph of $\sigma(L(z)), z \in \mathbb{T}$.

Spectrum:

Floquet-Bloch theory continued

Operator $L(z)=L(k)$ in the fiber - the restriction of L.
Dispersion relation: graph of $\sigma(L(z)), z \in \mathbb{T}$.

Spectrum:

$$
\sigma(L)=\bigcup_{\mathbb{T}} \sigma(L(z))
$$

Spectral subspaces and spectral bundles corresponding to a band/composite band

Spectral subspaces and spectral bundles corresponding to a band/composite band

$$
I_{j}=\bigcup \lambda_{j}(k) \text { - single band }
$$

Spectral subspaces and spectral bundles corresponding to a band/composite band

$$
I_{j}=\bigcup \lambda_{j}(k) \text { - single band or } S=\bigcup_{i=j}^{j+m-1} l_{i} \text { - composite band }
$$

Spectral subspaces and spectral bundles corresponding to a band/composite band

$$
I_{j}=\bigcup \lambda_{j}(k) \text { - single band or } S=\bigcup_{i=j}^{j+m-1} I_{i} \text { - composite band }
$$

separated by gaps from the rest of the spectrum.

Spectral subspaces and spectral bundles corresponding to a band/composite band

$I_{j}=\bigcup \lambda_{j}(k)$ - single band or $S=\bigcup_{i=j}^{j+m-1} I_{i}$ - composite band
separated by gaps from the rest of the spectrum.
Spectral subspace H_{S} for L in $L^{2}\left(\mathbb{R}^{n}\right)$:

Spectral subspaces and spectral bundles corresponding to a band/composite band
$I_{j}=\bigcup \lambda_{j}(k)$ - single band or $S=\bigcup_{i=j}^{j+m-1} l_{i}$ - composite band
separated by gaps from the rest of the spectrum.
Spectral subspace H_{S} for L in $L^{2}\left(\mathbb{R}^{n}\right)$:

$$
H_{S}=\int_{\mathbb{T}^{*}}^{\oplus} H_{S}(z) d z
$$ band/composite band

$I_{j}=\bigcup \lambda_{j}(k)$ - single band or $S=\bigcup_{i=j}^{j+m-1} l_{i}$ - composite band
separated by gaps from the rest of the spectrum.
Spectral subspace H_{S} for L in $L^{2}\left(\mathbb{R}^{n}\right)$:

$$
H_{S}=\int_{\mathbb{T}^{*}}^{\oplus} H_{S}(z) d z
$$

Spectral projector onto $H_{S}(z)$ in $L^{2}(W)$ is analytic in z.

Spectral subspaces and spectral bundles corresponding to a

 band/composite band$I_{j}=\bigcup \lambda_{j}(k)$ - single band or $S=\bigcup_{i=j}^{j+m-1} I_{i}$ - composite band
separated by gaps from the rest of the spectrum.
Spectral subspace H_{S} for L in $L^{2}\left(\mathbb{R}^{n}\right)$:

$$
H_{S}=\int_{\mathbb{T}^{*}}^{\oplus} H_{S}(z) d z
$$

Spectral projector onto $H_{S}(z)$ in $L^{2}(W)$ is analytic in z. m-dimensional spectral bundle corresponding to S :

Spectral subspaces and spectral bundles corresponding to a

 band/composite band$I_{j}=\bigcup \lambda_{j}(k)$ - single band or $S=\bigcup_{i=j}^{j+m-1} I_{i}$ - composite band
separated by gaps from the rest of the spectrum.
Spectral subspace H_{S} for L in $L^{2}\left(\mathbb{R}^{n}\right)$:

$$
H_{S}=\int_{\mathbb{T}^{*}}^{\oplus} H_{S}(z) d z
$$

Spectral projector onto $H_{S}(z)$ in $L^{2}(W)$ is analytic in z. m-dimensional spectral bundle corresponding to S :

$$
\Lambda_{S}:=\bigcup_{\mathbb{T}^{*}} H_{s}(z)
$$

Bloch eigenfunctions

Bloch eigenfunction $-u_{z}(x)=z^{x} u(x)$ with periodic u.

Bloch eigenfunctions

Bloch eigenfunction $-u_{z}(x)=z^{x} u(x)$ with periodic u. An analog of a plane wave (periodically modulated plane wave).

Bloch eigenfunctions

Bloch eigenfunction $-u_{z}(x)=z^{x} u(x)$ with periodic u. An analog of a plane wave (periodically modulated plane wave). Let $S=I_{j}=\bigcup \lambda_{j}(k)$ - single band

Bloch eigenfunctions

Bloch eigenfunction $-u_{z}(x)=z^{x} u(x)$ with periodic u.
An analog of a plane wave (periodically modulated plane wave).
Let $S=I_{j}=\bigcup \lambda_{j}(k)$ - single band or composite band
$S=\bigcup_{i=j}^{j+m-1} I_{i}$.

Bloch eigenfunctions

Bloch eigenfunction $-u_{z}(x)=z^{x} u(x)$ with periodic u.
An analog of a plane wave (periodically modulated plane wave).
Let $S=I_{j}=\bigcup \lambda_{j}(k)$ - single band or composite band

$$
j+m-1
$$

$S=\bigcup_{i=j} I_{i}$.
We look for m linearly independent nicely (continuously, analytically) dependent on $z \in \mathbb{T}^{*}$ Bloch functions $u_{j, z}$.

Bloch eigenfunctions

Bloch eigenfunction $-u_{z}(x)=z^{x} u(x)$ with periodic u.
An analog of a plane wave (periodically modulated plane wave).
Let $S=I_{j}=\bigcup \lambda_{j}(k)$ - single band or composite band

$$
j+m-1
$$

$S=\bigcup_{i=j} I_{i}$.
We look for m linearly independent nicely (continuously, analytically) dependent on $z \in \mathbb{T}^{*}$ Bloch functions $u_{j, z}$.
Equivalent to the triviality of the spectral bundle Λ_{S}.

Bloch eigenfunctions

Bloch eigenfunction $-u_{z}(x)=z^{x} u(x)$ with periodic u. An analog of a plane wave (periodically modulated plane wave). Let $S=I_{j}=\bigcup \lambda_{j}(k)$ - single band or composite band

$$
j+m-1
$$

$S=\bigcup_{i=j} I_{i}$.
We look for m linearly independent nicely (continuously, analytically) dependent on $z \in \mathbb{T}^{*}$ Bloch functions $u_{j, z}$. Equivalent to the triviality of the spectral bundle Λ_{S}. Triviality generically does not hold (e.g., in the presence of magnetic fields, Thouless '84).

Bloch eigenfunctions

Bloch eigenfunction $-u_{z}(x)=z^{x} u(x)$ with periodic u. An analog of a plane wave (periodically modulated plane wave).
Let $S=I_{j}=\bigcup \lambda_{j}(k)$ - single band or composite band

$$
j+m-1
$$

$S=\bigcup_{i=j} I_{i}$.
We look for m linearly independent nicely (continuously, analytically) dependent on $z \in \mathbb{T}^{*}$ Bloch functions $u_{j, z}$.
Equivalent to the triviality of the spectral bundle Λ_{S}.
Triviality generically does not hold (e.g., in the presence of magnetic fields, Thouless '84).

Sufficient triviality conditions

Bloch eigenfunctions

Bloch eigenfunction $-u_{z}(x)=z^{x} u(x)$ with periodic u.
An analog of a plane wave (periodically modulated plane wave).
Let $S=I_{j}=\bigcup \lambda_{j}(k)$ - single band or composite band

$$
j+m-1
$$

$S=\bigcup_{i=j} I_{i}$.
We look for m linearly independent nicely (continuously, analytically) dependent on $z \in \mathbb{T}^{*}$ Bloch functions $u_{j, z}$.
Equivalent to the triviality of the spectral bundle Λ_{S}.
Triviality generically does not hold (e.g., in the presence of magnetic fields, Thouless '84).

Sufficient triviality conditions

Triviality holds if $n=1$ (W. Kohn '59)

Bloch eigenfunctions

Bloch eigenfunction $-u_{z}(x)=z^{x} u(x)$ with periodic u.
An analog of a plane wave (periodically modulated plane wave).
Let $S=I_{j}=\bigcup \lambda_{j}(k)$ - single band or composite band

$$
j+m-1
$$

$S=\bigcup_{i=j} I_{i}$.
We look for m linearly independent nicely (continuously, analytically) dependent on $z \in \mathbb{T}^{*}$ Bloch functions $u_{j, z}$.
Equivalent to the triviality of the spectral bundle Λ_{S}.
Triviality generically does not hold (e.g., in the presence of magnetic fields, Thouless '84).

Sufficient triviality conditions

Triviality holds if $n=1$ (W. Kohn '59) or if there is time reversal symmetry $z \mapsto z^{-1} \Leftrightarrow k \mapsto-k$

Bloch eigenfunctions

Bloch eigenfunction $-u_{z}(x)=z^{x} u(x)$ with periodic u.
An analog of a plane wave (periodically modulated plane wave).
Let $S=I_{j}=\bigcup \lambda_{j}(k)$ - single band or composite band

$$
j+m-1
$$

$S=\bigcup_{i=j} I_{i}$.
We look for m linearly independent nicely (continuously, analytically) dependent on $z \in \mathbb{T}^{*}$ Bloch functions $u_{j, z}$.
Equivalent to the triviality of the spectral bundle Λ_{S}.
Triviality generically does not hold (e.g., in the presence of magnetic fields, Thouless '84).

Sufficient triviality conditions

Triviality holds if $n=1$ (W. Kohn '59) or if there is time reversal symmetry $z \mapsto z^{-1} \Leftrightarrow k \mapsto-k$ and either $m=1$ (Nenciu '85)

Bloch eigenfunctions

Bloch eigenfunction $-u_{z}(x)=z^{x} u(x)$ with periodic u.
An analog of a plane wave (periodically modulated plane wave).
Let $S=I_{j}=\bigcup \lambda_{j}(k)$ - single band or composite band
$S=\bigcup_{i=j}^{j+m-1} I_{i}$.
We look for m linearly independent nicely (continuously, analytically) dependent on $z \in \mathbb{T}^{*}$ Bloch functions $u_{j, z}$.
Equivalent to the triviality of the spectral bundle Λ_{S}.
Triviality generically does not hold (e.g., in the presence of magnetic fields, Thouless '84).

Sufficient triviality conditions

Triviality holds if $n=1$ (W. Kohn '59) or if there is time reversal symmetry $z \mapsto z^{-1} \Leftrightarrow k \mapsto-k$ and either $m=1$ (Nenciu '85), or $n \leq 3$ (Panati '07).

Bloch eigenfunctions

Bloch eigenfunction $-u_{z}(x)=z^{x} u(x)$ with periodic u. An analog of a plane wave (periodically modulated plane wave).
Let $S=I_{j}=\bigcup \lambda_{j}(k)$ - single band or composite band
$S=\bigcup_{i=j}^{j+m-1} I_{i}$.
We look for m linearly independent nicely (continuously, analytically) dependent on $z \in \mathbb{T}^{*}$ Bloch functions $u_{j, z}$. Equivalent to the triviality of the spectral bundle Λ_{S}. Triviality generically does not hold (e.g., in the presence of magnetic fields, Thouless '84).

Sufficient triviality conditions

Triviality holds if $n=1$ (W. Kohn '59) or if there is time reversal symmetry $z \mapsto z^{-1} \Leftrightarrow k \mapsto-k$ and either $m=1$ (Nenciu '85), or $n \leq 3$ (Panati '07).

Time reversal symmetry occurs if the coefficients of the operator are real (e.o. maonetic fields are_excluded).

Peter Kuchment

Wannier functions

Wannier functions

$u_{z}(x)$ - Bloch eigenfunction corresponding to a band S.

Wannier functions

$u_{z}(x)$ - Bloch eigenfunction corresponding to a band S.

Wannier functions

Wannier functions

$u_{z}(x)$ - Bloch eigenfunction corresponding to a band S.

Wannier functions

- Wannier function $w(x)=\int_{\mathbb{T}^{*}} u_{z}(x) d z$

Wannier functions

$u_{z}(x)$ - Bloch eigenfunction corresponding to a band S.

Wannier functions

- Wannier function $w(x)=\int_{\mathbb{T}^{*}} u_{z}(x) d z$
- Smoothness w.r.t. z of $u_{z} \Leftrightarrow$ decay of $w(x)$.

Wannier functions

$u_{z}(x)$ - Bloch eigenfunction corresponding to a band S.

Wannier functions

- Wannier function $w(x)=\int_{\mathbb{T}^{*}} u_{z}(x) d z$
- Smoothness w.r.t. z of $u_{z} \Leftrightarrow$ decay of $w(x)$.
- Analyticity of u_{z} w.r.t. $z \Leftrightarrow$ exponential decay of w.

Wannier functions

$u_{z}(x)$ - Bloch eigenfunction corresponding to a band S.

Wannier functions

- Wannier function $w(x)=\int_{\mathbb{T}^{*}} u_{z}(x) d z$
- Smoothness w.r.t. z of $u_{z} \Leftrightarrow$ decay of $w(x)$.
- Analyticity of u_{z} w.r.t. $z \Leftrightarrow$ exponential decay of w.
- Shifts $w(x-\gamma), \gamma \in \Gamma$ pairwise orthogonal $\Leftrightarrow\left\|u_{z}(x)\right\|$ is z-independent.

Wannier functions

$u_{z}(x)$ - Bloch eigenfunction corresponding to a band S.

Wannier functions

- Wannier function $w(x)=\int_{\mathbb{T}^{*}} u_{z}(x) d z$
- Smoothness w.r.t. z of $u_{z} \Leftrightarrow$ decay of $w(x)$.
- Analyticity of u_{z} w.r.t. $z \Leftrightarrow$ exponential decay of w.
- Shifts $w(x-\gamma), \gamma \in \Gamma$ pairwise orthogonal $\Leftrightarrow\left\|u_{z}(x)\right\|$ is z-independent.
- Orthonormal analytic basis $u_{j, z}$ in $\Lambda_{S} \Leftrightarrow$ orthonormal basis $w_{j}(x-\gamma)$ of exp. decaying Wannier functions in H_{S}.

Wannier functions

$u_{z}(x)$ - Bloch eigenfunction corresponding to a band S.

Wannier functions

- Wannier function $w(x)=\int_{\mathbb{T}^{*}} u_{z}(x) d z$
- Smoothness w.r.t. z of $u_{z} \Leftrightarrow$ decay of $w(x)$.
- Analyticity of u_{z} w.r.t. $z \Leftrightarrow$ exponential decay of w.
- Shifts $w(x-\gamma), \gamma \in \Gamma$ pairwise orthogonal $\Leftrightarrow\left\|u_{z}(x)\right\|$ is z-independent.
- Orthonormal analytic basis $u_{j, z}$ in $\Lambda_{S} \Leftrightarrow$ orthonormal basis $w_{j}(x-\gamma)$ of exp. decaying Wannier functions in H_{S}.

An example of WF in Barium Titanate

Non-existence of ortho-normal bases of fast decaying Wannier functions

Non-existence of ortho-normal bases of fast decaying Wannier functions

When decaying Wannier function bases exist

- An o.-n. basis in H_{S} of exponentially decaying Wannier functions exists iff the bundle Λ_{S} is trivial.

Non-existence of ortho-normal bases of fast decaying Wannier functions

When decaying Wannier function bases exist

- An o.-n. basis in H_{S} of exponentially decaying Wannier functions exists iff the bundle Λ_{S} is trivial.
- An o.-n. basis in H_{S} of L^{1} Wannier functions exists iff the bundle Λ_{S} is trivial.

Non-existence of ortho-normal bases of fast decaying Wannier functions

When decaying Wannier function bases exist

- An o.-n. basis in H_{S} of exponentially decaying Wannier functions exists iff the bundle Λ_{S} is trivial.
- An o.-n. basis in H_{S} of L^{1} Wannier functions exists iff the bundle Λ_{S} is trivial.

So, what can one do?

Parseval frames of Wannier functions

Parseval frames of Wannier functions

Theorem (P.K.)

Parseval frames of Wannier functions

Theorem (P.K.)
 S - composite band of m single bands, separated by gaps from the rest of the spectrum.

Theorem (P.K.)

S - composite band of m single bands, separated by gaps from the rest of the spectrum.

- There exist $I \geq m$ exponentially decaying Wannier functions $w_{j}(x)$

Parseval frames of Wannier functions

Theorem (P.K.)

S - composite band of m single bands, separated by gaps from the rest of the spectrum.

- There exist $I \geq m$ exponentially decaying Wannier functions $w_{j}(x)$ such that their \mathbb{Z}^{n}-shifts form a Parseval frame in H_{S}.

Theorem (P.K.)

S - composite band of m single bands, separated by gaps from the rest of the spectrum.

- There exist $I \geq m$ exponentially decaying Wannier functions $w_{j}(x)$ such that their \mathbb{Z}^{n}-shifts form a Parseval frame in H_{S}.
- The number $/$ is the smallest dimension of the fiber of a trivial vector bundle over \mathbb{T}^{*} that contains an isomorphic copy of Λ_{S}. In particular, $I \leq 2^{n} m$.

Parseval frames of Wannier functions

Theorem (P.K.)

S - composite band of m single bands, separated by gaps from the rest of the spectrum.

- There exist $I \geq m$ exponentially decaying Wannier functions $w_{j}(x)$ such that their \mathbb{Z}^{n}-shifts form a Parseval frame in H_{S}.
- The number $/$ is the smallest dimension of the fiber of a trivial vector bundle over \mathbb{T}^{*} that contains an isomorphic copy of Λ_{S}. In particular, $I \leq 2^{n} m$.
- $I=m$ iff Λ_{S} is trivial, in which case there exists an o.-n. basis of exponentially decaying Wannier functions in H_{S}.

Scheme of the proof

Scheme of the proof

- Find an I-dimensional trivial bundle Λ such that $\Lambda \approx \Lambda_{S} \bigoplus \Lambda^{\prime}$.

Scheme of the proof

- Find an I-dimensional trivial bundle Λ such that $\Lambda \approx \Lambda_{S} \bigoplus \Lambda^{\prime}$.
- Embed Λ^{\prime} into $\left(\mathbb{T}^{*} \times L^{2}(W)\right) \backslash \Lambda_{S}$.

Scheme of the proof

- Find an I-dimensional trivial bundle Λ such that $\Lambda \approx \Lambda_{S} \bigoplus \Lambda^{\prime}$.
- Embed Λ^{\prime} into $\left(\mathbb{T}^{*} \times L^{2}(W)\right) \backslash \Lambda_{S}$.
- Find an analytic basis $\left\{e_{j}\right\}$ of $\Lambda_{S} \bigoplus \Lambda^{\prime} \subset \mathbb{T}^{*} \times L^{2}(W)$ that is o.-n. over \mathbb{T}^{*}.

Scheme of the proof

- Find an I-dimensional trivial bundle Λ such that $\Lambda \approx \Lambda_{S} \bigoplus \Lambda^{\prime}$.
- Embed Λ^{\prime} into $\left(\mathbb{T}^{*} \times L^{2}(W)\right) \backslash \Lambda_{S}$.
- Find an analytic basis $\left\{e_{j}\right\}$ of $\Lambda_{S} \bigoplus \Lambda^{\prime} \subset \mathbb{T}^{*} \times L^{2}(W)$ that is o.-n. over \mathbb{T}^{*}.
- Apply to $\left\{e_{j}\right\}$ an analytic projector $P(z)$ onto Λ_{S} orthogonal over \mathbb{T}^{*} to get the Wannier functions $\left\{w_{j}\right\}$.

A counterexample to Kadison-Singer (KSC) conjecture?

A counterexample to Kadison-Singer (KSC) conjecture?

Kadison-Singer Problem: Does every pure state on the (abelian) von Neumann algebra D of bounded diagonal operators on I_{2} have a unique extension to a (pure) state on the von Neumann algebra $B\left(l_{2}\right)$ of all bounded linear operators on the Hilbert space I_{2} ?

A counterexample to Kadison-Singer (KSC) conjecture?

Kadison-Singer Problem: Does every pure state on the (abelian) von Neumann algebra D of bounded diagonal operators on I_{2} have a unique extension to a (pure) state on the von Neumann algebra $B\left(l_{2}\right)$ of all bounded linear operators on the Hilbert space I_{2} ? KSC is known to be equivalent to

A counterexample to Kadison-Singer (KSC) conjecture?

Kadison-Singer Problem: Does every pure state on the (abelian) von Neumann algebra D of bounded diagonal operators on I_{2} have a unique extension to a (pure) state on the von Neumann algebra $B\left(l_{2}\right)$ of all bounded linear operators on the Hilbert space I_{2} ? KSC is known to be equivalent to
Feichtinger Conjecture (FC): Every bounded frame (or equivalently, every unit norm frame) is a finite union of Riesz basic sequences.

A counterexample to Kadison-Singer (KSC) conjecture?

Kadison-Singer Problem: Does every pure state on the (abelian) von Neumann algebra D of bounded diagonal operators on l_{2} have a unique extension to a (pure) state on the von Neumann algebra $B\left(l_{2}\right)$ of all bounded linear operators on the Hilbert space I_{2} ? KSC is known to be equivalent to
Feichtinger Conjecture (FC): Every bounded frame (or equivalently, every unit norm frame) is a finite union of Riesz basic sequences.
Q.: Do frames of this kind in the spaces of L^{2}-sections of non-trivial vector bundles over tori provide counterexamples to Kadison-Singer conjecture?

A counterexample to Kadison-Singer (KSC) conjecture?

Kadison-Singer Problem: Does every pure state on the (abelian) von Neumann algebra D of bounded diagonal operators on l_{2} have a unique extension to a (pure) state on the von Neumann algebra $B\left(l_{2}\right)$ of all bounded linear operators on the Hilbert space I_{2} ? KSC is known to be equivalent to
Feichtinger Conjecture (FC): Every bounded frame (or equivalently, every unit norm frame) is a finite union of Riesz basic sequences.
Q.: Do frames of this kind in the spaces of L^{2}-sections of non-trivial vector bundles over tori provide counterexamples to Kadison-Singer conjecture?
A: ???

A counterexample to Kadison-Singer (KSC) conjecture?

Kadison-Singer Problem: Does every pure state on the (abelian) von Neumann algebra D of bounded diagonal operators on l_{2} have a unique extension to a (pure) state on the von Neumann algebra $B\left(l_{2}\right)$ of all bounded linear operators on the Hilbert space I_{2} ? KSC is known to be equivalent to
Feichtinger Conjecture (FC): Every bounded frame (or equivalently, every unit norm frame) is a finite union of Riesz basic sequences.
Q.: Do frames of this kind in the spaces of L^{2}-sections of non-trivial vector bundles over tori provide counterexamples to Kadison-Singer conjecture?
A: ???
THANK YOU

