
Parseval frames of exponentially decaying Wannier
functions

Peter Kuchment

Supported by NSF
“Tight frames of exponentially decaying Wannier functions”

J. Phys. A: Math. Theor. 42 (2009), 025203
International Conference on Spectral Geometry

July 19-23, 2010 Dartmouth College

Peter Kuchment Parseval frames of exponentially decaying Wannier functions



Parseval frames

H - Hilbert space, ψj - sequence of vectors.

Definition

{ψj} - Parseval frame, if for any f ∈ H

‖f ‖2 =
∑

j

|(f , ψj)|2

Theorem (D. Larson)

There exists a larger Hilbert space H1 and its ortho-normal basis
{ej}s.t.

ψj = P⊥H ej

P⊥H : H1 7→ H - orthogonal projector. (Converse statement clearly
also holds.)
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Uses of frames

The uses of frames are numerous

and I know next to nothing

about them
One unavoidable use: E 7→ K - m-dimensional vector bundle over a
compact K .

No continuous basis

If E is non-trivial, i.e. not isomorphic to K × Cm, then there is no
continuous basis e1(k), . . . , em(k) in the fiber.

Remedy:

Continuous frame

There always exists a continuous Parseval frame ψj(k) in the fibers
of E .

Indeed, embed E into a trivial finite-dimensional Hilbert bundle
k × H (always possible) and project an o.-n. basis into E .
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Plane waves vs δ-functions

Two common functional “bases” in Rn:
Plane waves e ix ·ξ, ξ ∈ Rn.
Expansion: Fourier transform (FT)

f 7→
∫

Rn

f (x)e ix ·ξdx

δ-functions δ(x − x0), x0 ∈ Rn.
Expansion: function values

f 7→ f (x0)

Plane waves ⇔ δ-functions relation: e ix ·ξ0
FT⇔ δ(ξ − ξ0)
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Periodic PDEs and Floquet-Bloch expansion - a crash
course of solid state physics

Periodic Schrödinger operator L(x ,D) := −∆ + V (x),
V - potential periodic w.r.t. Zn-shifts.
(More general operators L and lattices Γ are possible).
Fundamental domain W := [0, 1]n and torus T := Rn/Zn.
Dual lattice Γ∗ := 2πZn.
Its fundamental domain: Brillouin zone B = [−π, π]n.
Dual torus
T∗ := Rn/2πZn ≈ {e ik = z = (z1, . . . , zn) | |zj | = 1} ⊂ Cn.
Floquet-Bloch direct integral decomposition:

L2(Rn) =

⊕∫
B

L2(W )dk =

⊕∫
T∗

L2(W )dz .
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Floquet-Bloch theory continued

Over z ∈ T∗ – z-automorphic functions f (x + p) = zpf (x), p ∈ Zn

Or Bloch functions f (x) = e ik·xu(x) with periodic u.

Floquet-Bloch-Gelfand transform

f (x) 7→ f̂ (k , x) =
∑
γ∈Γ

f (x + γ)e−ik·γ

Its inversion:

f (x) =

∫
T∗

f̂ (k , x)dk.
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Floquet-Bloch theory continued

Operator L(z) = L(k) in the fiber – the restriction of L.
Dispersion relation: graph of σ(L(z)), z ∈ T.

Spectrum:

σ(L) =
⋃
T
σ(L(z))
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Spectral subspaces and spectral bundles corresponding to a
band/composite band

Ij =
⋃
λj(k) - single band or S =

j+m−1⋃
i=j

Ii - composite band

separated by gaps from the rest of the spectrum.
Spectral subspace HS for L in L2(Rn):

HS =

⊕∫
T∗

HS(z)dz

Spectral projector onto HS(z) in L2(W ) is analytic in z .
m-dimensional spectral bundle corresponding to S :

ΛS :=
⋃
T∗

HS(z)
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Bloch eigenfunctions

Bloch eigenfunction – uz(x) = zxu(x) with periodic u.

An analog of a plane wave (periodically modulated plane wave).
Let S = Ij =

⋃
λj(k) - single band or composite band

S =
j+m−1⋃

i=j
Ii .

We look for m linearly independent nicely (continuously,
analytically) dependent on z ∈ T∗ Bloch functions uj ,z .
Equivalent to the triviality of the spectral bundle ΛS .
Triviality generically does not hold (e.g., in the presence of
magnetic fields, Thouless ’84).

Sufficient triviality conditions

Triviality holds if n = 1 (W. Kohn ’59) or if there is time reversal
symmetry z 7→ z−1 ⇔ k 7→ −k and either m = 1 (Nenciu ’85), or
n ≤ 3 (Panati ’07).

Time reversal symmetry occurs if the coefficients of the operator
are real (e.g., magnetic fields are excluded).
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Wannier functions

uz(x) – Bloch eigenfunction corresponding to a band S .

Wannier functions

Wannier function w(x) =
∫
T∗

uz(x)dz

Smoothness w.r.t. z of uz ⇔ decay of w(x).

Analyticity of uz w.r.t. z ⇔ exponential decay of w .

Shifts w(x − γ), γ ∈ Γ pairwise orthogonal ⇔ ‖uz(x)‖ is
z-independent.

Orthonormal analytic basis uj ,z in ΛS ⇔ orthonormal basis
wj(x − γ) of exp. decaying Wannier functions in HS .
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Non-existence of ortho-normal bases of fast decaying
Wannier functions

When decaying Wannier function bases exist

An o.-n. basis in HS of exponentially decaying Wannier
functions exists iff the bundle ΛS is trivial.

An o.-n. basis in HS of L1 Wannier functions exists iff the
bundle ΛS is trivial.

So, what can one do?
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Parseval frames of Wannier functions

Theorem (P.K.)

S - composite band of m single bands, separated by gaps from the
rest of the spectrum.

There exist l ≥ m exponentially decaying Wannier functions
wj(x) such that their Zn-shifts form a Parseval frame in HS .

The number l is the smallest dimension of the fiber of a trivial
vector bundle over T∗ that contains an isomorphic copy of ΛS .
In particular, l ≤ 2nm.

l = m iff ΛS is trivial, in which case there exists an o.-n. basis
of exponentially decaying Wannier functions in HS .
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Scheme of the proof

Find an l-dimensional trivial bundle Λ such that Λ ≈ ΛS
⊕

Λ′.

Embed Λ′ into
(
T∗ × L2(W )

)
\ ΛS .

Find an analytic basis {ej} of ΛS
⊕

Λ′ ⊂ T∗ × L2(W ) that is
o.-n. over T∗.
Apply to {ej} an analytic projector P(z) onto ΛS orthogonal
over T∗ to get the Wannier functions {wj}.
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A counterexample to Kadison-Singer (KSC) conjecture?

Kadison-Singer Problem: Does every pure state on the (abelian)
von Neumann algebra D of bounded diagonal operators on l2 have
a unique extension to a (pure) state on the von Neumann algebra
B(l2) of all bounded linear operators on the Hilbert space l2?
KSC is known to be equivalent to
Feichtinger Conjecture (FC): Every bounded frame (or
equivalently, every unit norm frame) is a finite union of Riesz basic
sequences.
Q.: Do frames of this kind in the spaces of L2-sections of
non-trivial vector bundles over tori provide counterexamples to
Kadison-Singer conjecture?
A: ???

THANK YOU
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