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Abstract

This thesis concerns the enumeration of pattern-avoiding permutations with respect to
certain statistics.

Our first result is that the joint distribution of the pair of statistics ‘number of fixed
points’ and ‘number of excedances’ is the same in 321-avoiding as in 132-avoiding permuta-
tions. This generalizes a recent result of Robertson, Saracino and Zeilberger, for which we
also give another, more direct proof. The key ideas are to introduce a new class of statis-
tics on Dyck paths, based on what we call a tunnel, and to use a new technique involving
diagonals of non-rational generating functions.

Next we present a new statistic-preserving family of bijections from the set of Dyck paths
to itself. They map statistics that appear in the study of pattern-avoiding permutations
into classical statistics on Dyck paths, whose distribution is easy to obtain. In particular,
this gives a simple bijective proof of the equidistribution of fixed points in the above two
sets of restricted permutations.

Then we introduce a bijection between 321- and 132-avoiding permutations that pre-
serves the number of fixed points and the number of excedances. A part of our bijection is
based on the Robinson-Schensted-Knuth correspondence. We also show that our bijection
preserves additional parameters.

Next, motivated by these results, we study the distribution of fixed points and ex-
cedances in permutations avoiding subsets of patterns of length 3. We solve all the cases of
simultaneous avoidance of more than one pattern, giving generating functions which enu-
merate them. Some cases are generalized to patterns of arbitrary length. For avoidance of
one single pattern we give partial results. We also describe the distribution of these statis-
tics in involutions avoiding any subset of patterns of length 3. The main technique consists
in using bijections between pattern-avoiding permutations and certain kinds of Dyck paths,
in such a way that the statistics in permutations that we consider correspond to statistics
on Dyck paths which are easier to enumerate.

Finally, we study another kind of restricted permutations, counted by the Motzkin num-
bers. By constructing a bijection into Motzkin paths, we enumerate them with respect to
some parameters, including the length of the longest increasing and decreasing subsequences
and the number of ascents.

Thesis Supervisor: Richard P. Stanley
Title: Norman Levinson Professor of Applied Mathematics
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Ehrenborg, Ira Gessel, Olivier Guibert, David Jackson, Sergey Kitaev, Danny Kleitman,
Rom Pinchasi, Alex Postnikov, Astrid Reifegerste and Douglas Rogers. Outside of MIT, I
am very grateful to Marc Noy for previous collaboration, and for following my work and
giving me priceless advice in my frequent visits to Barcelona. He awakened my interest
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am indebted to Jan and Radoš for being such supportive friends, with whom one can talk
about everything. From Federico I learned how to enjoy being a graduate student. I owe to
Mark having given me the encouragement I needed to come to MIT, as well as other good
advice. Peter has been much more than a “cofactor”. Fumei has made the office more lively.
Anna has helped me keep things in perspective, and has made me feel closer to UPC. My
stay at MIT has been a great experience also thanks to Etienne, Carly, Bridget, Lauren,
Cilanne, Thomas, Ed and Jason, and outside the math department, to Pinar, Hazhir, Parisa,
Charlotte, Samantha, Kalina, Martin, Vı́ctor, Rafal, Felipe, Cornelius, José Manuel, Mika,
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Introduction

The subject of pattern-avoiding permutations, also called restricted permutations, has blos-
somed in the past decade. A number of enumerative results have been proved, new bijec-
tions found, and connections to other fields established. A recent breakthrough [63] (see
also [50, 2, 14, 3]) has been the proof of the so-called Stanley-Wilf conjecture, which gives
an exponential upper bound on the number of permutations avoiding any given pattern.

However, the study of statistics on restricted permutations started developing very re-
cently, and the interest in this topic is currently growing. On the one hand, the concept of
pattern avoidance concerns permutations regarded as words π = π1π2 · · · πn. On the other
hand, concepts such as fixed points or excedances arise when we look at permutations as
bijections π : {1, 2, . . . , n} −→ {1, 2, . . . , n}. It was not until recently that these two kinds
of concepts were studied together.

An unexpected recent result of Robertson, Saracino and Zeilberger [73] gives a new
and exciting extension to the classical result that the number of 321-avoiding permutations
equals the number of 132-avoiding permutations. They show that one can refine this re-
sult by taking into account the number of fixed points in a permutation. Their proof is
nontrivial and technically involved. A large part of the work in the present thesis is moti-
vated by this result. A natural question that arises is whether the fact that the number of
fixed points has the same distribution in both 321-avoiding and 132-avoiding permutations
can be generalized to other statistics and to other patterns. In particular, this gives more
interest to the problem of studying the distribution of statistics on pattern-avoiding permu-
tations. Another natural question to consider is whether a bijection between 321-avoiding
permutations and 132-avoiding permutations that preserves the number of fixed points can
be described. It is somewhat surprising that, before the work on this thesis [27, 29, 32],
none of the several known bijections between these two sets of permutations preserved the
number of fixed points.

In Chapter 2 we prove a further refinement of the result just mentioned, namely that it
still holds when we fix not only the number of fixed points but also the number of excedances.
We introduce bijections between pattern-avoiding permutations and Dyck paths, that will
play an important role throughout the thesis. They are presented in a graphical way which
makes it easier to study their properties. After reducing the problem to the enumeration of
Dyck paths with respect to certain statistics, the rest of the proof is based on manipulations
of generating functions with additional variables.

A combinatorial proof of the original refinement that only takes into account fixed points
is given in Chapter 3. This is the simplest known bijection between 321- and 132-avoiding
permutations that preserves the number of fixed points. The main ingredient is a new
unusual bijection from the set of Dyck paths to itself. We also present a generalization of it,
which gives additional correspondences of statistics. This bijection has also applications to
the enumeration of Dyck paths and restricted permutations with respect to several statistics.

13



We end the chapter by giving some new interpretations of the Catalan numbers.
In Chapter 4 we present a bijection between 321- and 132-avoiding permutations that

preserves both the number of fixed points and the number of excedances, thus giving a
combinatorial proof of the main result of Chapter 2. Our bijection is a composition of two
bijections into Dyck paths, and the result follows from a new analysis of these bijections.
The Robinson-Schensted-Knuth correspondence is a part of one of them, and from it stems
the difficulty of the analysis. We also show that our bijection preserves additional statistics,
which extends the previous results. Then our bijections are applied to refined restricted
involutions.

In Chapter 5 we systematically enumerate permutations avoiding any subset of patterns
of length 3 with respect to the number of fixed points and the number of excedances [28].
By means of the bijections between restricted permutations and Dyck paths described in
previous chapters, additional restrictions on permutations correspond to certain conditions
on the paths, and thus the problem reduces to enumerating such paths with respect to the
statistics that fixed points and excedances are mapped to by these bijections.

First we consider permutations avoiding a single pattern. For the pattern 123 we give
partial results, and we use them to prove a recent conjecture of Bóna and Guibert. For
the other patterns we give the generating functions with variables marking the number of
fixed points and the number of excedances, and in some cases we study other statistics
as well. In one case the generating function is expressed as a continued fraction. For
permutations avoiding simultaneously two or more patterns of length 3 we present all the
corresponding generating functions for these two statistics, which are rational and have
relatively simple expressions. In some cases we can generalize the results to avoidance of
subsets of patterns where one of them has arbitrary length. Then we enumerate involutions
avoiding any subset of patterns of length 3 with respect to the same two statistics. Lastly,
the generating functions obtained in this chapter allow us to easily compute the expected
number of fixed points in permutations avoiding patterns of length 3. We conclude with
some remarks regarding possible extensions of our work.

Finally, in Chapter 6 we consider a different class of restricted permutations enumerated
by the Motzkin numbers [30]. The definition of this class involves the notion of generalized
patterns, which was introduced by Babson and Steingŕımsson [4]. We give a bijection from
this set of permutations to Motzkin paths, which maps permutation statistics such as the
length of the longest increasing and decreasing subsequences, and the number of descents,
to certain statistics on Motzkin paths that are easy to deal with. Similarly, by considering a
new statistic on Motzkin paths we are able to enumerate another related class of restricted
permutations with respect to the number of fixed points.

14



Chapter 1

Definitions and preliminaries

1.1 Permutations

1.1.1 Pattern avoidance

We will denote by [n] the set {1, 2, . . . , n}, and by Sn the symmetric group on [n]. A
permutation π ∈ Sn will be written in one-line notation as π = π1π2 · · · πn. We will write
the cardinality of a set A as |A|. In this section we define the classical notion of pattern
avoidance, which will be used throughout most of this thesis. For a definition of generalized
patterns see Section 6.1.1.

Let n, m be two positive integers with m ≤ n, and let π = π1π2 · · · πn ∈ Sn and
σ = σ1σ2 · · · σm ∈ Sm be two permutations. We say that π contains σ if there exist indices
i1 < i2 < . . . < im such that πi1πi2 · · · πim is in the same relative order as σ1σ2 · · · σm (that
is, for all indices a and b, πia < πib if and only if σa < σb). In that case, πi1πi2 · · · πim is
called an occurrence of σ in π. In this context, σ is also called a pattern.

If π does not contain σ, we say that π avoids σ, or that it is σ-avoiding. For example,
if σ = 132, then π = 24531 contains 132, because the subsequence π1π3π4 = 253 has the
same relative order as 132. However, π = 42351 is 132-avoiding. Denote by Sn(σ) the set
of σ-avoiding permutations in Sn. More generally, for any subset A ⊆ Sn and any pattern
σ, define A(σ) := A ∩ Sn(σ) to be the set of σ-avoiding permutations in A.

It is a natural generalization to consider permutations that avoid several patterns
at the same time. If Σ ⊆ ⋃

k≥1 Sk is any finite set of patterns, denote by Sn(Σ) the
set of permutations in Sn that avoid simultaneously all the patterns in Σ. These are
also called Σ-avoiding permutations. For example, if Σ = {123, 231}, then S4(Σ) =
{1432, 2143, 3214, 4132, 4213, 4312, 4321}.

1.1.2 Permutation statistics

Informally speaking, the notion of permutation can be viewed in two different ways. On one
hand, a permutation can be regarded as a word π = π1π2 · · · πn, namely, as a sequence of
numbers in some given order. From this description arises the concept of pattern avoidance
discussed in the previous subsection. On the other hand, one can regard a permutation
π ∈ Sn as a bijection π : [n] −→ [n]. Some concepts such as fixed points or excedances arise
when we consider a permutation as a bijection. This double nature of permutations makes
it interesting to study some of the following statistics together with the notion of pattern
avoidance. There is a lot of mathematical literature devoted to permutation statistics (see

15



for example [26, 35, 37, 39]).
We say that i is a fixed point of a permutation π if πi = i. We say that i is an excedance

of π if πi > i. Denote by fp(π) and exc(π) the number of fixed points and the number of
excedances of π respectively. The distribution of the statistics fp and exc in pattern-avoiding
permutations will be one of the main topics of this thesis. An element of a permutation
that is neither a fixed point nor an excedance, namely an i for which πi < i, will be called
a deficiency. Permutations without fixed points are also called derangements.

We say that i ≤ n − 1 is a descent of π ∈ Sn if πi > πi+1. Similarly, i ≤ n − 1 is an
ascent of π ∈ Sn if πi < πi+1. Denote by des(π) and asc(π) the number of descents and
the number of ascents of π respectively. A right-to-left minimum of π is an element πi such
that πi < πj for all j > i.

Let lis(π) denote the length of the longest increasing subsequence of π, i.e., the largest
m for which there exist indices i1 < i2 < · · · < im such that πi1 < πi2 < · · · < πim .
Equivalently, in terms of forbidden patterns, lis(π) is the smallest m such that π avoids
12 · · · (m+ 1). The length of the longest decreasing subsequence is defined analogously, and
it is denoted lds(π). Define the rank of π, denoted rank(π), to be the largest k such that
π(i) > k for all i ≤ k. For example, if π = 63528174, then fp(π) = 1, exc(σ) = 4, des(π) = 4,
lis(π) = 3, lds(π) = 4 and rank(π) = 2.

We say that a permutation π ∈ Sn is an involution if π = π−1. Denote by In the set of
involutions of length n.

1.1.3 Trivial operations

Often it will be convenient to represent a permutation π ∈ Sn by an n × n array with a
cross in each one of the squares (i, πi). We will denote by arr(π) the array corresponding
to π. Figure 1-1 shows arr(63528174).

Figure 1-1: The array of π = 63528174.

The diagonal from the top-left corner to the bottom-right corner of the array will be
referred to as main diagonal, and the diagonal perpendicular to it will be called secondary
diagonal. Note that fixed points of π correspond to crosses on the main diagonal of the
array, and excedances of π are represented by crosses to the right of this diagonal.

Given a permutation π = π1π2 · · · πn, define its reversal πR = πn . . . π2π1 and its com-
plementation π̄ = (n + 1 − π1)(n + 1 − π2) · · · (n + 1 − πn). The array of π̄ is obtained
from the array of π by a flip along a vertical axis, so fixed points (resp. excedances) of π
correspond to crosses on (resp. to the left of) the secondary diagonal of the array of π̄.
Similarly, define π̂ to be the permutation whose array is the one obtained from that of π by
reflection along the secondary diagonal. Note that reflecting the array of π along the main
diagonal we get the array of its inverse π−1. For any set of permutations Σ, let Σ̄ be the
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set obtained by reversing each of the elements of Σ. Define Σ̂ and Σ−1 analogously. The
following trivial lemma will be used in Chapter 5.

Lemma 1.1 Let Σ ⊂ ⋃
k≥1 Sk be a finite set of patterns, and let π ∈ Sn. We have that

(1) π ∈ Sn(Σ) ⇐⇒ π̄ ∈ Sn(Σ̄) ⇐⇒ π̂ ∈ Sn(Σ̂) ⇐⇒ π−1 ∈ Sn(Σ−1),

(2) fp(π̂) = fp(π), exc(π̂) = exc(π),

(3) fp(π−1) = fp(π), exc(π−1) = n− fp(π)− exc(π).

In this thesis we will often be interested in the distribution of the statistics fp and exc
among the permutations avoiding a certain pattern or set of patterns. Given any such set
Σ, we define the generating function FΣ as

FΣ(x, q, z) :=
∑

n≥0

∑

π∈Sn(Σ)

xfp(π)qexc(π)zn. (1.1)

If Σ = {σ}, we will write Fσ instead of F{σ}. The following lemma restates the previous
one in terms of generating functions.

Lemma 1.2 Let Σ be any set of permutations. We have

(1) FbΣ
(x, q, z) = FΣ(x, q, z),

(2) FΣ−1(x, q, z) = FΣ(x/q, 1/q, qz).

Proof. To prove (1), consider the bijection between Sn(Σ) and Sn(Σ̂) that maps π to π̂.
The equation follows from parts (1) and (2) of Lemma 1.1.

Equation (2) follows similarly from parts (1) and (3) of the previous lemma, noticing
that

∑

n≥0

∑

π∈Sn(Σ−1)

xfp(π)qexc(π)zn =
∑

n≥0

∑

π∈Sn(Σ)

xfp(π−1)qexc(π−1)zn

=
∑

n≥0

∑

π∈Sn(Σ)

xfp(π)qn−fp(π)−exc(π)zn =
∑

n≥0

∑

π∈Sn(Σ)

(
x

q

)fp(π) (
1

q

)exc(π)

(qz)n.

�

If for two sets of patterns Σ1 and Σ2 we have that FΣ1(x, q, z) = FΣ2(x, q, z) (i.e., the
joint distribution of fixed points and excedances is the same in Σ1-avoiding as in Σ2-avoiding
permutations), we will write Σ1 ≈ Σ2. If we have that FΣ1(x, q, z) = FΣ2(

x
q ,

1
q , qz), we will

write Σ1 ∼ Σ2. In this notation, Lemma 1.2 says that Σ̂ ≈ Σ and Σ−1 ∼ Σ.

1.2 Dyck paths

A Dyck path of length 2n is a lattice path in Z
2 between (0, 0) and (2n, 0) consisting of

up-steps (1, 1) and down-steps (1,−1) which never goes below the x-axis. We shall denote
by Dn the set of Dyck paths of length 2n, and by D =

⋃
n≥0Dn the class of all Dyck paths.

It is well-known that |Dn| = Cn = 1
n+1

(
2n
n

)
, the n-th Catalan number. If D ∈ Dn, we will
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write |D| = n to indicate the semilength of D. The generating function that enumerates

Dyck paths according to their semilength is
∑

D∈D z
|D| =

∑
n≥0 Cnz

n = 1−
√

1−4z
2z , which

we denote by C(z).

Sometimes it will be convenient to encode each up-step by a letter u and each down-
step by d, obtaining an encoding of the Dyck path as a Dyck word. We will use D to refer
indistinctively to the Dyck path D or to the Dyck word associated to it. In particular,
given D1 ∈ Dn1 , D2 ∈ Dn2 , we will write D1D2 to denote the concatenation of D1 and D2

(note that, as seen in terms of lattice paths, D2 has to be shifted 2n1 units to the right). If
A is any sequence of up and down steps, length(A) will denote the number of steps in the
sequence. For example, if A ∈ Dn, then length(A) = 2n.

1.2.1 Standard statistics

A peak of a Dyck path D ∈ D is an up-step followed by a down-step (i.e., an occurrence1

of ud in the associated Dyck word). The coordinates of a peak are given by the point at
the top of it. A hill is a peak at height 1, where the height is the y-coordinate of the peak.
Denote by h(D) the number of hills of D, and by p2(D) the number of peaks of D of height
at least 2. A valley of D is a down-step followed by an up-step (i.e., an occurrence of du
in the associated Dyck word). Denote by va(D) the number of valleys of D. Clearly, both
p2(D) + h(D) and va(D) + 1 equal the total number of peaks of D. A double rise of D is
an up-step followed by another up-step (i.e., an occurrence uu in the Dyck word). Denote
by dr(D) the number of double rises of D.

An odd rise is an up-step in an odd position when the steps are numbered from left to
right starting with 1 (or, equivalently, it is an up-step at odd level when the steps leaving
the x-axis are considered to be at level 1). Denote by or(D) the number of odd rises of D.
Even rises and er(D) are defined analogously. The x-coordinate of an odd or even rise is
given by the rightmost end of the corresponding up-step.

A return of a Dyck path is a down-step landing on the x-axis. An arch is a part of the
path joining two consecutive points on the x-axis. Clearly for any D ∈ Dn the number of
returns equals the number of arches. Denote it by ret(D). Define the x-coordinate of an
arch as the x-coordinate of its leftmost point.

The height of D is the y-coordinate of the highest point of the path. Denote by D≤k

the set of Dyck paths of height at most k. For any D ∈ Dn, define ν(D) to be the height of
the middle point of D, that is, the y-coordinate of the intersection of the vertical line x = n
with the path. For example, if D ∈ D8 is the path in Figure 1-2, then h(D) = 1, p2(D) = 4,
va(D) = 4, dr(D) = 3, or(D) = 5, er(D) = 3, ret(D) = 2, ν(D) = 2, and its height is 3.

Define a pyramid to be a Dyck path that has only one peak, that is, a path of the form
ukdk with k ≥ 1 (here the exponent indicates the number of times the letter is repeated).
For a Dyck path D ∈ Dn, denote by D∗ the path obtained by reflection of D from the
vertical line x = n. We say that D is symmetric if D = D∗. Denote by Ds ⊂ D the subclass
of symmetric Dyck paths.

1.2.2 Tunnels

Here we introduce a new class of statistics on Dyck paths that will become very useful for
the study of statistics on permutations avoiding patterns of length 3. They are based on

1In the context of Dyck words, the letters have to appear in consecutive positions to form an occurrence

of a subword.
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the notion of tunnel of a Dyck path.
For any D ∈ D, define a tunnel of D to be a horizontal segment between two lattice

points ofD that intersectsD only in these two points, and stays always belowD. Tunnels are
in obvious one-to-one correspondence with decompositions of the Dyck word D = AuBdC,
where B ∈ D (no restrictions on A and C). In the decomposition, the tunnel is the segment
that goes from the beginning of the u to the end of the d. If D ∈ Dn, then D has exactly
n tunnels, since such a decomposition can be given for each up-step u of D. The length of
a tunnel is just its length as a segment, and the height is its y-coordinate. It will be useful
to define the depth of a tunnel T as depth(T ) := 1

2 length(T )− height(T )− 1.
A tunnel of D ∈ Dn is called a centered tunnel if the x-coordinate of its midpoint (as a

segment) is n, that is, the tunnel is centered with respect to the vertical line through the
middle of D. In terms of the decomposition of the Dyck word D = AuBdC, this is equiva-
lent to A and C having the same length, namely, length(A) = length(C). Alternatively, this
can be taken as a definition of centered tunnel. Denote by ct(D) the number of centered
tunnels of D.

A tunnel of D ∈ Dn is called a right tunnel if the x-coordinate of its midpoint is
strictly greater than n, that is, the midpoint of the tunnel is to the right of the vertical line
through the middle of D. In terms of the decomposition D = AuBdC, this is equivalent
to saying that length(A) > length(C). Denote by rt(D) the number of right tunnels of D.
In Figure 1-2, there is one centered tunnel drawn with a solid line, and four right tunnels
drawn with dotted lines. Similarly, a tunnel is called a left tunnel if the x-coordinate of its
midpoint is strictly less than n. Denote by lt(D) the number of left tunnels of D. Clearly,
lt(D) + rt(D) + ct(D) = n for any D ∈ Dn.

Figure 1-2: One centered and four right tunnels.

We will distinguish between right tunnels of D ∈ Dn that are entirely contained in the
half plane x ≥ n and those that cross the vertical line x = n. These will be called right-side
tunnels and right-across tunnels, respectively. In terms of Dyck words, a decomposition
D = AuBdC corresponds to a right-side tunnel if length(A) ≥ n, and to a right-across
tunnel if length(C) < length(A) < n. In Figure 1-2 there are three right-side tunnels and
one right-across tunnel. Left-side tunnels and left-across tunnels are defined analogously.

For any D ∈ D, we define a multitunnel of D to be a horizontal segment between two
lattice points of D such that D never goes below it. In other words, a multitunnel is just
a concatenation of tunnels, so that each tunnel starts at the point where the previous one
ends. Similarly to the case of tunnels, multitunnels are in obvious one-to-one correspondence
with decompositions of the Dyck word D = ABC, where B ∈ D is not empty. In the
decomposition, the multitunnel is the segment that connects the initial and final points of
B.

A multitunnel of D ∈ Dn is called a centered multitunnel if the x-coordinate of its
midpoint (as a segment) is n, that is, the tunnel is centered with respect to the vertical
line through the middle of D. In terms of the decomposition D = ABC, this is equivalent
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to saying that A and C have the same length. Denote by cmt(D) the number of centered
multitunnels of D.

Figure 1-3: Five centered multitunnels, two of which are centered tunnels.

Additional interpretations of centered tunnels

Through the numerous known bijections between Dyck paths and other combinatorial ob-
jects counted by the Catalan numbers, the new statistics that we defined on Dyck paths
give rise to corresponding statistics in other objects. Here we give a couple of examples
that were suggested by Emeric Deutsch.

It is known [86, Exercise 6.19(n)] that the diagrams of n nonintersecting chords joining
2n points on the circumference of a circle are in bijection with Dn. We can draw these
points as the vertices of a regular 2n-gon, and the chords as straight segments, so that one
of the diagrams has n horizontal chords. The bijection to Dyck paths can be described
as follows. Starting counterclockwise from the topmost vertex on the left, for each vertex
draw an up-step in the path if the chord from that vertex is encountered for the first time,
and a down-step otherwise. By means of this bijection, horizontal chords of the diagram
correspond precisely to centered tunnels of the Dyck path (see Figure 1-4).

Figure 1-4: A bijection between nonintersecting chord diagrams and Dyck paths.

More generally, if we number the vertices of the 2n-gon from 1 to 2n in the order in
which they are read by the bijection, then, for 1 ≤ i ≤ n, the chords parallel to the line
between vertices i and i+1 correspond to tunnels of the Dyck path with midpoint at x = i
or at x = n+ i.

Another class of objects in bijection with Dn is the set of plane trees with n+1 vertices.
Consider the bijection described in [86, Exercise 6.19(e)]. Now, given a plane tree on n+ 1
vertices, label the vertices with integers from 0 to n in preorder (depth-first search) from
left to right. Next, label the vertices again from 0 to n, but now in preorder from right to
left. Then, the vertices other than the root for which the two labels coincide correspond to
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centered tunnels in the Dyck path. Besides, right tunnels correspond precisely to vertices
for which the second label is less than the first one.

1.3 Combinatorial classes and generating functions

Here we direct the reader to [34] and [78] for a detailed account on combinatorial classes
and the symbolic method. Let A be a class of unlabelled combinatorial objects and let |α|
be the size of an object α ∈ A. If An denotes the objects in A of size n and an = |An|,
then the ordinary generating function of the class A is

A(z) =
∑

α∈A
z|α| =

∑

n≥0

anz
n.

In our context, the size of a Dyck path is simply its semilength. From now on we will use
the acronym GF as a shorthand for the term generating function.

There is a direct correspondence between set theoretic operations (or “constructions”)
on combinatorial classes and algebraic operations on GFs. Table 1.1 summarizes this cor-
respondence for the operations that are used in this work. There “union” means union
of disjoint copies, “product” is the usual cartesian product, and “sequence” forms an or-
dered sequence in the usual sense. Enumerations according to size and auxiliary parameters

Construction Operation on GFs

Union A = B + C A(z) = B(z) +C(z)
Product A = B × C A(z) = B(z)C(z)
Sequence A = Seq(B) A(z) = 1

1−B(z)

Table 1.1: The basic combinatorial constructions and their translation into GFs.

χ1, χ2, . . . , χr are described by multivariate GFs,

A(u1, u2, . . . , ur, z) =
∑

α∈A
u

χ1(α)
1 u

χ2(α)
2 · · · uχr(α)

r z|α|.

Throughout this thesis the variable z is reserved for marking the length of a permutation
and the semilength of a Dyck path, x is used for marking the number of fixed points of a
permutation and the number of centered tunnels or tunnels of depth 0 of a Dyck path, and
q is the variable that marks the number of excedances of a permutation and the number of
right tunnels or tunnels of negative depth of a Dyck path, unless otherwise stated.

1.3.1 The Lagrange inversion formula

The Lagrange inversion formula (see for example [86, Theorem 5.4.2]) is a useful tool that
provides a way to compute the coefficients of a generating function if it satisfies an equation
of a certain form.

Theorem 1.3 ([86]) Let G(x) ∈ C be a formal power series with G(0) 6= 0, and let f(x)
be defined by f(x) = xG(f(x)). Then, for any k, n ∈ Z,

n[xn]f(x)k = k[xn−k]G(x)n,
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where [zn]A(z) denotes the coefficient of zn in the expansion of A(z).

1.3.2 Chebyshev polynomials

Chebyshev polynomials of the second kind are defined by Ur(cos θ) = sin(r+1)θ
sin θ for r ≥ 0.

It can be checked that Ur(t) is a polynomial of degree r in t with integer coefficients, and
that the following recurrence holds:

{
Ur(t) = 2tUr−1(t)− Ur−2(t) for all r ≥ 2,
U0(t) = 1, U1(t) = 2t.

(1.2)

Chebyshev polynomials were invented for the needs of approximation theory, but are also
widely used in various other branches of mathematics, including algebra, combinatorics, and
number theory. The relation between restricted permutations and Chebyshev polynomials
was discovered for the first time by Chow and West in [19], and later by Mansour and
Vainshtein [59, 60], and Krattenthaler [52].

1.4 Patterns of length 3

For the case of patterns of length 3, it is known [51] that regardless of the pattern σ ∈ S3,
|Sn(σ)| = Cn, the n-th Catalan number. While the equalities |Sn(132)| = |Sn(231)| =
|Sn(312)| = |Sn(213)| and |Sn(321)| = |Sn(123)| are straightforward by reversal and com-
plementation operations, the equality |Sn(321)| = |Sn(132)| is more difficult to establish.
Bijective proofs of this fact are given in [52, 70, 79, 91]. However, none of these bijections
preserves either of the statistics fp or exc.

Patterns σ and σ′ are said to be in the same Wilf-equivalence class if |Sn(σ)| = |Sn(σ′)|
for all n. Partial results on the classification of forbidden patterns can be found in [5, 12,
13, 81, 82, 83].

1.4.1 Equidistribution of fixed points

It was not until recently that the concept of pattern avoidance, which regards a permutation
as a word, was studied together with a statistic arising from viewing a permutation as a
bijection. In the recent paper [73], Robertson, Saracino and Zeilberger consider restricted
permutations with respect to the number of fixed points, obtaining the following refinement
of the fact that |Sn(321)| = |Sn(132)|.

Theorem 1.4 ([73]) The number of 321-avoiding permutations π ∈ Sn with fp(π) = i
equals the number of 132-avoiding permutations π ∈ Sn with fp(π) = i, for any 0 ≤ i ≤ n.

Their proof is nontrivial and technically involved. In the same paper, they study the
distribution of fixed points for all six patterns of length 3.

Two questions arise naturally with this result in sight. The first one is whether there
exists a simple bijection between Sn(321) and Sn(132) that preserves the number of fixed
points. This would give a better understanding of why fixed points are equidistributed in
both sets of pattern-avoiding permutations. There does not seem to be an intuitive reason
why Theorem 1.4 holds, especially since from the definitions fixed points do not seem to be
related to the notion of pattern avoidance. The second question is whether this theorem
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can be generalized to other statistics or to other patterns. These two issues are discussed
in Chapters 2, 3 and 4.
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Chapter 2

Equidistribution of fixed points
and excedances

In this chapter we give a generalization of Theorem 1.4. We show that the joint distribution
of the number of fixed points and the number of excedances is the same in Sn(321) as in
Sn(132). This result is stated in the following theorem.

Theorem 2.1 The number of 321-avoiding permutations π ∈ Sn with fp(π) = i and
exc(π) = j equals the number of 132-avoiding permutations π ∈ Sn with fp(π) = i and
exc(π) = j, for any 0 ≤ i, j ≤ n.

Note that in terms of the generating functions Fσ defined in equation (1.1), this result
can be expressed equivalently as F321(x, q, z) = F132(x, q, z).

The proof that we give in this chapter is analytical. A bijective and more elegant
proof of this result is presented in Chapter 4. However, we find it necessary to discuss
the analytical proof here as well because it is interesting in its own right. One of the key
points in the reasoning is the use of a nonstandard technique in generating functions, which
involves taking the diagonal of a non-rational power series. To the best of our knowledge,
this approach gives the first instance of an application of the computation of diagonals of
non-rational generating functions to solve a combinatorial problem.

The proof presented in this chapter is done in two parts. First, in Section 2.1 we
use a bijection between pattern-avoiding permutations and Dyck paths to obtain the GF
F321(x, q, z) for the number of fixed points and excedances in 321-avoiding permutations.
Then, in Section 2.2, we use another bijection to reduce the analogous problem from 132-
avoiding permutations to a problem of Dyck paths. In this section we also give a proof
Theorem 1.4, which is a weaker version of Theorem 2.1 that only considers the statistic fp. In
Section 2.3 we show that F132(x, q, z) = F321(x, q, z) using the technique of diagonals of GFs
mentioned above. To do this, we introduce an extra variable marking a new parameter in the
GF F132. Then, using combinatorial properties, we deduce an identity that determines this
four-variable GF. Finally, we conjecture an expression for it and check that our expression
satisfies the identity, hence it is the correct GF.

2.1 The bijection ψx

In this section we define a bijection ψx between Sn(321) and Dn, which appeared originally in
[41, pg. 89] in a slightly different form, and later was used by Richard Stanley in connection
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to pattern avoidance. This will allow us to find an expression for the GF

F321(x, q, z) =
∑

n≥0

∑

π∈Sn(321)

xfp(π)qexc(π)zn,

which enumerates 321-avoiding permutations with respect to fixed points and excedances.
We will give three equivalent definitions of the bijection ψx. Let π = π1π2 · · · πn ∈

Sn(321). For i ∈ [n], define ai = max{j : {1, 2, . . . , j} ⊆ {π1, π2, . . . , πi}} (j can be 0,
in which case {1, 2, . . . , j} = ∅). Now build the Dyck path ψx(π) by adjoining, for each
i from 1 to n, one up-step followed by max{ai − πi + 1, 0} down-steps. For example, for
π = 23147586 we get a1 = a2 = 0, a3 = 3, a4 = a5 = 4, a6 = a7 = 5, a8 = 8, and the
corresponding Dyck path is given in Figure 2-1.

Figure 2-1: The Dyck path ψx(23147586).

Here is an alternative way to define this bijection. Let πi1 , πi2 , . . . , πik be the right-to-
left minima of π, from left to right. For example, the right-to-left minima of 23147586 are
1, 4, 5, 6. Then, ψx(π) is precisely the path that starts with i1 up-steps, then has, for each
j from 2 to k, πij − πij−1 down-steps followed by ij − ij−1 up-steps, and finally ends with
n+ 1− πik down-steps.

The third way to define ψx is the easiest one to visualize, and the one that gives us a
better intuition for how the bijection works. Consider the array of crosses arr(π) as defined
in Section 1.1.3. By definition, excedances correspond to crosses strictly to the right of the
main diagonal of the array. It is known (see e.g. [69]) that a permutation is 321-avoiding if
and only if both the subsequence determined by its excedances and the one determined by
the remaining elements are increasing. Therefore, the elements that are not excedances are
precisely the right-to-left minima of π. Consider the path with east and south steps along
the edges of the squares of arr(π) that goes from the upper-left corner to the lower-right
corner of the array, leaving all the crosses to the right and remaining always as close to the
main diagonal as possible. Let U be such path. Then ψx(π) can be obtained from U just
by reading an up-step for every south step of U , and a down-step for every east step of U .
Figure 2-2 shows a picture of this bijection, again for π = 23147586.

Proposition 2.2 The bijection ψx : Sn(321) −→ Dn satisfies

(1) fp(π) = h(ψx(π)),

(2) exc(π) = dr(ψx(π)),

for all π ∈ Sn(321).

Proof. To see this, just observe that fixed points of π correspond to crosses on the main
diagonal of the array, which produce hills in the path. On the other hand, for each cross
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Figure 2-2: The bijection ψx.

corresponding to an excedance, the south step of U on the same row as the cross gives an
up-step in ψx(π) which is followed by another up-step, thus forming a double rise. �

Therefore, counting 321-avoiding permutations according to the number of fixed points
and excedances is equivalent to counting Dyck paths according to the number of hills and
double rises. More precisely,

F321(x, q, z) =
∑

D∈D
xh(D)qdr(D)z|D|.

We can give an equation for F321 using the symbolic method summarized in Section 1.3.
A recursive definition for the class D is given by the fact that every non-empty Dyck
path D can be decomposed in a unique way as D = uAdB, where A,B ∈ D. Clearly
if A is empty, h(D) = h(B) + 1 and dr(D) = dr(B), and otherwise h(D) = h(B) and
dr(D) = dr(A) + dr(B) + 1. Hence, we obtain the following equation for F321:

F321(x, q, z) = 1 + z(x+ q(F321(1, q, z) − 1))F321(x, q, z). (2.1)

Substituting first x = 1, we obtain that F321(1, q, z) =
1+(q−1)z−

√
1−2(1+q)z+(1−q)2z2

2qt . Now,
solving (2.1) for F321(x, q, z) gives

F321(x, q, z) =
2

1 + (1 + q − 2x)z +
√

1− 2(1 + q)z + (1− q)2z2
. (2.2)

To conclude this section, we want to remark that applying this bijection one can also
obtain the GF that enumerates 321-avoiding permutations with respect to fixed points,
excedances and descents. It follows easily from the description of ψx that the number
des(π) of descents of a 321-avoiding permutation π equals the number of occurrences of
uud in the Dyck word of ψx(π). Using the same decomposition as before, we obtain the
following result.

Theorem 2.3

∑

n≥0

∑

π∈Sn(321)

xfp(π)qexc(π)pdes(π)zn

=
2

1 + (1 + q − 2x)z +
√

1− 2(1 + q)z + ((1 + q)2 − 4qp)z2
.
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2.2 The bijection ϕ

In this section we define a bijection ϕ between Sn(132) and Dn. This bijection will be used
extensively throughout this work, because of its convenient properties.

Given any permutation π ∈ Sn, consider its array arr(π) as defined in Section 1.1.3. The
diagram of π can be obtained from it as follows. For each cross, shade the cell containing it
and the squares that are due south and due east of it. The diagram is defined as the region
that is left unshaded. It is shown in [69] that this gives a bijection between Sn(132) and
Young diagrams that fit in the shape (n−1, n−2, . . . , 1). Consider now the path determined
by the border of the diagram of π, that is, the path with north and east steps that goes from
the lower-left corner to the upper-right corner of the array, leaving all the crosses to the
right, and staying always as close to the diagonal connecting these two corners as possible.
Define ϕ(π) to be the Dyck path obtained from this path by reading an up-step for each
north step and a down-step for each east step (that is, we rotate it 45◦). Since the path in
the array does not go below the diagonal, ϕ(π) does not go below the x-axis. Figure 2-3
shows an example when π = 67435281.
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Figure 2-3: The bijection ϕ.

The bijection ϕ is essentially the same bijection between Sn(132) and Dn given by
Krattenthaler [52] (see also [36]), up to reflection of the path from a vertical line.

Next we define the inverse map ϕ−1 : Dn −→ Sn(132). Given a Dyck path D ∈ Dn, the
first step needed to reverse the above procedure is to transform D into a path U from the
lower-left corner to the upper-right corner of an n× n array, not going below the diagonal
connecting these two corners. Then, the squares to the left of this path form a Young
diagram contained in the shape (n − 1, n − 2, . . . , 1), and we can shade all the remaining
squares. From this diagram, the permutation π ∈ Sn(132) can be recovered as follows: row
by row, put a cross in the leftmost shaded square such that there is exactly one cross in
each column. Start from the top and continue downward until all crosses are placed.

The bijection ϕ is useful here because it transforms fixed points and excedances of the
permutation into centered tunnels and right tunnels of the Dyck path respectively. These
two properties, along with a few more that will be used in upcoming chapters, are shown
in the next proposition. Denote by nlis(π) the number of increasing subsequences of π of
length lis(π).

Proposition 2.4 The bijection ϕ : Sn(132) −→ Dn satisfies

(1) fp(π) = ct(ϕ(π)),

(2) exc(π) = rt(ϕ(π)),
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(3) des(π) = va(ϕ(π)),

(4) lis(π) = height of ϕ(π),

(5) nlis(π) = #{peaks of ϕ(π) at maximum height},

(6) lds(π) = #{peaks of ϕ(π)},

(7) rank(π) = 1
2

(
n− ν(ϕ(π))

)
,

for all π ∈ Sn(132).

Proof. For the proof of the first six equalities, instead of using D = ϕ(π), it will be
convenient to consider the associated path U from the lower-left corner to the upper-right
corner of arr(π) with north and east steps. We will talk about tunnels of U to refer to the
corresponding tunnels of D under this trivial transformation.

We now show how to associate a unique tunnel of D to each cross of the array arr(π).
Observe that given a cross in position (i, j), U has a north step in row i and an east step in
column j. In D, these two steps correspond to steps u and d respectively, so they determine
a decomposition D = AuBdC (see Figure 2-4), and therefore a tunnel of D (it is not hard
to see that u and d are at the same level). According to whether the cross was to the
left of, to the right of, or on the main diagonal or arr(π), the associated tunnel will be
respectively a left, right, or centered tunnel of D. Thus, fixed points give centered tunnels
and excedances give right tunnels.

u d
B

A

C

D

U

Figure 2-4: A cross and the corresponding tunnel.

To show (3), observe that from the description of ϕ−1, a sequence of consecutive north
steps of U gives rise to an increasing run of crosses in the rows of arr(π) where those steps
lie. Descents of the permutation occur precisely in the rows of the array where there is a
north step of U that is preceded by an east step. And these are just the valleys of ϕ(π).

Property (4) is shown in [52], but here we give a more graphical proof. Given an in-
creasing subsequence of π, consider the crosses of arr(π) that form such subsequence. The
tunnels of ϕ(π) corresponding to these crosses are all at different heights, and their projec-
tions on the x-axis are nested intervals (i.e., pairwise contained in each other). Reciprocally,
any tower of tunnels of ϕ(π) whose projections on the x-axis are nested corresponds to an
increasing subsequence of π. The maximum number of tunnels in such a tower is the height
of the path, so (4) follows. Furthermore, the number of such towers having as many tunnels
as possible equals the number of peaks of ϕ(π) at maximum height (the highest tunnel of
the tower determines the peak), which proves (5).
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Part (6) follows from the description of ϕ−1 and the observation that the crosses of
the arr(π) located in the positions of the peaks (inner corners) of U form a decreasing
subsequence of π of maximum length.

To prove the last equality of the proposition, notice that rank(π) is the largest m such
that an m×m square fits in the upper-left corner of the diagram of π. Therefore, the height
of ϕ(π) at the middle is exactly ν(ϕ(π)) = n− 2 rank(π). �

2.2.1 Enumeration of centered tunnels

As a consequence of the first two parts of Proposition 2.4, our problem of counting per-
mutations according to fixed points and excedances is equivalent to counting Dyck paths
according to centered and right tunnels. In particular, the GF

F132(x, q, z) :=
∑

n≥0

∑

π∈Sn(132)

xfp(π)qexc(π)zn

that we want to find can be expressed as

F132(x, q, z) =
∑

D∈D
xct(D)qrt(D)z|D|.

If we try to imitate the same method that we used in Section 2.1 for 321-avoiding
permutations, the next step now would be to enumerate Dyck paths with respect to centered
tunnels and right tunnels. Unfortunately, the decomposition of Dyck paths that we used
to count hills and double rises no longer works here. The reason for this is that if we write
D = uAdB with A,B ∈ D, then ct(A) and ct(B) do not give information about ct(D), and
similarly rt(D) cannot be obtained from rt(A) and rt(B).

For the case of counting only centered tunnels, however, we can use another decompo-
sition. Let us forget for a moment about the number of right tunnels. Now we show how
to obtain an expression for F132(x, 1, z) =

∑
n≥0

∑
π∈Sn(132) x

fp(π)zn =
∑

D∈D x
ct(D)z|D|.

Denote by CT(D) the set of centered tunnels of D, so that |CT(D)| = ct(D). The trick
is to consider Dyck paths where some centered tunnels are marked. That is, we will count
pairs (D,S) where D ∈ D and S ⊆ CT(D) (S is the set of marked tunnels). Each such pair
is given weight (x − 1)|S|z|D|, so that for a fixed D, the sum of weights of all pairs (D,S)
will be ∑

S⊆CT(D)

(x− 1)|S|z|D| = ((x− 1) + 1)|CT(D)|z|D| = xct(D)z|D|,

which is precisely the weight that D has in F132(x, 1, z).

Figure 2-5: Decomposing Dyck paths with marked centered tunnels.

Dyck paths with no marked tunnels (i.e., pairs (D, ∅)) are enumerated by C(z) =
1−

√
1−4z

2z , the GF for Catalan numbers. On the other hand, for an arbitrary Dyck path
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D with some centered tunnel marked (i.e., a pair (D,S) with S 6= ∅), we can consider the
decomposition induced by the longest marked tunnel, say D = AuBdC. Then, AC (seen
as the concatenation of Dyck words) gives an arbitrary Dyck path with no marked centered
tunnels, and B is an arbitrary Dyck path where some centered tunnels may be marked (see
Figure 2-5). This decomposition translates into the following equation for GFs:

F132(x, 1, z) = C(z) + (x− 1)zC(z)F132(x, 1, z). (2.3)

Solving it, we obtain

F132(x, 1, z) =
2

1 + 2(1− x)z +
√

1− 4z
,

which is precisely the expression that we had for F321(x, 1, z) in (2.2). This gives a new and
perhaps simpler proof of the main result in [73], namely that |{π ∈ Sn(321) : fp(π) = i}| =
|{π ∈ Sn(132) : fp(π) = i}| for all i ≤ n (see Theorem 1.4).

2.2.2 Enumeration of shifted tunnels

The same kind of decomposition can be used to count tunnels whose midpoints are at a
given distance from the middle of the path. For D ∈ D and r ∈ Z, let ctr(D) be the number
of tunnels of D whose midpoint lies on the vertical line x = n− r, and let

Wr(x, z) =
∑

D∈D
xctr(D)z|D|

be the corresponding generating function. Note that

W0(x, z) = F132(x, 1, z) =
C(z)

1− (x− 1)zC(z)

by (2.3). Let

C<i(z) =
i−1∑

j=0

Cjz
j

be the series for the Catalan numbers truncated at degree i.

Analogously to the previous subsection, we will consider Dyck paths where some of the
tunnels with midpoint on the line x = n− r are marked. Each such marked tunnel will be
given weight x− 1, so that for a fixed D, the contribution to Wr(x, z) of the sum over all
marked subsets of tunnels will be precisely xctr(D)z|D|.

Dyck paths with no marked tunnels are enumerated by C(z). On the other hand, for
an arbitrary Dyck path D with some marked tunnel with midpoint at x = n − r, we can
consider the decomposition induced by the longest such marked tunnel, say D = AuBdC,
where necessarily length(A) + 2r = length(C). Then, AC (seen as the concatenation of
Dyck words) gives an arbitrary Dyck path of length at least 2r with no marked tunnels,
which produces the term C(z)−C<r(z) in the GF. The central part B is an arbitrary Dyck
path where some centered tunnels may be marked (indeed, all the other marked tunnels of
D with midpoint at x = n− r become marked centered tunnels of B). This decomposition
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gives the following formula for Wr.

Wr(x, z) = C(z) + (x− 1)z [C(z)−C<r(z)]W0(x, z)

=
C(z) (1− (x− 1)zC<r(z))

1− (x− 1)zC(z)
=

2 (1 − (x− 1)zC<r(z))

1 + 2(1− x)z +
√

1− 4z
.

2.3 Enumeration of right tunnels: the method of the diago-

nal of a power series

To count right tunnels we will need a different approach. The technique that we use is
based on the concept of diagonal of a power series.

Definition 1 Let
A(x, y) =

∑
ai,jx

iyj

be a formal power series in the variables x and y. The diagonal of A, denoted diagz
x,y A, is

the power series in a single variable z defined by

diagz
x,y A =

∑
an,nz

n.

For convenience, rather than dealing with right tunnels, in this section we will consider
left tunnels instead. Clearly, if we reflect D ∈ Dn from a vertical line x = n we have that
ct(D∗) = ct(D), rt(D∗) = lt(D) and lt(D∗) = rt(D), so the problems of enumerating right
or left tunnels respectively are equivalent. In particular,

F132(x, q, z) =
∑

D∈D
xct(D)qlt(D)z|D|.

A tunnel of D ∈ Dn is categorized as a centered or left tunnel depending on its position
with respect to the line x = n. The first step of this new approach is to generalize the
concepts of centered and left tunnels, allowing the vertical line that we use as a reference
to be shifted from the center of the Dyck path. In the previous section we already defined
ctr(D) to be the number of tunnels of D whose midpoint lies on the vertical line x = n− r
(we call this the reference line), for any D ∈ D and r ∈ Z. Similarly, let ltr(D) be the
number of tunnels of D whose midpoint lies on the half-plane x < n − r. Notice that by
definition, ct0 and lt0 are respectively the statistics ct and lt defined previously.

We also add a new variable v to F132 which marks the distance from the reference line
to the actual middle of the path. Define

T (x, q, z, v) :=
∑

n,r≥0

∑

D∈Dn

xctr(D)qltr(D)vrzn. (2.4)

Our next goal is to find an equation that determines T (x, q, z, v). The idea is to use
again the decomposition of a Dyck path as D = uAdB, where A,B ∈ D. The difference is
that now the GFs involve sums not only over Dyck paths but also over the possible positions
of the reference line.
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Let

H1(x, q, z, v) :=
∑

n≥1
k≥−n

∑

A∈Dn−1

xct−k(uAd)qlt−k(uAd)vkzn (2.5)

be the GF for the first part uAd of the decomposition, where the reference line can be
anywhere to the right of the left end of the path (Figure 2-6). Similarly, let

H2(x, q, z, v) :=
∑

n≥0
r≥−n

∑

B∈Dn

xctr(B)qltr(B)vrzn (2.6)

be the GF for the second part B of the decomposition, where now the reference line can be
anywhere to the left of the right end of the path.

k

r

Figure 2-6: H1 and H2.

We would like to express the generating function for paths uAdB in terms of H1 and
H2. The product of these two GFs counts pairs (uAd, B), but if we want the reference line
to coincide in uAd and in B, then the two parts are not necessarily placed next to each
other (Figure 2-6). The exponent of v in H1 indicates how far to the right the reference
line is from the middle of the path uAd. The exponent of v in H2 indicates how far to the
left the reference line is from the middle of the path B. In the product H1H2, the exponent
of v is the distance from the middle of the path uAd to the middle of the path B if we
draw them so that the reference lines coincide. Now comes one of the key points of the
argument. The terms that correspond to an actual path D = uAdB are those in which the
two parts are placed next to each other in the picture (B begins where uAd ends), and this
happens precisely when the exponent of v is half the sum of lengths of uAd and B. But
the semilength of each path is the exponent of z in the corresponding GF, so the sum of
semilengths is the exponent of z in the product H1H2. Hence, the terms that correspond to
actual paths D = uAdB are exactly those in which the exponent of v equals the exponent
of z (Figure 2-7). The generating function consisting of only such terms is nothing else than
a diagonal.

We also need another variable y to mark the distance between the reference line and the
middle of the new path D = uAdB. Considering that D starts at (0, 0), the x-coordinate
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Figure 2-7: Terms with equal exponent in z and v.

of the middle of this path is given by the exponent of z in the product H1H2, which is the
sum of the exponents of z in H1 and H2. The x-coordinate of the reference line is given by
the exponent of z in H1 plus the exponent of v in H1. Hence, the difference between these
two x-coordinates is given by the exponent of z in H2 minus the exponent of v in H1.

Let
P (x, q, z, v, y) := H1(x, q, z, v/y)H2(x, q, zy, v),

and let its series expansion in v and z be

P (x, q, z, v, y) =
∑

n≥0
j≥−n

Pj,n(x, q, y)vjzn.

Consider the diagonal (in v and z) of P ,

diagt
v,z P :=

∑

n≥0

Pn,n(x, q, y)tn.

Now, the above argument implies that this diagonal equals precisely

H3(x, q, t, y) :=
∑

n≥1
−n≤r≤n

∑

D∈Dn

xctr(D)qltr(D)yrtn, (2.7)

that is, the sum over arbitrary non-empty (since uAd was non-empty) Dyck paths D, where
the reference line can be anywhere between the left end and the right end of the path.

We have found an equation that relates H1, H2 and H3, thus proving the following
lemma.

Lemma 2.5 Let H1, H2 and H3 be defined respectively by (2.5), (2.6), and (2.7). Then,

diagt
v,z H1(x, q, z, v/y)H2(x, q, zy, v) = H3(x, q, t, y). (2.8)

The next step is to express these three GFs in terms of T , so that (2.8) will in fact give
an equation for T . First, note that given D ∈ Dn, we have that ct−r(D) = ctr(D

∗) and
lt−r(D) = n− ltr(D

∗)− ctr(D
∗), since the total number of tunnels of D∗ is n. Thus,

∑

n,r≥0

∑

D∈Dn

xct−r(D)qlt−r(D)vrzn =
∑

n,r≥0

∑

D∈Dn

(
x

q

)ctr(D∗) (
1

q

)ltr(D∗)

vr(qz)n

= T (x/q, 1/q, qz, v). (2.9)
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Also, note that if |D| = n and r ≥ n, then ctr(D) = ltr(D) = ct−r(D) = 0 and lt−r(D) = n.
In particular,

∑

n≥0
r>n

∑

D∈Dn

xctr(D)qltr(D)vrzn =
∑

n≥0
r>n

Cnv
rzn =

∑

n≥0

Cn
vn+1

1− v z
n =

v

1− vC(zv). (2.10)

For H1 we can write

H1(x, q, z, v) =
∑

n≥0
k≥−n−1

∑

A∈Dn

xct−k(uAd)qlt−k(uAd)vkzn+1

= z




∑

n≥0
k>0

∑

A∈Dn

xct−k(uAd)qlt−k(uAd)vkzn +
∑

n≥0

∑

A∈Dn

xct0(uAd)qlt0(uAd)zn

+
∑

n≥0
0<r≤n+1

∑

A∈Dn

xctr(uAd)qltr(uAd)v−rzn


 . (2.11)

For k > 0, ct−k(uAd) = ct−k(A) and lt−k(uAd) = lt−k(A) + 1, so the first sum on the
right hand side of (2.11) equals

q
∑

n≥0
k>0

∑

A∈Dn

xct−k(A)qlt−k(A)vkzn

= q




∑

n≥0
k≥0

∑

A∈Dn

xct−k(A)qlt−k(A)vkzn −
∑

n≥0

∑

A∈Dn

xct0(A)qlt0(A)zn




= q [T (x/q, 1/q, qz, v) − T (x, q, z, 0)] ,

by (2.9). For the second sum in (2.11), note that ct0(uAd) = ct0(A) + 1 and lt0(uAd) =
lt0(A), so the sum equals

x
∑

n≥0

∑

A∈Dn

xct0(A)qlt0(A)zn = xT (x, q, z, 0).

Using that for r > 0 ctr(uAd) = ctr(A) and ltr(uAd) = ltr(A), the third sum in (2.11) can
be written as

∑

n≥0
r>0

∑

A∈Dn

xctr(A)qltr(A)v−rzn −
∑

n≥0
r>n+1

∑

A∈Dn

xctr(A)qltr(A)v−rzn

= T (x, q, z, v−1)− T (x, q, z, 0) − 1

v(v − 1)
C(zv−1),
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by (2.10). Thus,

H1(x, q, z, v) =

= z

[
q T (

x

q
,
1

q
, qz, v) + (x− q − 1)T (x, q, z, 0) + T (x, q, z,

1

v
) +

1

v(1 − v)C(
z

v
)

]
. (2.12)

For H2, a very similar reasoning implies that

H2(x, q, z, v) = T (x, q, z, v) − T (x, q, z, 0) + T (
x

q
,
1

q
, qz,

1

v
) +

1

1− vC(
qz

v
). (2.13)

Finally, for H3 we get that

H3(x, q, t, y) =

= T (x, q, t, y) + T (
x

q
,
1

q
, qt,

1

y
)− T (x, q, t, 0) − y

1− yC(ty) +
1

1− yC(
qt

y
)− 1. (2.14)

Substituting these expressions for H1, H2 and H3 in (2.8) we obtain an equation for T .
Note that the common factor z in H1(x, q, z, v) guarantees that this equation will express
the coefficients of the series expansion in t of H3(x, q, t, y) in terms of coefficients of T
of smaller order in the series expansion in z of H1(x, q, z, v)H2(x, q, z, v), so it uniquely
determines T as a GF. The final step of the proof is to guess an expression for T and check
that it satisfies this equation.

Proposition 2.6 We have

T (x, q, z, v) =

1− v + (q − 1)zvC(zv)

1− v + (q − 1)zvF321(1, q, z)
− (x− 1)zvC(zv)

[1− qz(F321(1, q, z) − 1)− xz](1 − v) . (2.15)

Before proving this proposition, we observe that it implies Theorem 2.1. Indeed, we
have by definition

T (x, q, z, 0) =
∑

n≥0

∑

D∈Dn

xct0(D)qlt0(D)zn = F132(x, q, z).

But if Proposition 2.6 holds, then

T (x, q, z, 0) =
1

1− qt(F321(1, q, z) − 1)− xt = F321(x, q, z),

where the last equality follows from (2.1). So, all that remains is to prove Proposition 2.6.

Proof. The computations that follow have been done using Maple. Let H̃1, H̃2 and H̃3 be
the expressions obtained respectively from (2.12), (2.13) and (2.14) when T is substituted
with the expression given in (2.15). All we have to check is that

diagt
v,z H̃1(x, q, z, v/y)H̃2(x, q, zy, v) = H̃3(x, q, t, y).

Let P̃ (x, q, z, v, y) := H̃1(x, q, z, v/y)H̃2(x, q, zy, v). We want to compute diagt
v,z P̃ . In [86,

Chapter 6], a general method is described for obtaining diagonals of rational functions. This
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theory does not apply to our function P̃ , because it is not rational. However, we will show
that in this particular case we can modify the technique to obtain diagt

v,z P̃ .

The series expansion of P̃ in v and z,

P̃ (x, q, z, v, y) =
∑

n≥0
j≥−n

P̃j,n(x, q, y)vjzn =
∑

n,i≥0

P̃i−n,n(x, q, y)vi
(z
v

)n
,

converges for |v| < β, | zv | < α, if α, β > 0 are taken sufficiently small. Similarly,

diagt
v,z P̃ =

∑

n≥0

P̃n,n(x, q, y)tn

converges for |t| sufficiently small. Fix such a t that also satisfies |t| < αβ 2. The series

P̃ (x, q, z,
t

z
, y) =

∑

n≥0
j≥−n

P̃j,n(x, q, y)tjzn−j

will converge for | tz | < β and | z2

t | < α. Regarded as a function of z, it will converge for |z|
in the annulus |t|

β < |z| <
√
α|t|, which is non-empty because |t| < αβ2. In particular, it

converges on some circle |z| = ρ in the annulus. By [46, Theorem 1],

diagt
v,z P̃ =

1

2πi

∫

|z|=ρ
P̃ (x, q, z,

t

z
, y)

dz

z
.

It can be checked that the singularities of P̃ (x, q, z, t
z , y)/z (as a function of z) that lie inside

the circle |z| = ρ are all simple poles. These poles are

z1 = 0, z2 = t, z3 =
t

y
, z4,5 =

(1 + q)y ± (1− q)
√
y(y − 4qt)

2y(y + t(1− q)2) t,

z6,7 =
1 + q ± (1− q)√1− 4ty

2(q + ty(1− q)2) t.

There are also branch points for z = ± 1
2

√
t
y and z = ± 1

2

√
t

qy , but they lie outside the circle

for an appropriate choice of ρ in the annulus |t|
β < ρ <

√
α|t|. The remaining singularities

do not depend on t and lie outside the circle.

So, by the residue theorem, the integral can be obtained by summing up the residues
at the poles inside |z| = ρ. Computing them in Maple, we see that all the residues are 0
except for those in z2 and z3. Thus,

diagt
v,z P̃ = Resz=t P̃ (x, q, z,

t

z
, y)

1

z
+ Resz= t

y
P̃ (x, q, z,

t

z
, y)

1

z
.

Computing these residues we get precisely H̃3(x, q, t, y). �
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2.4 Some other bijections between Sn(321) and Dn
Considering the array of crosses associated to a permutation, as we did to define ψx, some
other known bijections between Sn(321) and Dn can easily be viewed in a systematic way,
as paths with east and south steps from the upper-left corner to the lower-right corner of
the n× n array. For each of these bijections, our canonical example will be π = 23147586.
One such bijection was established by Billey, Jockusch and Stanley in [7, p. 361]. Denote
it by φx. Consider the path with east and south steps that leaves the crosses corresponding
to excedances to the right, and stays always as far from the main diagonal as possible
(Figure 2-8). Then φx(π) can be obtained from it just by reading an up-step for every east
step of this path and a down-step for every south step.

Figure 2-8: The bijection φx.

In [52], Krattenthaler describes a bijection from Sn(123) to Dn. If we omit the last step,
consisting of reflecting the path over a vertical line, and compose the bijection with the
reversal operation, that maps a permutation π1π2 · · · πn into πn · · · π2π1, we get a bijection
from Sn(321) to Dn. Denote it by ψq. In the array representation, ψq(π) corresponds (by
the same trivial transformation as before) to the path with east and south steps that leaves
all the crosses to the left and remains always as close to the main diagonal as possible
(Figure 2-9).

Figure 2-9: The bijection ψq.

Our first bijection is related to this last one by ψq(π) = ψx(π
−1). In a similar way, we

could still define a fourth bijection φq : Sn(321) −→ Dn by φq(π) := φx(π
−1) (Figure 2-10).

Combining these bijections and their inverses, one can get some automorphisms on
Dyck paths and on 321-avoiding permutations with interesting properties. Recall from
Section 1.2.1 that va(D) and p2(D) denote respectively the number of valleys and the
number of peaks of height at least 2 of D. It can be checked that ψx ◦ φ−1

x is an involution
on Dn with the property that va(ψx ◦ φ−1

x (D)) = dr(D) and dr(ψx ◦ φ−1
x (D)) = va(D).
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Figure 2-10: The bijection φq.

Indeed, this follows from the fact that excedances are mapped to valleys by φx and to
double rises by ψx. This bijection gives a new proof of the symmetry of the bivariate
distribution of the pair (va,dr) of statistics on Dyck paths. A different involution with this
property was introduced in [21].

Another involution on Dn is given by ψx ◦ ψ−1
q

. This one shows the symmetry of the
distribution of the pair (dr, p2), because dr(ψx ◦ ψ−1

q
(D)) = p2(D) and p2(ψx ◦ ψ−1

q
(D)) =

dr(D). In addition, it preserves the number of hills, i.e., h(ψx◦ψ−1
q

(D)) = h(D). To see this,
just note that both ψq and ψx map fixed points to hills, whereas excedances are mapped to
peaks of height at least 2 by ψq and to double rises by ψx.

It is well known that the number of permutations in Sn with k excedances equals the
number of permutations in Sn with k+1 weak excedances (recall that i is a weak excedance
of π if πi ≥ i). We can show combinatorially that the analogous results for 321-avoiding
and for 132-avoiding permutations hold as well.

Proposition 2.7 Fix n, k ≥ 0. The following quantities are equal to the Narayana number
1
n

(n
k

)( n
k+1

)
.

(1) The number of 321-avoiding permutations π ∈ Sn with k excedances.

(2) The number of 321-avoiding permutations π ∈ Sn with k + 1 weak excedances.

(3) The number of 132-avoiding permutations π ∈ Sn with k excedances.

(4) The number of 132-avoiding permutations π ∈ Sn with k + 1 weak excedances.

(5) The number of 132-avoiding permutations π ∈ Sn with k descents.

Proof. By Proposition 2.2, excedances of π ∈ Sn(321) correspond to double rises of ψx(π). It
is known that the number of Dyck paths in Dn with k double rises is given by the Narayana
number 1

n

(
n
k

)(
n

k+1

)
.

To prove the equality (1)=(2), consider the involution on Sn(321) that maps π to
(φ−1

x (ψx(π)))−1. Excedances of π ∈ Sn(321) give double rises in ψx(π). On the other
hand, the bijection φ−1

x maps valleys to excedances. Combining this together, we have that
exc(π) = dr(ψx(π)) = n − va(ψx(π)) − 1 = n − exc(φ−1

x (ψx(π))) − 1, where the second
equality follows from the fact that each up-step of a Dyck path is either the beginning of a
double rise or the beginning of a peak, so the number of peaks plus double rises equals the
semilength of the path. Finally, we use that the number of excedances of a permutation in
Sn plus the number of weak excedances of its inverse is n.
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The equalities (1)=(3) and (2)=(4) are immediate consequences of Theorem 2.1. Finally,
to see that (1)=(5), notice that if π ∈ Sn(321), then exc(π) = va(φx(π)). On the other hand,
if π ∈ Sn(132), then des(π) = va(ϕ(π)) by Proposition 2.4. Thus, ϕ−1 ◦ φx : Sn(321) −→
Sn(132) maps excedances to descents. �
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Chapter 3

A simple and unusual bijection for
Dyck paths

In this chapter we introduce a new bijection Φ from the set of Dyck paths to itself. This
bijection has the property that it maps nontrivial statistics that appear in the study of
pattern-avoiding permutations into classical statistics on Dyck paths, which have been
widely studied in the literature and whose distribution is easy to obtain.

Recall that in Section 2.2 we tried to enumerate Dyck paths with respect to the number
of centered and right tunnels, but we were unable to do it directly. Intuitively, the problem
is that unlike hills, peaks, or double rises, which are characteristics of a Dyck path that
are defined locally, the notion of tunnel may involve an arbitrarily large number of steps of
the path. This is essentially why the standard decompositions of Dyck paths do not work
to enumerate centered and right tunnels. The bijection Φ has the advantage that it trans-
forms tunnel-like statistics into locally defined statistics that behave well under the usual
decompositions of Dyck paths. As a consequence, several enumeration problems regard-
ing permutation statistics on restricted permutations can be solved more easily considering
their counterpart in terms of Dyck paths.

Another important application of Φ is that it allows us to give a simple bijective proof
of Theorem 1.4, which is a weaker version of Theorem 2.1 considering only the number of
fixed points. Some results in this chapter are joint work with Emeric Deutsch [29].

In Section 3.1 we present the bijection Φ, and in Section 3.2 we study its properties. In
Section 3.3 we give a generalization of Φ, namely a family of bijections depending on an
integer parameter r, from which the main bijection Φ is the particular case r = 0. These
bijections give correspondences involving new statistics on Dyck paths, which generalize ct
and rt. We give multivariate generating functions for them. Section 3.4 discusses several
applications of these bijections to enumeration of statistics on 321- and 132-avoiding per-
mutations. In particular, we generalize Theorem 1.4, and we find a multivariate generating
function for fixed points, excedances and descents in 132-avoiding permutations. Finally, in
Section 3.5 we discuss new interpretations of Catalan numbers that follow from our work.

3.1 The bijection Φ

In this section we describe a bijection Φ from Dn to itself. Let D ∈ Dn. Each up-step of
D has a corresponding down-step together with which it determines a tunnel. Match each

41



such pair of steps. Let τ ∈ S2n be the permutation defined by

τi =





i+ 1

2
if i is odd;

2n+ 1− i

2
if i is even.

In two-line notation,

τ =

(
1 2 3 4 5 6 · · · 2n− 3 2n− 2 2n− 1 2n
1 2n 2 2n− 1 3 2n− 2 · · · n− 1 n+ 2 n n+ 1

)
.

Then Φ(D) is created as follows. For i from 1 to 2n, consider the τi-th step of D (i.e.,
D is read in zigzag). If its corresponding matching step has not yet been read, define the
i-th step of Φ(D) to be an up-step, otherwise let it be a down-step. In the first case, we say
that the τi-th step of D opens a tunnel, in the second we say that it closes a tunnel.

The bijection Φ applied to the Dyck paths of semilength at most 3 is shown in Figure 3-1.
Figure 3-2 shows Φ applied to the example of the Dyck path D = uuduudududddud.

φ

Figure 3-1: The bijection Φ for paths of length at most 3.

It is clear from the definition that Φ(D) is a Dyck path. Indeed, it never goes below
the x-axis because at any point the number of down-steps drawn so far can never exceed
the number of up-steps, since each down-step is drawn when the second step of a matching
pair in D is read, and in that case the first step of the pair has already produced an up-step
in Φ(D). Also, Φ(D) ends in (2n, 0) because each of the matched pairs of D produces an
up-step and a down-step in Φ(D).
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φ

Figure 3-2: An example of Φ.

To show that Φ is indeed a bijection, we will describe the inverse map Φ−1. Given
D′ ∈ Dn, the following procedure recovers the D ∈ Dn such that Φ(D) = D′. Consider
the permutation τ defined above, and let W = w1w2 · · ·w2n be the word obtained from D′

as follows. For i from 1 to 2n, if the i-th step of D ′ is an up-step, let wτi
= o, otherwise

let wτi
= c. W contains the same information as D ′, with the advantage that the o’s are

located in the positions of D in which a tunnel is opened when D is read in zigzag, and the
c’s are located in the positions where a tunnel is closed. Equivalently, the o’s are located in
the positions of the left walls of the left and centered tunnels of D, and in the positions of
the right walls of the right tunnels. For an example see Figure 3-3.

φ−1

D’

D

W=  o  o  c  o  c  c  o  o  o  o  o  o  c  c  c  o  c  c  c  o  o  c  c  c  o  c  o  c  c  c  o  o  o  c
 1  2  2  5  5  3  7  8 10 11 13 14 14 13 11 17 17 15 16 16 15 10  8 12 12  9  9  7  4  6  6  4  3  1

Figure 3-3: The inverse of Φ.

Now we define a matching between the o’s and the c’s in W , so that each matched
pair will give a tunnel in D. We will label the o’s with 1, 2, . . . , n and similarly the c’s, to
indicate that an o and a c with the same label are matched. By left (resp. right) half of W
we mean the symbols wi with i ≤ n (resp. i > n). For i from 1 to 2n, if wτi

= o, place in
it the smallest label that has not been used yet. If wτi

= c, match it with the unmatched
o in the same half of W as wτi

with largest label, if such an o exists. If it does not, match
wτi

with the unmatched o in the opposite half of W with smallest label. Note that since D ′

was a Dyck path, at any time the number of c’s read so far does not exceed the number of
o’s, so each c has some o to be paired up with.

Once the symbols in W have been labelled, D can be recovered by reading the labels
from left to right, drawing an up-step for each label that is read for the first time, and a
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down-step for each label that appears the second time. In Figure 3-3 the labelling is shown
under W .

3.2 Properties of Φ

Lemma 3.1 Let D = ABC be a decomposition of a Dyck path D, where B is a Dyck
path, and A and C have the same length. Then Φ(ABC) = Φ(AC)Φ(B). In particular,
Φ(uBd) = udΦ(B).

Proof. It follows immediately from the definition of Φ, since the path D is read in zigzag
while Φ(D) is built from left to right. �

Theorem 3.2 Let D be any Dyck path, and let D ′ = Φ(D). We have the following corre-
spondences:

(1) ct(D) = h(D′),

(2) rt(D) = er(D′),

(3) lt(D) + ct(D) = or(D′),

(4) cmt(D) = ret(D′).

Proof. First we show (1). Consider a centered tunnel given by the decomposition D =
AuBdC. Applying Lemma 3.1 twice, we get D ′ = Φ(AuBdC) = Φ(AC)Φ(uBd) =
Φ(AC)udΦ(B), so we have a hill ud in D ′. Reciprocally, any hill in D′, say D′ = XudY ,
where X,Y ∈ D, comes from a centered tunnel D = Z1uΦ−1(Y )dZ2, where Z1 and Z2 are
respectively the first and second halves of Φ−1(X).

The proof of (4) is very similar. Recall that ret(D ′) equals the number of arches of
D′. Given a centered multitunnel corresponding to the decomposition D = ABC, we have
Φ(D) = Φ(AC)Φ(B), soD′ has an arch starting at the first step of Φ(B), which is nonempty.

To show (2), consider a right tunnel given by the decomposition D = AuBdC, where
length(A) > length(C). Of the two steps u and d delimiting the tunnel, d will be encoun-
tered before u when D is read in zigzag, since length(A) > length(C). So d will open a
tunnel, producing an up-step in D′. Besides, this up-step will be at an even position, since
d was in the right half of D. Reciprocally, an even rise of D ′ corresponds to a step in the
right half of D that opens a tunnel when D is read in zigzag, so it is necessarily a right
tunnel.

Relation (3) follows from (2) and the fact that the total number of tunnels of D is
lt(D) + ct(D) + rt(D) = n, and the total number of up-steps of D ′ is or(D′) + er(D′) = n.

�

One interesting application of this bijection is that it can be used to enumerate Dyck
paths according to the number of centered, left, and right tunnels, and number of centered
multitunnels. We are looking for a multivariate generating function for these four statistics,
namely

R̃(x, u, v, w, z) =
∑

D∈D
xct(D)ult(D)vrt(D)wcmt(D)z|D|.
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By Theorem 3.2, this GF can be expressed as

R̃(x, u, v, w, z) = R(
x

u
, u, v, w, z), (3.1)

where
R(t, u, v, w, z) =

∑

D∈D
th(D)uor(D)ver(D)wret(D)z|D|.

We can derive an equation for R using again that every nonempty Dyck path D can
be decomposed in a unique way as D = uAdB, where A,B ∈ D. The number of hills
of uAdB is h(B) + 1 if A is empty, and h(B) otherwise. The odd rises of A become
even rises of uAdB, and the even rises of A become odd rises of uAdB. Thus, we have
er(uAdB) = or(A) + er(B), and or(uAdB) = er(A) + or(B) + 1, where the extra odd rise
comes from the first step u. We also have ret(uAdB) = ret(B) + 1. Hence, we obtain the
following equation for R:

R(t, u, v, w, z) = 1 + uwz(R(1, v, u, 1, z) − 1 + t)R(t, u, v, w, z). (3.2)

Denote R1 := R(1, u, v, 1, z), R̂1 := R(1, v, u, 1, z). Substituting t = w = 1 in (3.2), we
obtain

R1 = 1 + uzR̂1R1, (3.3)

and interchanging u and v,

R̂1 = 1 + vzR1R̂1. (3.4)

Solving (3.3) and (3.4) for R̂1, gives

R̂1 =
1 + (u− v)z −

√
1− 2(v + u)z + (v − u)2z2

2uz
.

Thus, from (3.2),

R(t, u, v, w, z) =
1

1− uwz(R̂1 − 1 + t)

=
2

2− w + (v + u− 2tu)wz +w
√

1− 2(v + u)z + (v − u)2z2
. (3.5)

Now, switching to R̃, we obtain the following theorem.

Theorem 3.3 The multivariate generating function for Dyck paths according to centered,
left, and right tunnels, centered multitunnels, and semilength is

∑

D∈D
xct(D)ult(D)vrt(D)wcmt(D)z|D|

=
2

2− w + (v + u− 2x)wz + w
√

1− 2(v + u)z + (v − u)2z2
.

As pointed out by Alex Burstein, Lagrange inversion applied to equation (3.2) gives a
nice expression for the coefficients of R̃.
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Corollary 3.4 Fix integers c, l, r,m ≥ 0 and let n = c+ l + r. The number of Dyck paths
D ∈ Dn with ct(D) = c, lt(D) = l, rt(D) = r and cmt(D) = m is given by

m− c
n−m

(
m

c

)(
n−m
l

)(
n−m
r

)

if c < m < c+ l < n, and it is 1 if c = m = n.

Proof. The case c = m = n is trivial, since the only path in Dn with n centered tunnels is
D = undn. For the rest of the proof we assume that 0 ≤ c < m < c+ l < n.

We start by applying Lagrange inversion formula (Theorem 1.3) to equation (3.2) for
variable w, being f(w) = R(t, u, v, w, z) − 1, G(w) = uz(R̂1 − 1 + t)(w + 1), n = m and
k = 1 in the theorem. We get that

[wm](R(t, u, v, w, z) − 1) =
1

m
[wm−1](uz(R̂1 − 1 + t)(w + 1))m = umzm(R̂1 − 1 + t)m.

Taking the coefficient of tc,

[tcwm](R(t, u, v, w, z) − 1) =

(
m

c

)
umzm(R̂1 − 1)m−c. (3.6)

Isolating R1 in equation (3.3) and substituting it in (3.4) we get

R̂1 = 1 +
vzR̂1

1− uzR̂1

,

which is equivalent to
R̂1 − 1 = zR̂1(u(R̂1 − 1) + v).

We apply Lagrange inversion formula again, now for variable z, with f(z) = R̂1−1, G(z) =
(z + 1)(uz + v) and n = s. This gives us (for s 6= 0),

[zs](R̂1 − 1)k =
k

s
[zs−k](z + 1)s(uz + v)s,

so

[us−rvrzs](R̂1 − 1)k =
k

s

(
s

r

)
[zs−k](z + 1)szs−r =

k

s

(
s

r

)(
s

r − k

)
. (3.7)

Now, taking the appropriate coefficients of u, v and z in equation (3.6) gives

[tcun−rvrwmzn](R(t, u, v, w, z) − 1) =

(
m

c

)
[un−m−rvrzn−m](R̂1 − 1)m−c

=

(
m

c

)
m− c
n−m

(
n−m
r

)(
n−m

r −m+ c

)
,

where the last equality follows from (3.7) with s = n−m and k = m− c. Thus, using that
n− r = c+ l and n−m− (r −m+ c) = l, we get that for n ≥ 1,

[tcuc+lvrwmzn]R(t, u, v, w, z) =
m− c
n−m

(
m

c

)(
n−m
r

)(
n−m
l

)
.
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But by relation (3.1), this coefficient is precisely [xculvrwmzn]R̃(x, u, v, w, z), which is the
number of paths D ∈ Dn with ct(D) = c, lt(D) = l, rt(D) = r and cmt(D) = m. �

3.3 Generalizations

Here we present a generalization Φr of the bijection Φ, which depends on a nonnegative
integer parameter r. Given D ∈ Dn, copy the first 2r steps of D into the first 2r steps of
Φr(D). Now, read the remaining steps of D in zigzag in the following order: 2r + 1, 2n,
2r + 2, 2n − 1, 2r + 3, 2n − 2, and so on. For each of these steps, if its corresponding
matching step in D has not yet been encountered, draw an up-step in Φr(D), otherwise
draw a down-step. Note that for r = 0 we get the same bijection Φ as before.

Note that Φr can be defined exactly as Φ with the difference that instead of τ , the
permutation that gives the order in which the steps of D are read is τ (r) ∈ S2n, defined as

τ
(r)
i =





i if i ≤ 2r;
i+ 1

2
+ r if i > 2r and i is odd;

2n+ 1− i

2
− r if i > 2r and i is even.

Figure 3-4 shows an example of the bijection Φr for r = 2 applied to the path D =
uduuduuduududddudd.

2r 2r

φ 2

Figure 3-4: An example of Φ2.

It is clear from the definition that Φr(D) is a Dyck path. A reasoning similar to the one
used for Φ shows that Φr is indeed a bijection.

The properties of Φ given in Theorem 3.2 generalize to analogous properties of Φr. We
will prove them using the next lemma, which follows immediately from the definition of Φr.

Lemma 3.5 Let r ≥ 0, and let D = ABC be a decomposition of a Dyck path D, where B
is a Dyck path, and length(A) = length(C) + 2r. Then Φr(ABC) = Φr(AC)Φ(B).

Theorem 3.6 Let r ≥ 0, let D be any Dyck path, and let D ′ = Φr(D). We have the
following correspondences:

(1) #{tunnels of D with midpoint at x = n+ r} = #{hills of D ′ in x > 2r},

(2) #{tunnels of D with midpoint in x > n+ r} = #{even rises of D ′ in x > 2r},

(3) #{tunnels of D with midpoint in x ≤ n+ r} = #{odd rises of D ′ in x > 2r}
+ #{up-steps of D′ in x ≤ 2r},

(4) #{multitunnels of D with midpoint at x = n+ r} = #{arches of D ′ in x ≥ 2r}.
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Notice that the statistic on the left hand side of (1) is the same statistic ct−r(D) that
we considered in Section 2.3. Similarly, the statistics appearing in (2) and (3) are related
to the statistic lt−r(D) used earlier.

Proof. Fist we show (1). A tunnel given by the decomposition D = AuBdC has its
midpoint at x = n + r exactly when length(A) = length(C) + 2r. Applying Lemmas 3.5
and 3.1, D′ = Φr(AuBdC) = Φr(AC)Φ(uBd) = Φr(AC)Φ(ud)Φ(B) = Φr(AC)udΦ(B),
and ud is a hill of D′ in x > 2r, since length(Φr(AC)) ≥ 2r. Reciprocally, any hill of D ′

in x > 2r, say D′ = XudY , where X,Y ∈ D and length(X) ≥ 2r, comes from a tunnel
with midpoint at x = n + r, namely D = Z1uΦ−1(Y )dZ2, where Z1Z2 = Φ−1

r (X) and
length(Z1) = length(Z2) + 2r.

The proof of (4) is very similar. A multitunnel given by D = ABC has its midpoint at
x = n+ r exactly when length(A) = length(C) + 2r. In this case, Φr(D) = Φr(AC)Φ(B)
by Lemma 3.5, so D′ has an arch starting at the first step of Φ(B). Notice that this arch
is in x ≥ 2r because length(Φr(AC)) ≥ 2r.

To show (2), consider a tunnel in D with midpoint in x > n+ r. This is equivalent to
saying that it is given by a decomposition D = AuBdC with length(A) > length(C) + 2r.
In particular, the tunnel is contained in the halfspace x ≥ 2r, so the two steps u and d
delimiting the tunnel are in the part of D that is read in zigzag in the process to obtain
Φr(D), and d will be encountered before u, since length(A) − 2r > length(C). So d will
open a tunnel, producing an up-step of D ′ in x > 2r. Besides, this up-step will be at an
even position, since d is in x > n + r, that is, in the right half of the part of D that is
read in zigzag. Reciprocally, an even rise of D ′ in x > 2r corresponds to a step of D in
x > n+ r that opens a tunnel when D is read according to τ (r), so it is necessarily a tunnel
with midpoint to the right of x = n+ r .

Relation (3) follows from (2) and the fact that the total number of tunnels of D
is #{tunnels of D with midpoint in x > n + r} + #{tunnels of D with midpoint in x ≤
n + r} = n, and the total number of up-steps of D ′ is #{even rises of D′ in x > 2r} +
#{odd rises of D′ in x > 2r}+ #{up-steps of D′ in x ≤ 2r} = n. �

Similarly to how we used the properties of Φ to prove Theorem 3.3, we can use the
properties of Φr to prove a more general theorem. Our goal is to enumerate Dyck paths
according to the number of tunnels with midpoint on, to the right of, and to the left of an
arbitrary vertical line x = n+r, and multitunnels with midpoint on that line. In generating
function terms, we are looking for an expression for

E(t, u, v, w, y, z) :=
∑

n≥0
0≤r≤n

∑

D∈Dn

t#{tun. of D w/ midp. at x = n+ r}u#{tun. of D w/ midp. in x ≤ n+ r}

v#{tun. of D w/ midp. in x > n+ r}w#{multitun. of D w/ midp. at x = n+ r}yrzn.

Note that, as in Chapter 2, the variable y marks the position of the vertical line x = n+r
with respect to which the tunnels are classified. The following theorem gives an expression
for E.
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Theorem 3.7 Let E, R and C be defined as above. Then,

E(t, u, v, w, y, z) =
C(uyz)R(t, u, v, w, z)

1− yu2z2C2(uyz)R(1, u, v, 1, z)R(1, v, u, 1, z)

=
2δ2(2 + (v − u)z + δ1)

[2 + (u+ v − 2tu)wz + wδ1] [(δ1 + (v − u)z)δ2 − 4uyz]
,

where δ1 :=
√

1− 2(u + v)z + (u− v)2z2 − 1, δ2 :=
√

1− 4uyz − 1.

Proof. By Theorem 3.6, the generating function E can be expressed as

E(t, u, v, w, y, z) =

∑

n≥0
0≤r≤n

∑

D∈Dn

t#{hills of D in x > 2r}u#{odd rises of D in x > 2r}+#{up-steps of D in x ≤ 2r}

v#{even rises of D in x > 2r}w#{arches of D in x ≥ 2r}yrzn. (3.8)

For each path D in this summation, the y-coordinate of its intersection with the vertical
line x = 2r has to be even. Fix h ≥ 0. We will now focus only on the paths D ∈ D for which
this intersection has y-coordinate equal to 2h. Let D = AB, where A and B are the parts of
the path respectively to the left and to the right of x = 2r. Then, #{hills of D in x > 2r} =
#{hills of B}, #{odd rises of D in x > 2r} = #{odd rises of B}, #{up-steps of D in x ≤
2r} = #{up-steps of A}, and #{arches of D in x ≥ 2r} = #{arches of B}.

B can be any path starting at height 2h and landing on the x-axis, never going below
it. If h > 0, consider the first down-step of B that lands at height 2h − 1. Then B can
be decomposed as B = B1dB

′, where B1 is any Dyck path, and B ′ is any path starting at
height 2h− 1 and landing on the x-axis, never going below it. Applying this decomposition
recursively, B can be written uniquely as B = B1dB2d · · ·B2hdB2h+1, where the Bi’s for
1 ≤ i ≤ 2h+1 are arbitrary Dyck paths. The number of hills and number of arches of B are
given by those of B2h+1. The odd rises of B are the odd rises of the Bi’s with odd subindex
plus the even rises of those with even subindex. In a similar way one can describe the even
rises of B. The semilength of B is the sum of semilengths of the Bi’s plus h, which comes
from the 2h additional down-steps. Thus, the generating function for all paths B of this
form, where t, u, v, and z mark respectively number of hills, number of odd rises, number
of even rises, and semilength, is

zhRh(1, u, v, 1, z)Rh(1, v, u, 1, z)R(t, u, v, w, z). (3.9)

Similarly, A can be decomposed uniquely as A = A1uA2u · · ·A2huA2h+1. The number
of up-steps of A is the sum of the number of up-steps of each Ai, plus a 2h term that comes
from the additional up-steps. The generating function for paths A of this form, where u
marks the number of up-steps, and y and z mark both the semilength, is

zhyhu2hC2h+1(uyz). (3.10)

The product of (3.9) and (3.10) gives the generating function for paths D = AB where
the height of the intersection point of D with the vertical line between A and B is 2h, where
the variables mark the same statistics as in (3.8). Note that the exponent of y is half the
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distance between the origin of D and this vertical line. Summing over h, we obtain

E(t, u, v, w, y, z) =
∑

h≥0

z2hyhu2hC2h+1(uyz)Rh(1, u, v, 1, z)Rh(1, v, u, 1, z)R(t, u, v, w, z)

=
C(uyz)R(t, u, v, w, z)

1− yu2z2C2(uyz)R(1, u, v, 1, z)R(1, v, u, 1, z)
.

The second expression in the statement of the theorem follows from the formula (3.5)
that we had for R. �

From this theorem one can easily deduce an expression for the GF T defined in equa-
tion (2.4). This gives an alternative proof of Proposition 2.15.

3.4 Connection to pattern-avoiding permutations

The bijection Φ has applications to enumeration of statistics on pattern-avoiding permuta-
tions. The first one is that it can be used together with the bijections defined in Chapter 2
to give a bijective proof of Theorem 1.4. Here we show a more general result. We use the
bijection Φr to give a combinatorial proof of the following generalization of Theorem 1.4.
Note that the particular case r = 0 gives a new bijective proof of such theorem.

Theorem 3.8 Fix r, n ≥ 0. For any π ∈ Sn, define αr(π) = #{i : πi = i + r}, βr(π) =
#{i : i > r, πi = i}. Then, the number of 321-avoiding permutations π ∈ Sn with βr(π) = k
equals the number of 132-avoiding permutations π ∈ Sn with αr(π) = k, for any 0 ≤ k ≤ n.

Proof. Recall that the bijection ψx : Sn(321) −→ Dn defined in Section 2.1 satisfies
that fp(π) = h(ψx(π)). More precisely, it can be easily checked that i is a fixed point
of π if and only if ψx(π) has a hill with x-coordinate 2i − 1. This implies that βr(π) =
#{hills of ψx(π) in x > 2r}.

The second bijection that we use is ϕ : Sn(132) −→ Dn, defined in Section 2.2. In
Proposition 2.4 we showed that fp(π) = ct(ϕ(π)). Recall that in the proof of this proposi-
tion, we associated a unique tunnel of D to each cross of the array arr(π). An element i
with πi = i+ r is represented by a cross (i, i+ r) in the array. From the description of the
association between crosses and tunnels, it follows that such a cross (i, i + r) corresponds
to a tunnel of ϕ(π) with midpoint r units to the right of the center. That is, an element
i with πi = i + r gives a tunnel with midpoint at x = n + r. Therefore, we have that
αr(π) = #{tunnels of ϕ(π) with midpoint at x = n+ r}.

Now all we need to do is use Φr and property (1) given in Theorem 3.6. From this it
follows that the bijection ψ−1

x ◦Φr ◦ϕ : Sn(132) −→ Sn(321) has the property that βr(ψ
−1
x ◦

Φr ◦ ϕ(π)) = #{hills of Φr ◦ ϕ(π) in x > 2r} = #{tunnels of ϕ(π) with midpoint at x =
n+ r} = αr(π). �

While in Section 2.1 we describe a simple way to enumerate 321-avoiding permutations
with respect to the statistics fp and exc, the analogous enumeration for 132-avoiding per-
mutations is done in a more intricate way in Section 2.2. Here we use the properties of
Φ to give a more direct derivation of the multivariate generating function for 132-avoiding
permutations according to the number of fixed points and the number of excedances.
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Corollary 3.9 (of Theorem 3.3)

∑

n≥0

∑

π∈Sn(132)

xfp(π)vexc(π)zn =
2

1 + (1 + v − 2x)z +
√

1− 2(1 + v)z + (1− v)2z2
. (3.11)

Proof. Proposition 2.4 shows that ϕ maps fixed points to centered tunnels, and excedances
to right tunnels, i.e., fp(π) = ct(ϕ(π)) and exc(π) = rt(ϕ(π)). Therefore, the left hand side
of (3.11) equals

∑
D∈D x

ct(D)vrt(D)z|D|. The result now is obtained applying Theorem 3.3
for u = w = 1. �

Comparing this expression (3.11) with equation (2.2), we obtain another proof of The-
orem 2.1.

As a further application, we can use the bijection Φ to give the following refinement of
Corollary 3.9, which gives an expression for the multivariate generating function for number
of fixed points, number of excedances, and number of descents in 132-avoiding permutations.
The analogous result for 321-avoiding permutations is given in Theorem 2.3.

Theorem 3.10 Let

L(x, q, p, z) := 1 +
∑

n≥1

∑

π∈Sn(132)

xfp(π)qexc(π)pdes(π)+1zn.

Then

L(x, q, p, z) =
2(1 + xz(p− 1))

1 + (1 + q − 2x)z − qz2(p− 1)2 +
√
f1(q, z)

, (3.12)

where f1(q, z) = 1−2(1+q)z+[(1−q)2−2q(p−1)(p+3)]z2−2q(1+q)(p−1)2z3+q2(p−1)4z4.

Proof. We use again that ϕ maps fixed points to centered tunnels, and excedances to right
tunnels. It is shown in Proposition 2.4 that it also maps descents of the permutation to
valleys of the corresponding Dyck path. Clearly, the number of valleys of any nonempty
Dyck path equals the number of peaks minus one (in the empty path both numbers are 0).
Thus, L can be expressed as

L(x, q, p, z) =
∑

D∈D
xct(D)qrt(D)p#{peaks of D}z|D|.

By Theorem 3.2, Φ maps centered tunnels into hills and right tunnels into even rises.
Let us see what peaks are mapped to by Φ. Given a peak ud in D ∈ D, D can be written as
D = AudC, where A and C are the parts of the path before and after the peak respectively.
This decomposition corresponds to a tunnel ofD that goes from the beginning of the u to the
end of the d. Assume first that the peak occurs in the left half (i.e., length(A) < length(C)).
When D is read in zigzag, the u opens a tunnel that is closed by the d two steps later.
This produces in Φ(D) an up-step followed by a down-step two positions ahead, that is, an
occurrence of u ? d in the Dyck word of Φ(D), where ? stands for any symbol (either a u
or a d).

If the peak occurs in the right half of D (i.e., length(A) > length(C)), the reasoning is
analogous, with the difference that the d opens a tunnel that is closed by the u two steps
ahead. So, such a peak produces also an occurrence of u ? d in Φ(D). Reciprocally, we
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claim that an occurrence of u ? d in Φ(D) can come only from a peak of D either in the
left or in the right half. Indeed, using the notation from the procedure above describing the
inverse of Φ, an occurrence of u?d in Φ(D) corresponds to either an occurrence of oc in the
left half of W or an occurrence of co in the right half of W . In both cases, the algorithm
given above will match these two letters c and o with each other, so they correspond to an
occurrence of ud in D.

If the peak occurs in the middle (i.e., length(A) = length(C)), then by Lemma 3.1,
Φ(AudC) = Φ(AC)ud, so it is mapped to an occurrence of ud at the end of Φ(D). Clearly
we have such an occurrence only when D has a peak in the middle.

Thus, we have shown that peaks in D are mapped by Φ to occurrences of u ? d in
Φ(D) and occurrences of ud at the end of Φ(D), or, equivalently, to occurrences of u ?d in
Φ(D)d (here Φ(D)d is a Dyck path followed by a down-step). Denote by λ(D) the number
of occurrences of u ? d in Dd. This implies that L can be written as

L(x, q, p, z) =
∑

D∈D
xh(D)qer(D)pλ(D)z|D|.

We are left with a Dyck path enumeration problem, which is solved in the following
lemma. Let J be defined in Lemma 3.11. It is easy to see that we have L(x, q, p, z) =
1 + J(x, 1, p, 1, q, p, z). Making use of (3.13) and (3.14), it follows at once that

L(x, q, p, z) =
1− xz + xpz

1− xz − zK1
,

where K1 is given by

zK2
1 − [1− z − qz + q(1− p)2z2]K1 + p2qz = 0.

From these equations we obtain (3.12). �

Lemma 3.11 Denote by ih(D) (fh(D)) the number of initial (final) hills in D (obviously,
their only possible values are 0 and 1). Denote by µ(D) the number of occurrences of u ? d
in D. Then the generating function

J(x, t, s, u, v, y, z) :=
∑

xh(D)tih(D)sfh(D)uor(D)ver(D)yµ(D)z|D|,

where the summation is over all nonempty Dyck paths, is given by

J(x, t, s, u, v, y, z) =
uz[xts+ (1− xu(1− t)(1− s)z)K]

1− xuz − uzK , (3.13)

where K is given by

uzK2 − [1− (u+ v)z + uv(1 − y)2z2]K + y2vz = 0. (3.14)

Proof. Every nonempty Dyck path has one of the following four forms: ud, udB, uAd, or
uAdB, where A and B are nonempty Dyck paths. The generating functions of these four
pairwise disjoint sets of Dyck paths are

(i) xtsuz,

(ii) xtuzJ(x, 1, s, u, v, y, z),
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(iii) uzJ(1, y, y, v, u, y, z),

(iv) uzJ(1, y, y, v, u, y, z)J(x, 1, s, u, v, y, z),

respectively. Only the third factor in (iii) and (iv) needs an explanation: the hills of A are
not hills in uAd; an initial (final) hill in A gives a uud (udd) in uAd; an odd (even) rise
in A becomes an even (odd) rise in uAd.

Consequently, the generating function J satisfies the functional equation

J(x, t, s, u, v, y, z) = xtsuz + xtuzJ(x, 1, s, u, v, y, z) (3.15)

+uzJ(1, y, y, v, u, y, z) + uzJ(1, y, y, v, u, y, z)J(x, 1, s, u, v, y, z).

From equation (3.15) it is clear that, whether interested or not in the statistics “number
of initial (final) hills”, we had to introduce them for the sake of the statistic marked by
the variable y. Also, without any additional effort we could use two separate variables to
mark the number of uud’s and the number of udd’s, and obtain a slightly more general
generating function, although we do not need it here.

Denoting H = J(x, 1, s, u, v, y, z), K = J(1, y, y, v, u, y, z), equation (3.15) becomes

J = xtsuz + xtuzH + uzK + uzHK. (3.16)

Setting here t = 1, we obtain

H = xsuz + xuzH + uzK + uzHK. (3.17)

Solving (3.17) for H and introducing it into (3.16), we obtain (3.13).

It remains to show that K satisfies the quadratic equation (3.14). Setting x = 1, t = y,
s = y in (3.16), and interchanging u and v, we get

K = y2vz + yvzM + vzK̂ + vzMK̂, (3.18)

where M = J(1, 1, y, v, u, y, z) and K̂ is K with u and v interchanged, namely K̂ =
J(1, y, y, u, v, y, z).

Now in (3.16) we set x = 1, t = 1, s = y, and we interchange u and v, to get

M = yvz + vzM + vzK̂ + vzMK̂. (3.19)

Eliminating M from (3.18) and (3.19), we obtain

vz(2yvz − y2vz + 1− vz)K̂ + (vz − 1)K + vzKK̂ + y2vz = 0. (3.20)

Finally, eliminating K̂ from (3.20) and the equation obtained from (3.20) by interchanging
u and v, we obtain equation (3.14). Note that, as expected, J is symmetric in the variables
t and s and linear in each of these two variables. �

From Theorem 3.10 one can see that the first terms of L(x, q, p, z) are

1 + xpz + (qp2 + x2p)z2 + (q2p2 + qp2 + xqp3 + xqp2 + x3p)z3 + · · · ,

corresponding to Dyck paths of semilength at most 3 (or equivalently, to 132-avoiding
permutations of length at most 3).
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3.5 Some new interpretations of the Catalan numbers

Our first new interpretation follows immediately from the results in this chapter. Note that
any nonempty Dyck path D ∈ Dn has a multitunnel that goes from (0, 0) to (2n, 0). We
call this the basic multitunnel.

Proposition 3.12 Let n ≥ 0. The number of Dyck paths of length 2n+2 with no centered
multitunnels other than the basic one is Cn.

Proof. We could give a non-bijective argument using generating functions, but now the
bijection Φ yields a simple combinatorial proof. We know from part (4) of Theorem 3.2
that the set of paths D ∈ Dn+1 with cmt(D) = 1 is in bijection with the set of Dyck paths
of length 2n + 2 with only one return. But these are precisely elevated Dyck paths of the
form uAd, where A ∈ Dn. The number of them is Cn. �

Proposition 3.13 The following quantities are equal to Cn:

(1) The total number of fixed points in elements of Sn(321).

(2) The total number of fixed points in elements of Sn(132).

(3) The total number of centered tunnels in Dyck paths of length 2n.

Proof. By the first part of Theorem 3.2, (3) equals the total number of hills in Dyck paths
of length 2n. To prove that this number is Cn, we define the following bijection between
paths in Dn with a marked hill and the set Dn itself. Given a path with a distinguished
hill AudB ∈ Dn, where A,B ∈ D, map it to the path uAdB ∈ Dn. This is obviously a
bijection, since each D ∈ Dn can be expressed uniquely as D = uAdB, with A,B ∈ D.

The equality (2)=(3) is a consequence of the first part of Proposition 2.4. Finally, by
Proposition 2.2, fixed points in 321-avoiding permutations are in one-to-one correspondence
with hills of Dyck paths, which proves (1). Another argument to compute (1) directly follows
from the reasoning preceding equation (5.21). �

For the next interpretation of Catalan numbers consider the directed graph G drawn
in Figure 3-5. Its nodes are the infinite set {qi,j : i, j ≥ 0, i + j even}. The set of edges is
{(qi,j → qi+1,j+1), (qi+1,j+1 → qi,j) : i, j ≥ 0, i+ j even} ∪ {(q0,2j−2 → q0,2j), (q0,2j → q0,2j) :
j ≥ 2} ∪ {(q2i−2,0 → q2i,0), (q2i,0 → q2i,0) : i ≥ 2} ∪ {(q0,0 → q0,0)}. Let Fn denote the n-th
Fine number (see Section 4.4).

Proposition 3.14 Let G be the directed graph described above, and let G′ be the graph
obtained from it by removing the edge (q0,0 → q0,0). Fix n ≥ 0.

(1) The number of paths in G from q0,0 to q0,0 with n steps is Cn.

(2) The number of paths in G′ from q0,0 to q0,0 with n steps is Fn.

(3) The number of paths in G from q0,0 to q0,0 with n + 1 steps not having q0,0 as an
interior point is Cn.
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Figure 3-5: The graph G.

Proof. We will construct a bijection between Dn and the set of paths in G from q0,0 to q0,0

with n steps. Let D ∈ Dn. Read the steps of D two by two, starting with the two middle
steps n and n+ 1, then n− 1 and n+ 2, and progressively moving away from the middle,
finishing with the pair 1 and 2n. For k from 1 to n, let Dk be the subpath of D consisting of
the steps at distance at most k from the middle. Let ak (resp. bk) be the height difference
between the leftmost (resp. rightmost) point of Dk and its lowest point (the height is given
by the y-coordinate). Equivalently, ak (resp. bk) is the number of left (resp. right) tunnels
of D with exactly one of its two delimiting steps belonging to Dk. Define the k-th node of
our path in G to be qak,bk

.

Note that qa0,b0 = qan,bn
= q0,0, and that for every k there is an edge from qak,bk

to
qak+1,bk+1

in G, by the way the numbers ak and bk change every time that a pair of steps
is read from D. It is not hard to see that this defines a bijection between Dn and paths in
G with n steps starting and ending at q0,0. Indeed, the numbers ak and bk encode enough
information to reconstruct the Dyck path. This proves (1).

To show parts (2) and (3), observe that the node q0,0 is used whenever ak = bk = 0, which
means that there is a centered multitunnel between the two endpoints of Dk. Similarly, the
edge (q0,0 → q0,0) is used when ak = bk = ak+1 = bk+1 = 0, and this condition is equivalent
to D having a centered tunnel between the endpoints of Dk+1. To prove (2), we use the fact
from Corollary 4.5 that the number of Dyck paths of length 2n with no centered tunnels is
Fn. Part (3) follows now from Proposition 3.12, and in fact is also a direct consequence of
part (1). �

Combining the bijection just defined with Φ, an alternative and perhaps simpler bijection
between Dn and the set of paths in G from q0,0 to q0,0 with n steps can be defined. It will
be convenient to describe the path in G backwards. Equivalently, we will give a path P in
the graph obtained from G by reversing all the edges. Given D ∈ Dn, read the steps from
left to right two at a time, and construct P as follows. Let qi,j be the current node in P .
If a uu is read, add an edge (qi,j → qi+1,j+1) to the path. If a pair ud is encountered, add
an edge (qi,j → qi+1,j−1) if j > 0, or a loop (qi,j → qi,j) otherwise. For each pair du, add
an edge (qi,j → qi−1,j+1) if i > 0, or a loop (qi,j → qi,j) otherwise. Finally, for each pair
dd, add an edge (qi,j → qi−1,j−1) if i, j > 0, (qi,j → qi−2,j) if j = 0, or (qi,j → qi,j−2) if
i = 0. It can be checked that this is a bijection as well. Note that if at a given point of the
construction the current node in P is qi,j, then the fragment of D that has been read so far
ends at height i+ j.
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Our last interpretation of the Catalan numbers is joint work with Emeric Deutsch and
Astrid Reifegerste.

Proposition 3.15 The following quantities are equal to Cn:

(1) The number of permutations π ∈ S2n+1(321) such that ψx(π) = φx(π).

(2) The number of symmetric parallelogram polyominoes1 of perimeter 4(2n + 1) having
exactly one horizontal (equivalently, vertical) boundary segment at each level.

Proof. The equivalency between (1) and (2) is clear when we draw ψx(π) (as in Figure 2-2)
and φx(π) (as in Figure 2-8) as lattice paths from the top-left to the bottom-right corner
of the array of π. The two paths form a parallelogram polyomino which is symmetric (and
satisfies the conditions of (2)) exactly when ψx(π) = φx(π) as Dyck paths.

Now we show that the permutations in (1) are counted by the Catalan numbers. Let
π ∈ S2n+1(321), let i1 < i2 < · · · < ie be the positions of the excedances of π and let
j1 < j2 < · · · < j2n+1−e be the remaining positions. Then, ψx(π) = φx(π) if and only
if e = n (π has n excedances) and πik = jk + 1 for all 1 ≤ k ≤ n. Each permutation
satisfying these conditions is uniquely determined by its excedance set {i1, i2, . . . , in}. Now,
these sets are in bijection with Dyck paths of length 2n: given such a set, construct a Dyck
path having up-steps in positions {i1, i2, . . . , in} and down-steps everywhere else. Figure 3-6
shows an example for π = 4512736, whose excedance set is {1, 2, 5}. �

Figure 3-6: A permutation satisfying ψx(π) = φx(π), its symmetric parallelogram poly-
omino, and the corresponding Dyck path.

1Parallelogram polyominoes are unordered pairs of lattice paths starting at (0, 0), using steps (1, 0) and
(0,−1), ending at the same point, and only intersecting at the beginning and at the end.
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Chapter 4

A direct bijection preserving fixed
points and excedances

In this chapter we give a direct combinatorial proof of Theorem 2.1. We present a bijection
between 321- and 132-avoiding permutations that preserves the number of fixed points and
the number of excedances. Our bijection is a composition of two slightly modified known
bijections into Dyck paths, and the result follows from a new analysis of these bijections.
One of them is the bijection ϕ from Chapter 2. The other one is based on the Robinson-
Schensted-Knuth correspondence, and from it stems the difficulty of the analysis.

As a new application of our bijections, we show that the length of the longest increasing
subsequence in 321-avoiding permutations corresponds to a statistic in 132-avoiding permu-
tations that we call rank, which further refines Theorem 2.1. We also apply our bijections
to refined restricted involutions (see Section 4.4). Many of the results in this chapter are
joint work with Igor Pak [32].

This chapter is structured as follows. The description of the main bijection is done
in Section 4.1, where the new part is a bijection from 321-avoiding permutations to Dyck
paths. In Section 4.2 we establish properties of this bijection. Section 4.3 contains proofs
of two technical lemmas. We conclude with extensions of our results to refined restricted
involutions, and other applications.

4.1 A composition of bijections into Dyck paths

Here is the generalization of Theorem 2.1 that we prove combinatorially in this chapter:

Theorem 4.1 The number of 321-avoiding permutations π ∈ Sn with fp(π) = i, exc(π) = j
and lis(π) = k equals the number of 132-avoiding permutations π ∈ Sn with fp(π) = i,
exc(π) = j and rank(π) = n− k, for any 0 ≤ i, j, k ≤ n.

To prove this theorem, we establish a bijection Θ : Sn(321) −→ Sn(132) which respects
the statistics as above. While Θ is not hard to define, its analysis is less straightforward
and will occupy much of the chapter. The bijection Θ is the composition of two bijections,
one from Sn(321) to Dn, and another one from Dn to Sn(132). The second one is just
the inverse of the bijection ϕ : Sn(132) −→ Dn presented in Section 2.2. The first one is
described next.
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4.1.1 The bijection Ψ

We define the bijection Ψ : Sn(321) −→ Dn in two steps. Given π ∈ Sn(321), we start
by applying the Robinson-Schensted-Knuth correspondence to π [86, Section 7.11] (see also
[51, 77]). This correspondence gives a bijection between the symmetric group Sn and pairs
(P,Q) of standard Young tableaux of the same shape λ ` n. For π ∈ Sn(321) the algorithm
is particularly easy because in this case the tableaux P and Q have at most two rows. The
insertion tableau P is obtained by reading π from left to right and, at each step, inserting πi

to the partial tableau obtained so far. Assume that π1, . . . , πi−1 have already been inserted.
If πi is larger than all the elements on the first row of the current tableau, place πi at the
end of the first row. Otherwise, let m be the leftmost element on the first row that is larger
than πi. Place πi in the square that m occupied, and place m at the end of the second row
(in this case we say that πi bumps m). The recording tableau Q has the same shape as P
and is obtained by placing i in the position of the square that was created at step i (when
πi was inserted) in the construction of P , for all i from 1 to n. We write RSK(π) = (P,Q).

2 32 2 3 5 3 5
2
1 1 3 4

2 5
61 3 4

2 5
61 3 4

2 5
8 61 3 4

2 5 8
7

61 3 4
2 5 8

7P = 1 2 3 6 7
4 5 8

1 2 3 6 7
4 5 8

2 3 6 7
4 5
12 3 6

4 5
12 3

4 5
12 3

4
12 31211

Q =

Figure 4-1: Construction of the RSK correspondence RSK(π) = (P,Q) for π = 23514687.

Now, the first half of the Dyck path Ψ(π) is obtained by adjoining, for i from 1 to n,
an up-step if i is on the first row of P , and a down-step if it is on the second row. Let A
be the corresponding word of u’s and d’s. Similarly, let B be the word obtained from Q in
the same way. We define Ψ(π) to be the Dyck path obtained by the concatenation of the
word A and the word B written backwards. For example, from the tableaux P and Q as in
Figure 4-1 we get the Dyck path shown in Figure 1-2. The following proposition, which is
proved in Section 4.2, summarizes some properties of this bijection Ψ:

Proposition 4.2 The bijection Ψ : Sn(321) −→ Dn satisfies

(1) fp(π) = ct(Ψ(π)),

(2) exc(π) = rt(Ψ(π)),

(3) lis(π) = 1
2

(
n+ ν(Ψ(π))

)
,

for all π ∈ Sn(321).

Suppose RSK(π) = (P,Q) for any π ∈ Sn. A fundamental and highly nontrivial property
of the RSK correspondence is the duality: RSK(π−1) = (Q,P ) [86, Section 7.13]. The
classical Schensted’s Theorem states that lis(π) is equal to the length of the first row of the
tableau P (and Q). Both results are used in the proof of Proposition 4.2.

Now the main result of this chapter follows easily from this proposition together with
Proposition 2.4.
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Proof of Theorem 4.1. Propositions 4.2 and 2.4 imply that Θ = ϕ−1 ◦Ψ is a bijection from
Sn(321) to Sn(132) which satisfies

fp(Θ(π)) = ct(Ψ(π)) = fp(π),

exc(Θ(π)) = rt(Ψ(π)) = exc(π),

rank(Θ(π)) =
1

2

(
n− ν(Ψ(π))

)
= n− 1

2

(
n+ ν(Ψ(π))

)
= n− lis(π) .

This implies the result. �

4.2 Properties of Ψ

In this section we prove Proposition 4.2, which describes the properties of Ψ that we need.

Let us first consider only fixed points in a permutation π ∈ Sn. Let π ∈ Sn(321)
and assume that πi = i. Then π1π2 · · · πi−1 is a permutation of {1, 2, . . . , i − 1}, and
πi+1πi+2 · · · πn is a permutation of {i + 1, i + 2, . . . , n}. Indeed, if πj > i for some j < i,
then necessarily πk < i for some k > i, and πjπiπk would be an occurrence of 321.

Therefore, when we apply RSK to π, the elements πi, πi+1, . . . , πn will never bump any
of the elements π1, π2, . . . , πi−1. In particular, the subtableaux of P and Q determined
by the entries that are smaller than i will have the same shape. Furthermore, when the
elements greater than i are placed in P and Q, the rows in which they are placed do not
depend on the subpermutation π1π2 · · · πi−1. Note also that πi = i will never be bumped,
and it will occupy the same position in the first row of P and Q.

When the Dyck path Ψ(π) is built from P and Q, this translates into the fact that the
steps corresponding to πi in P and to i in Q will be respectively an up-step in the first half
and a down-step in the second half, both at the same height and at the same distance from
the center of the path. Besides, the part of the path between them will be itself the Dyck
path corresponding to (πi+1− i)(πi+2− i) · · · (πn− i). So, the fixed point πi = i determines
a centered tunnel in Ψ(π). It is clear that the converse is also true, that is, every centered
tunnel comes from a fixed point. This shows that fp(π) = ct(Ψ(π)), proving the first part
of Proposition 4.2.

Let us now consider excedances in a permutation π ∈ Sn(321). Our goal is to show that
the excedances of π correspond to right tunnels of Ψ(π). The first observation is that we
can assume without loss of generality that π has no fixed points. Indeed, if πi = i is a fixed
point of π, then the above reasoning shows that we can decompose Ψ(π) = AuBdC, where
AC is the Dyck path Ψ(π1π2 · · · πi−1) and B is a translation of the Dyck path Ψ((πi+1 −
i) · · · (πn−i)). But we have that exc(π) = exc(π1π2 · · · πi−1)+exc((πi+1−i) · · · (πn−i)) and
rt(AuBdC) = rt(AC) + rt(B), so in this case the result holds by induction on the number
of fixed points. Note also that the above argument showed that fp(π) = fp(π1π2 · · · πi−1) +
fp((πi+1 − i) · · · (πn − i)) + 1 and ct(AuBdC) = ct(AC) + ct(B) + 1.

Suppose that π ∈ Sn(321) has no fixed points. We will use the fact that a permutation
is 321-avoiding if and only if both the subsequence determined by its excedances and the
one determined by the remaining elements (in this case, the deficiencies) are increasing
(see e.g. [69]). Denote by Xi := (i, πi) the crosses of the array representation of π. To
simplify the presentation, we will refer indistinctively to i or Xi, hoping this does not lead
to confusion. For example, we will say “Xi is an excedance”, etc.

Define a matching between the excedances and the deficiencies of π by the following
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algorithm. Let i1 < i2 < · · · < ik be the positions of the excedances of π and let j1 <
j2 < · · · < jn−k be the deficiencies. Note that from the previous paragraph we know that
πi1 < πi2 < · · · < πik and πj1 < πj2 < · · · < πjn−k

.

Matching Algorithm

(1) Initialize a := 1, b := 1.

(2) Repeat until a > k or b > n− k:

(a) If ia > jb, then b := b+ 1. (Xjb
is not matched.)

(b) Else if πia < πjb
, then a := a+ 1. (Xia is not matched.)

(c) Else, match Xia with Xjb
; a := a+ 1, b := b+ 1.

(3) Output the matching sequence.

Example. Let π = (4, 1, 2, 5, 7, 8, 3, 6, 11, 9, 10) as in Figure 4-2 below. We have i1 = 1,
i2 = 4, i3 = 5, i4 = 6, i5 = 9, and j1 = 2, j2 = 3, j3 = 7, j4 = 8, j5 = 10, j6 = 11. In the
first execution of the loop in step (2) of the algorithm, neither i1 > j1 nor πi1 < πj1 hold,
so Xi1 = (1, 4) and Xj1 = (2, 1) are matched. Now we repeat the loop with a = b = 2, and
since i2 > j2, we are in the case given by (2a) (Xj2 = (3, 2) is not matched). In the next
iteration, a = 2 and b = 3, so we match Xi2 = (4, 5) and Xj3 = (7, 3). Now we have a = 3
and b = 4, so we match Xi3 = (5, 7) and Xj4 = (8, 6). The values of a and b in the next
iteration are 4 and 5 respectively, so we are in the case of (2b), πi4 = 8 < 9 = πj5 , and
Xi4 = (6, 8) is unmatched. Now a = b = 5, and we match Xi5 = (9, 11) and Xj5 = (10, 9).
The matching algorithm ends here because now a = 6 > 5 = k.

Figure 4-2: Example of the matching for π = (4, 1, 2, 5, 7, 8, 3, 6, 11, 9, 10), and Ψ(π).

An informal, more geometrical description of the matching algorithm is the following.
For each pair of crosses of the array (seen as embedded in the plane), consider the line
that their centers determine. If one of these lines has positive slope and leaves all the
remaining crosses to the right, match the two crosses that determine it, and delete them
from the array. If there is no line with these properties, delete the cross that is closer to
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the upper-left corner of the array (it is unmatched). Repeat the process until no crosses are
left.

Now we consider the matched excedances on one hand and the unmatched ones on the
other. We summarize rather technical results in the following two lemmas, which are proved
in Section 4.3. Recall the definitions of right-side and left-side tunnels from Section 1.2.2.

Lemma 4.3 The following quantities are equal:

(1) the number of matched pairs (Xi, Xj), where Xi is an excedance and Xj a deficiency;

(2) the length of the second row of P (or Q);

(3) the number of right-side tunnels of Ψ(π);

(4) the number of left-side tunnels of Ψ(π);

(5) 1
2

(
n− ν(Ψ(π))

)
;

(6) n− lis(π).

Note that (5)=(6) implies that lis(π) = 1
2

(
n + ν(Ψ(π))

)
, which is the third part of

Proposition 4.2.

Lemma 4.4 The number of unmatched excedances (resp. deficiencies) of π equals the
number of right-across (resp. left-across) tunnels of Ψ(π).

Since each excedance of π either is part of a matched pair (Xi, Xj) or is unmatched,
Lemmas 4.3 and 4.4 imply that the total number exc(π) of excedances equals the number of
right-side tunnels of Ψ(π) plus the number of right-across tunnels, which is rt(Ψ(π)). This
implies the second part of Proposition 4.2.

To summarize, we will have shown after proving these lemmas that the bijection Ψ
satisfies all three properties described in Proposition 4.2, which completes the proof. �

4.3 Properties of the matching algorithm

In this section we prove the two lemmas above. We also give a more direct description of
the bijection Ψ using the matching algorithm, without referring explicitly to RSK.

Proof of Lemma 4.3. From the descriptions of the RSK algorithm and the matching, it
follows that an excedance Xi and a deficiency Xj are matched with each other precisely
when πj bumps πi when RSK is performed on π, and that these are the only bumpings
that take place. Indeed, an excedance never bumps anything because it is larger than the
elements inserted before. On the other hand, when a deficiency Xj is inserted, it bumps
the smallest element larger than πj which has not been bumped yet (which corresponds to
an excedance that has not been matched yet), if such an element exists. This proves the
equality (1)=(2).

To see that (2)=(3), observe that right-side tunnels correspond to up-steps in the right
half of Ψ(π), which by the construction of the bijection Ψ correspond to elements on the
second row of Q. The equality (3)=(5) follows easily by counting the number of up-steps
and down-steps of the right half of the path. The equality (4)=(5) is analogous.
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Finally, Schensted’s Theorem states that the size of the first row of P equals the length
of a longest increasing subsequence of π (see [76] or [86, Section 7.23]). This implies that
(2)=(6), which completes the proof. �

The reasoning used in the above proof gives a nice equivalent description of the recording
tableau Q in terms of arr(π) and the matching. Read the rows of the array from top to
bottom. For i from 1 to n, place i on the first row of Q if Xi is an excedance or it is
unmatched, and place i on the second row if Xi is a matched deficiency. In the construction
of the right half of Ψ(π), this translates into drawing the path from right to left while
reading the array from top to bottom, adjoining an up-step for each matched deficiency
and a down-step for each other kind of cross.

To get a similar description of the tableau P , we use duality. By construction of the
matching algorithm, the matching in the output is invariant under transposition of the
array (reflection along the main diagonal). Recall the duality of the RSK correspondence:
if RSK(π) = (P,Q), then RSK(π−1) = (Q,P ) (see e.g. [86, Section 7.13]). Therefore, the
tableau P can be obtained by reading the columns of the array of π from left to right and
placing integers in P according to the following rule. For each column j, place j on the first
row of P if the cross in column j is a deficiency or it is unmatched. Similarly, place j on
the second row if the cross is a matched excedance. Equivalently, the left half of Ψ(π), from
left to right, is obtained by reading the array from left to right and adjoining a down-step
for each matched excedance, and an up-step for each of the remaining crosses.

In particular, when the left half of the path is constructed in this way, every matched
pair (Xi, Xj) produces an up-step and a down-step, giving the latter a left-side tunnel.
Similarly, in the construction of the right half of the path, a matched pair gives a right-side
tunnel. Observe that these are again the equalities (1)=(3)=(4) in Lemma 4.3.

Proof of Lemma 4.4. It is enough to prove it only for the case of excedances. The case of
deficiencies follows from it by considering π−1 and noticing that Ψ(π−1) = Ψ(π)∗. Indeed,
by duality RSK(π−1) = (Q,P ), so Q gives rise to the first half of Ψ(π−1) and P to the
second, so the path that we obtain is the reflection of Ψ(π) in a vertical axis through the
middle of the path. Let Xk be an unmatched excedance of π. We use the above description
of Ψ(π) in terms of the array and the matching. Each cross Xi produces a step ri in the
right half of the Dyck path and another step `i in the left half. Crosses above Xk produce
steps to the right of rk, and crosses to the left of Xk produce steps to the left of `k. In
particular, there are k − 1 steps to the right of rk, and πk − 1 steps to the left of `k. Note
that since Xk is an excedance and π is 321-avoiding, all the crosses above it are also to the
left of it. Consider the crosses that lie to the left of Xk. They can be of the following four
kinds:

• Unmatched excedances Xi. They will necessarily lie above Xk, because the subse-
quence of excedances of π is decreasing. Each one of these crosses contributes an
up-step to the left of `k and down-step to the right of rk.

• Unmatched deficiencies Xj . They also have to lie above Xk, otherwise Xk would be
matched with one of them. So, each such Xj contributes an up-step to the left of `k
and down-step to the right of rk.

• Matched pairs (Xi, Xj) (i.e. Xi is an excedance and Xj a deficiency), where both Xi

and Xj lie above Xk. Both crosses together will contribute an up-step and a down-step
to the left of `k, and an up-step and a down-step to the right of rk.
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• Matched pairs (Xi, Xj) (i.e. Xi is an excedance and Xj a deficiency), where Xj lies
below Xk. The pair will contribute an up-step and a down-step to the left of `k.
However, to the right of rk, the only contribution will be a down-step produced by
Xi.

Note that there cannot be a deficiency Xj to the left of Xk matched with an excedance to
the right of Xk, because in this case Xj would have been matched with Xk by the algorithm.
In the first three cases, the contribution to both sides of the Dyck path is the same, so that
the heights of rk and `k are equally affected. But since πk > k, at least one of the crosses
to the left of Xk must be below it, and this must be a matched deficiency as in the fourth
case. This implies that the step rk is at a higher y-coordinate than `k. Let hk be the height
of `k. We now show that Ψ(π) has a right-across tunnel at height hk.

Observe that hk is the number of unmatched crosses to the left ofXk, and that the height
of rk is the number of unmatched crosses above Xk (which equals hk) plus the number of
excedances above Xk matched with deficiencies below Xk. The part of the path between
`k and the middle always remains at a height greater than hk. This is because the only
possible down-steps in this part can come from matched excedances Xi to the right of Xk,
but each such Xi is matched with a deficiency Xj to the right of Xk but to the left of Xi,
which produces an up-step compensating the down-step associated to Xi. Similarly, the
part of the path between rk and the middle remains at a height greater than hk. This is
because the hk down-steps to the right of rk that come from unmatched crosses above Xk

do not have a corresponding up-step in the part of the path between rk and the middle.
Hence, `k is the left end of a right-across tunnel, since the right end of this tunnel is to the
right of rk, which in turn is closer to the right end of Ψ(π) than `k is to its left end (see
Figure 4-3).

l

rk

k

kh

k−1π  − 1k

Figure 4-3: An unmateched excedance produces a right-across tunnel.

It can easily be checked that the converse is also true, namely that in every right-across
tunnel of Ψ(π), the step at its left end corresponds to an unmatched excedance of π. �

4.4 Further applications

Fine numbers

In [73] it is proved that the number of permutations π ∈ Sn(132) (or π ∈ Sn(321)) with no
fixed points is the Fine number Fn. This sequence is most easily defined by its relation to
Catalan numbers:

Cn = 2Fn + Fn−1 for n ≥ 2, and F1 = 0, F2 = 1.

Although defined some time ago, Fine numbers have received much attention in recent years
(see a survey [25]). Special cases of the bijections in this chapter give simple bijections
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between these two combinatorial interpretations of Fine numbers and a new one: the set
of Dyck paths without centered tunnels. In particular, we obtain a bijective proof of the
following result.

Corollary 4.5 The number of Dyck paths D ∈ Dn without centered tunnels is equal to Fn.

Yet another bijective proof of this corollary follows from the bijections in Chapter 3.
The bijection Φ maps Dyck paths without centered tunnels to Dyck paths without hills,
which in turn correspond through the bijection ψx to 321-avoiding derangements.

More statistics

We can extend Propositions 4.2 and 2.4 to statistics νc(D) defined as the height at x = n−c
of the Dyck pathD ∈ Dn, for any c ∈ {0,±1,±2, . . . ,±(n−1)}. The corresponding statistics
in Sn(132) and in Sn(321) are generalizations of the rank of a permutation and the length
of the longest increasing subsequence in a certain subpermutation of π. A generalization of
Theorem 4.1 follows, but we omit the details.

Limiting distribution

Let us also note that the limiting distribution of the length of the longest increasing sub-
sequence in Sn(321) has been studied in [23]. From Theorem 4.1, the results in [23] can be
translated into results on the limiting distribution of the statistic rank in Sn(132).

Refined restricted involutions

In a recent paper [24], Deutsch, Robertson and Saracino introduce the notion of refined
restricted involutions by considering the statistic fp on involutions avoiding different patterns
σ ∈ S3. They prove the following result:

Theorem 4.6 ([24]) The number of 321-avoiding involutions π ∈ Sn with fp(π) = i equals
the number of 132-avoiding involutions π ∈ Sn with fp(π) = i, for any 0 ≤ i ≤ n.

Let us show that Theorem 4.6 follows easily from the work in this chapter. Recall from
Section 1.2.1 that if D ∈ Dn, D∗ denotes the path obtained by reflection of D from a
vertical line x = n. Now observe that if ϕ(π) = D, then ϕ(π−1) = D∗ (see Lemma 5.27).
Similarly, if Ψ(π) = D, then Ψ(π−1) = D∗ (by the duality of RSK). Therefore, π ∈ Sn(321)
is an involution if and only if so is Θ(π) ∈ Sn(132), which implies the result. Furthermore,
restricting Θ to involutions we obtain the following extension of Theorem 4.6:

Theorem 4.7 The number of 321-avoiding involutions π ∈ Sn with fp(π) = i, exc(π) = j
and lis(π) = k equals the number of 132-avoiding involutions π ∈ Sn with fp(π) = i,
exc(π) = j and rank(π) = n− k, for any 0 ≤ i, j, k ≤ n.
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Chapter 5

Avoidance of subsets of patterns of
length 3

In the previous chapters we have focused only on 321-avoiding and on 132-avoiding per-
mutations, and in the distribution of the statistics ‘number of fixed points’ and ‘number
of excedances’ on them. Here we study the distribution of these statistics on permutations
avoiding the other patterns of length 3, and, more generally, avoiding any subset of patterns
of length 3. A systematic enumeration (with no statistics) of permutations avoiding any
subset of patterns of length 3 was done in [79]. Here we give refinements of these results,
by enumerating the same permutations with respect to the statistics fp and exc.

The main technique that we use are bijections between pattern-avoiding permutations
and certain kinds of Dyck paths with some restrictions, in such a way that the statistics
in permutations that we study correspond to statistics on Dyck paths that are easy to
enumerate.

In Section 5.1 we introduce some more properties of the bijection ϕ that we will need
in this chapter. In Section 5.2 we consider permutations with a single restriction. We
study the distribution of the statistics fp and exc for each pattern of length 3, except for
the pattern 123, for which we can only give partial results regarding fp. In Section 5.3
we solve completely the case of permutations avoiding simultaneously any two patterns of
length 3, giving generating functions counting the number of fixed points and the number
of excedances. For some particular instances we can generalize the results, allowing one
pattern of the pair to have arbitrary length. In Section 5.4 we give the analogous generating
functions for permutations avoiding simultaneously any three patterns of length 3 or more.
Section 5.5 is concerned with the study of the distribution of these statistics in involutions
avoiding any subset of patterns of length 3. In Section 5.6 we compute the expected number
of fixed points in permutations avoiding patterns of length 3. We conclude with a few final
remarks and a discussion of possible extensions of our work.

5.1 More properties of ϕ

The bijection ϕ defined in Section 2.2 will be one of our main tools in this chapter. We will
also use repeatedly the array representation of a permutation π as described in Section 1.1.3,
as well as the operations π̄, π̂, and the lemmas proved in that section. Recall from Sec-
tion 1.2.2 that the depth of a tunnel T is defined as depth(T ) := 1

2 length(T )−height(T )−1.

In order to enumerate fixed points and excedances in permutations, we analyze what
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these statistics are mapped to by ϕ. Table 5.1 summarizes the correspondences of ϕ that
we will use.

In the permutation π In the array of π In the Dyck path ϕ(π)

fixed points of π crosses on the main diagonal centered tunnels

excedances of π
crosses to the right

of the main diagonal
right tunnels

fixed points of π̄ crosses on the secondary diagonal tunnels of depth 0

excedances of π̄
crosses to the left of

the secondary diagonal
tunnels of negative depth

Table 5.1: Behavior of ϕ on fixed points and excedances.

The correspondences between the first two columns have been discussed in Section 1.1.3.
In Proposition 2.4 we showed that the first two rows of the table describe some properties
of ϕ. Here we repeat the same reasoning from the proof of that proposition to show how ϕ
maps crosses on the secondary diagonal to tunnels of depth 0, and crosses to the left of the
secondary diagonal to tunnels of negative depth.

Again, instead of using D = ϕ(π), it will be convenient to consider the path U from the
lower-left corner to the upper-right corner of the array of π, and to talk about tunnels of U
to refer to the corresponding tunnels of D under this trivial transformation.

Recall how in the proof of Proposition 2.4 we associated a unique tunnel T of D to each
cross X of arr(π). Given a cross X = (i, j), U has a north step in row i and an east step
in column j. These two steps in U correspond to steps u and d in D, respectively, so they
determine a decomposition D = AuBdC (see Figure 2-4), and therefore a tunnel T of D.

The distance between these two steps determines the length of T , and the distance from
these steps to the secondary diagonal of the array determines the height of T . In order for
the corresponding cross to lie on the secondary diagonal, the relation between these two
quantities must be 1

2 length(T ) = height(T ) + 1, which is equivalent to depth(T ) = 0, by
the definition of depth. The depth of T indicates how far from the secondary diagonal X
is. The cross lies to the left of the secondary diagonal exactly when depth(T ) < 0. This
justifies the last two rows of the table.

Figure 5-1: Three tunnels of depth 0 and seven tunnels of negative depth.

We define two new statistics on Dyck paths. For D ∈ D, let td0(D) be the number of
tunnels of depth 0 of D, and let td<0(D) be the number of tunnels of negative depth of D.
In Figure 5-1, there are three tunnels of depth 0 drawn with a solid line, and seven tunnels
of negative depth drawn with dotted lines. Let us state these results as a lemma, which
partially overlaps with Proposition 2.4.

Lemma 5.1 Let π ∈ Sn(132), ρ ∈ Sn(312). We have
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(1) fp(π) = ct(ϕ(π)),

(2) exc(π) = rt(ϕ(π)),

(3) fp(ρ) = td0(ϕ(ρ̄)),

(4) exc(ρ) = td<0(ϕ(ρ̄)).

5.2 Single restrictions

When studying statistics on permutations avoiding subsets of patterns of length 3, the
most difficult case appears to be that of permutations avoiding one single pattern. It is well
known that for any σ ∈ S3, |Sn(σ)| = Cn. By Lemma 1.2, we have that 132 ≈ 213, and
that 231 ∼ 312. These are the only equivalences that follow from the trivial bijections. In
Chapter 2 we showed that in fact 321 ≈ 132. So, we have the following equivalence classes
of patterns of length 3 with respect to fixed points and excedances:

a) 123
b) 132 ≈ 213 ≈ 321

c) 231 ∼ c’) 312

5.2.1 a) 123

For this case we have not been able to find a satisfactory expression for F123(x, q, z). We
can nevertheless give summation formulas for the number of permutations in Sn(123) with
a given number of fixed points. The first trivial observation is that if π avoids 123, then
it can have at most two fixed points. If πi = i, we say that i is a big fixed point of π if
i ≥ n+1

2 , and that it is a small fixed point if i < n+1
2 .

We already mentioned that a permutation is 321-avoiding if and only if both the sub-
sequence determined by its excedances and the one determined by the remaining elements
are increasing. Using the fact that π avoids 123 if and only if π̄ avoids 321, we obtain
a characterization of 123-avoiding permutations as those with the following property: the
elements πi such that πi < n + 1 − i form a decreasing subsequence, and so do the re-
maining elements. In particular, since no two fixed points can be in the same decreasing
subsequence, this implies that π can have at most one big fixed point and one small fixed
point.

Recall the bijection ψx : Sn(321) −→ Dn that we defined in Section 2.1. Composing
it with the complementation operation sending π ∈ Sn(123) to π̄ ∈ Sn(321), we obtain a
bijection between Sn(123) and Dn, which we denote by ψy. Figure 5-2 shows an example
when π = (9, 6, 10, 4, 8, 7, 3, 5, 2, 1).

Note that the peaks of the path are determined by the crosses of elements πi such that
πi ≥ n+1− i, which form a decreasing subsequence. Now it is easy to determine how many
permutations have a big (resp. small) fixed point.

Proposition 5.2 Let n ≥ 1. We have

(1) |{π ∈ Sn(123) : π has a big fixed point}| = Cn−1,

(2) |{π ∈ Sn(123) : π has a small fixed point}| =
{

Cn−1 if n is even,
Cn−1 −C2

n−1
2

if n is odd.
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Figure 5-2: The bijection ψy.

Proof. (1) It is clear from the definition of ψy that π has a big fixed point if and only if
ψy(π) has a peak in the middle. Now, we can easily define a bijection from the subset of
elements of Dn with a peak in the middle and Dn−1, by removing the two middle steps ud.

(2) Clearly, π ∈ Sn(123) if and only if π̂ ∈ Sn(123). This involution switches big and
small fixed points, except for the possible big fixed point in position n+1

2 , which remains
unchanged. Applying now ψy, a small fixed point of π is transformed into a peak in the
middle of ψy(π̂) of height at least two (indeed, a hill would correspond to the big fixed point
n+1

2 ). Knowing that the number of paths in Dn with a peak in the middle is Cn−1, we just
have to subtract those where this middle peak has height 1. If n is even, paths in Dn cannot
have a hill in the middle. If n is odd, such paths have the form AudB, where A,B ∈ D n−1

2
,

so the formula follows. �

For k ≥ 0, let sk
n(123) := |{π ∈ Sn(123) : fp(π) = k}|. We have mentioned that

sk
n(123) = 0 for k ≥ 3. The following corollary reduces the problem of studying the distri-

bution of fixed points in Sn(123) to that of determining s2
n(123).

Corollary 5.3 Let n ≥ 1. We have

(1) s1n(123) =

{
2(Cn−1 − s2n(123)) if n even,
2(Cn−1 − s2n(123)) −C2

n−1
2

if n odd.

(2) s0n(123) =

{
Cn − 2Cn−1 + s2n(123) if n even,
Cn − 2Cn−1 + s2n(123) + C2

n−1
2

if n odd.

Proof. (1) By inclusion-exclusion, s1
n(123) = |{π ∈ Sn(123) : π has a big fixed point}| +

|{π ∈ Sn(123) : π has a small fixed point}| − 2s2
n(123). Now we apply Proposition 5.2.

(2) Clearly, s0n(123) = Cn − s1n(123) − s2n(123). �

The next theorem, together with the previous corollary, gives a formula for the distri-
bution of fixed points in 123-avoiding permutations.

Theorem 5.4

s2n(123) =

n−1∑

i=1

i∑

r,s=1

[((
2i− r − 1

i− 1

)
−

(
2i− r − 1

i

))
·
((

2i− s− 1

i− 1

)
−

(
2i− s− 1

i

))

·
n∑

h=1
n−h even

n−2i∑

k=0

f(k, r, h, n − 2i+ r)f(n− 2i− k, s, h, n− 2i+ s)


 ,
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where

f(k, r, h, `) =





( `+h−r
2 − 1

k

)( `−h+r
2 − 1

k − 1

)
−

( `−h−r
2 − 1

k

)( `+h+r
2 − 1

k − 1

)
if k ≥ 1,

1 if k = 0 and
` = h− r,

0 otherwise,

with the convention
(a

b

)
:= 0 if a < 0.

Proof. Recall that s2
n(123) counts permutations with both a big and a small fixed point.

We have seen already that ψy maps a big fixed point of the permutation into a peak in
the middle of the Dyck path. Now we look at how a small fixed point of the permutation
is transformed by ψy. We claim that π ∈ Sn(123) has a small fixed point if and only if
D = ψy(π) satisfies the following condition (which we call condition C1): there exists i such
that the i-th and (i+1)-st up-steps of D are consecutive, the i-th and (i+1)-st down-steps
from the end are consecutive, and there are exactly n + 1 − 2i peaks of D between them.
To see this, assume that i is a small fixed point of π (see Figure 5-3). Then, the path
from the upper-right to the lower-left corner of the array of π, used to define ψy(π), has
two consecutive vertical steps in rows i and i + 1, and two consecutive horizontal steps in
columns i and i + 1. Besides, there are n + 1 − 2i crosses below and to the right of cross
(i, i), each one of which produces a peak in the Dyck path ψy(π). Reciprocally, it can be
checked that if ψy(π) satisfies condition C1 then π has a small fixed point.

i

i

Figure 5-3: A small fixed point i has n+ 1− 2i crosses below and to the right.

All we have to do is count how many paths D ∈ Dn with a peak in the middle satisfy
condition C1. For such a Dyck path D, define the following parameters: let i be the value
such that condition C1 holds, let h = ν(D) be the height of D in the middle, r the height
at which the i-th up-step ends, and s the height at which the i-th down-step from the end
begins. In the example of Figure 5-4, n = 12, i = 4, h = 4, r = 3, and s = 1.

Fix n, i, h, r and s. We will count the number of Dyck paths D with these given
parameters. We can write D = AuuB1B2ddC, where the distinguished u’s are the i-th
and (i+1)-st up-steps, the two d’s are the i-th and (i+1)-st down-steps from the end, and
the middle of D is between B1 and B2. Then A is a path from (0, 0) to (2i − r − 1, r − 1)
not going below y = 0. It is easy to see that there are

(2i−r−1
i−1

)
−

(2i−r−1
i

)
such paths A. By

symmetry, there are
(
2i−s−1

i−1

)
−

(
2i−s−1

i

)
possibilities for C.
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i
i+1

i
i+1r
s

h

Figure 5-4: The parameters i, h, r and s in a Dyck path.

Now we count the possibilities for B1 and B2. It can be checked that f(k, r, h, `) counts
the number of paths from (0, r) to (`, h) having exactly k peaks, starting and ending with an
up-step, and never going below y = 0. The fragment uB1 is a path from (2i− r, r) to (n, h)
not going below y = 0, and ending with an up-step (since D has a peak in the middle).
If we fix k as the number of peaks of this fragment, then there are f(k, r, h, n − 2i + r)
such paths uB1. Similarly, there are f(n− 2i− k, s, h, n− 2i− s) possibilities for B2d with
n− 2i− k peaks.

Summing over all possible values of k, h, r, s and i we obtain the expression in the
theorem. �

Using Corollary 5.3, we can prove that among the derangements of length n, the number
of 123-avoiding ones is at least the number of 132-avoiding ones. This inequality was
conjectured by Miklós Bóna and Olivier Guibert.

Theorem 5.5 ([16]) For all n ≥ 4, s0
n(132) < s0n(123).

Proof. For n ≤ 12 the result can be checked by exhaustive enumeration of all derangements
by computer. Let us assume that n ≥ 13.

From part (2) of Corollary 5.3, we have that

s0n(123) ≥ Cn − 2Cn−1.

It is known [73] that s0
n(132) = Fn, the n-th Fine number. Therefore, the theorem will

be proved if we show that
Fn < Cn − 2Cn−1 (5.1)

for n ≥ 13. Using the identity Fn = 1
2

∑n−2
i=0 (−1

2 )iCn−i, we get the inequality Fn <
1
2Cn − 1

4Cn−1 + 1
8Cn−2, which reduces (5.1) to showing that Cn >

7
2Cn−1 + 1

4Cn−2. This

inequality certainly holds asymptotically, because Cn grows like 1√
π
n−

3
2 4n as n tends to

infinity, and it is not hard to see that in fact it holds for all n ≥ 13. �

5.2.2 b) 132 ≈ 213 ≈ 321

We already studied this case in Chapter 2. The corresponding GF with variables x and q
marking fixed points and excedances respectively is the following.

Theorem 5.6

F132(x, q, z) = F213(x, q, z) = F321(x, q, z) =

=
2

1 + (1 + q − 2x)z +
√

1− 2(1 + q)z + (1− q)2z2
.
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A generalization of this formula is Theorem 2.3, which gives the GF for 321-avoiding
permutations with respect to fixed points, excedances and descents. Similarly, the general-
ization of Theorem 5.6 which enumerates 132-avoiding permutations with respect to these
three statistics is given in Theorem 3.10.

Longest increasing subsequence

Here we make a small digression and consider two other statistics in 132-avoiding permuta-
tions. Recall that nlis(π) denotes the number of increasing subsequences of π of maximum
length lis(π). Answering a question of Emeric Deutsch, here we describe the joint distribu-
tion of the pair of statistics lis and nlis. For k ≥ 0, let

Hk(u, z) :=
∑

n≥0

∑

π∈Sn(132)

lis(π)=k

unlis(π)zn.

Parts (4) and (5) of Proposition 2.4 show that the bijection ϕ maps the statistics lis
and nlis on 132-avoiding permutations to the statistics ‘height’ and ‘number of peaks at
maximum height’ on Dyck paths respectively. Denoting by Dk the set of Dyck paths of
height k, we can express Hk as

Hk(u, z) =
∑

D∈Dk

u#{peaks of D at height k}z|D|.

In other words, Hk(u, z) is the GF for Dyck paths of height k where u marks the number
of peaks of maximum height (i.e., k). We have the following expression for Hk.

Theorem 5.7

Hk(u, z) =
uzk

Vk−1(Vk−1 − uzVk−2)
,

where the Vk are polynomials in z defined by Vk = Vk−1−zVk−2, V−1 = V0 = 1. Equivalently,
Hk can be expressed as

Hk(u, z) =
uzk(1− 4z)

α2k+1(α− uz) + α2k+1(α− uz) + zk+1(u− 2)
,

where α = 1+
√

1−4z
2 , α = 1−

√
1−4z
2 .

Note that the Vk are related to the Chebyshev polynomials of the second kind Uk, defined
in Section 1.3.2, by

Vk(z) = (
√
z)kUk(

1

2
√
z
),

Uk(x) = (2x)kVk(
1

4x2
).

Solving the recurrence that defined the Vk, we get that

Vk =
1√

1− 4z
(αk+2 − αk+2),

with α and α as defined above.
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Proof. For k ≥ 0, let

Ĥk(z) := Hk(1, z) =
∑

D∈Dk

z|D|.

If k ≥ 1, any D ∈ Dk can be written uniquely as D = uA1duA2d · · · where each Ai ∈ Dk−1.
So, we have the recurrence

Ĥk(z) =
1

1− zĤk−1(z)
, Ĥ0(z) = 1,

from where it follows using induction that Ĥk(z) =
Vk−1

Vk
.

Now let
Rk(u, z) =

∑

n≥0

∑

P

u#{peaks of P at height k}zn,

where P ranges over all paths from (0, 0) to (2n+k, k) with steps u = (1, 1) and d = (1,−1)
that always stay between the lines y = 0 and y = k, and peaks are defined in the natural
way as occurrences of ud.

y=k

y=0

(2n+k,k)

Figure 5-5: A path from (0, 0) to (2n+ k, k).

Denote by Rk the set of such paths P for fixed k and varying n. If such a path P hits
y = k only at the end, then we can write P = Xu, where X ∈ Rk−1. If P hits y = k more
than once, we can decompose it uniquely as P = Y dZu, where Y ∈ Rk and Z can be seen
as a Dyck path of height at most k − 1 drawn upside-down.

d u
Y Z

Figure 5-6: The decomposition P = Y dZu.

This decomposition gives

Rk(u, z) = uRk−1(1, z) + uzRk(u, z)Ĥk−1(z),

which implies that

Rk(u, z) =
uRk−1(1, z)

1− uzĤk−1(z)
. (5.2)

Substituting u = 1 in (5.2) and using that Ĥk−1 =
Vk−2

Vk−1
, it can be checked by induction

that Rk(1, z) = 1
Vk

.
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Now, a Dyck path D of height k can be decomposed uniquely as D = XuY , where
X ∈ Rk−1, and Y is the reflection over a vertical line of a path in Rk.

u

YX

Figure 5-7: The decomposition D = XuY .

By this decomposition, Hk can be written as

Hk(u, z) = Rk−1(1, z)Rk(u, z)zk.

Thus,

Hk(u, z) =
uzkRk−1(1, z)

2

1− uzĤk−1(z)
=

uzk

Vk−1(Vk−1 − uzVk−2)
.

�

For the first values of k, the theorem gives

H1(u, z) =
uz

1− uz ,

H2(u, z) =
uz2

(1− z)(1 − (u+ 1)z)
.

5.2.3 c, c’) 231 ∼ 312

Using the bijection

Sn(312) ←→ Dn

π 7→ ϕ(π̄),

Lemma 5.1 implies that

F312(x, q, z) =
∑

D∈D
xtd0(D)qtd<0(D)z|D|.

To enumerate tunnels of depth 0, we will separate them according to their height. For
every h ≥ 0, a tunnel at height h must have length 2(h + 1) in order to have depth 0.
It is important to notice that if a tunnel of depth 0 of D corresponds to a decomposition
D = AuBdC, then D has no tunnels of depth 0 in the part given by B. In other words,
the projections on the x-axis of all the tunnels of depth 0 of a given Dyck path are disjoint.
This observation allows us to give a continued fraction expression for F312(x, 1, z).
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Theorem 5.8 F312(x, 1, z) is given by the following continued fraction.

F312(x, 1, z) =
1

1− (x− 1)z − z

1− (x− 1)z2 − z

1− 2(x− 1)z3 − z

1− 5(x− 1)z4 − z

. . .

,

where at the n-th level, the coefficient of (x− 1)zn+1 is the Catalan number Cn.

Proof. For every h ≥ 0, let tdh
0(D) be the number of tunnels of D of height h and length

2(h + 1). Note that td0(D) =
∑

h≥0 tdh
0(D). We will show now that for every h ≥ 1, the

generating function for Dyck paths where x marks the statistic td0
0 + · · ·+tdh−1

0 is given by
the continued fraction of the theorem truncated at level h, with the (h+1)-st level replaced
with C(z).

A Dyck path D can be written uniquely as a sequence of elevated Dyck paths, that is,
as D = uA1d · · ·uArd, where each Ai ∈ D. In terms of the GF C(z) =

∑
D∈D z

|D|, this
translates into the equation C(z) = 1

1−zC(z) . A tunnel of height 0 and length 2 (i.e., a hill)
appears in D for each empty Ai. Therefore, the GF enumerating hills is

∑

D∈D
xtd0

0(D)z|D| =
1

1− z[x− 1 + C(z)]
, (5.3)

since an empty Ai has to be counted as x, not as 1.

Let us enumerate simultaneously hills (as above), and tunnels of height 1 and length 4.
The GF (5.3) can be written as

1

1− z
[
x− 1 +

1

1− zC(z)

] .

Combinatorially, this corresponds to expressing each Ai as a sequence uB1d · · ·uBsd, where
each Bj ∈ D. Notice that since each uBjd starts at height 1, a tunnel of height 1 and
length 4 is created by each Bj = ud in the decomposition. Thus, if we want x to mark also
these tunnels, such a Bj has to be counted as xz, not z. The corresponding GF is

∑

D∈D
xtd0

0(D)+td1
0(D)z|D| =

1

1− z
[
x− 1 +

1

1− z[(x− 1)z + C(z)]

] .

Now it is clear how iterating this process indefinitely we obtain the continued fraction
of the theorem. From the GF where x marks td0

0 + · · ·+tdh−1
0 , we can obtain the one where

x marks td0
0 + · · ·+ tdh

0 by replacing the C(z) at the lowest level with

1

1− z[(x− 1)Chzh + C(z)]
,

to account for tunnels of height h and length 2(h+1), which in the decomposition correspond
to elevated Dyck paths at height h. �
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The same technique can be used to enumerate excedances in 312-avoiding permutations,
which correspond to tunnels of negative depth in the Dyck path. Recall that

C<i(z) =
i−1∑

j=0

Cjz
j

denotes the series for the Catalan numbers truncated at degree i.

Theorem 5.9 F312(x, q, z) is given by the following continued fraction.

F312(x, q, z) =
1

1− zK0 +
z

1− zK1 +
z

1− zK2 +
z

1− zK3 +
z

. . .

,

where Kn = (x− 1)Cnq
nzn + (q − 1)C<n(qz) for n ≥ 0.

Note that the first values of Kn are

K0 = x− 1, K1 = (x− 1)qz + q − 1,
K2 = 2(x− 1)q2z2 + (q − 1)(1 + qz), K3 = 5(x− 1)q3z3 + (q − 1)(1 + qz + 2q2z2).

Proof. We use the same decomposition as above, now keeping track of tunnels of negative
depth as well. For every h ≥ 0, let tdh

<0(D) be the number of tunnels of D of height h
and length less than 2(h + 1). Note that td<0(D) =

∑
h≥0 tdh

<0(D). To follow the same
structure as in the previous proof, counting tunnels height by height, it will be convenient
that at the h-th step of the iteration, q marks not only tunnels of negative depth up to
height h but also all the tunnels at higher levels. Denote by alltun>h(D) the number of
tunnels of D of height strictly greater than h.

We will show now that for every h ≥ 1, the generating function for Dyck paths where x
marks the statistic td0

0 + · · ·+tdh−1
0 and q marks td0

<0 + · · ·+tdh−1
<0 +alltun>h−1 is given by

the continued fraction of the theorem truncated at level h, with the (h+1)-st level replaced
with C(qz).

The analogous to equation (5.3) is now

∑

D∈D
xtd0

0(D)qtd
0
<0(D)+alltun>0(D)z|D| =

1

1− z[x− 1 + C(qz)]
. (5.4)

Indeed, decomposing D as uA1d · · ·uArd, q counts all the tunnels that appear in any Ai,
and whenever an Ai is empty we must mark it as x.

Let us enumerate now tunnels of depth 0 and negative depth at both height 0 and
height 1. Modifying (5.4) so that q no longer counts tunnels at height 1, we get

∑

D∈D
xtd0

0(D)qtd
0
<0(D)+alltun>1(D)z|D| =

1

1− z
[
x− 1 +

1

1− zC(qz)

] , (5.5)
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which corresponds to writing each Ai as Ai = uB1d · · ·uBsd, and having q count all tunnels
in each Bj . Now, in order for x to mark tunnels of depth 0 at height 1, each Bj = ud, that
in (5.5) is counted as qz, has to be now counted as xqz instead. Similarly, to have q mark
tunnels of negative depth at height 1, we must count each empty Bj as q, not as 1. This
gives us the following GF:

∑

D∈D
xtd0

0(D)+td1
0(D)qtd

0
<0(D)+td1

<0(D)+alltun>1(D)z|D|

=
1

1− z
[
x− 1 +

1

1− z[(x− 1)qz + q − 1 + C(qz)

] .

Iterating this process level by level indefinitely we obtain the continued fraction of
the theorem. At each step, from the GF where x marks td0

0 + · · · + tdh−1
0 , and q marks

td0
<0 + · · ·+ tdh−1

<0 + alltun>h−1, we can obtain the one where x marks td0
0 + · · ·+ tdh

0 and

q marks td0
<0 + · · · + tdh

<0 + alltun>h by replacing the C(qz) at the lowest level with

1

1− z[(x− 1)Chqhzh + (q − 1)C<h(qz) + C(qz)]
. (5.6)

This change makes x account for tunnels of depth 0 at height h, which in the decomposition
correspond to the Ch possible elevated Dyck paths of length 2(h + 1) when they occur
at height h. It also makes q count tunnels of negative depth at height h, which in the
decomposition correspond to elevated Dyck paths at height h of length less than 2(h + 1).
The GF for these ones becomes qC<h(qz) instead of C<h(qz), since for every j < h, an
elevated path uCd with C ∈ Dj contributes to one extra tunnel of negative depth at height
h, aside from the j tunnels of height more than h that it contains. �

For 231-avoiding permutations we get the following GF.

Corollary 5.10 F231(x, q, z) is given by the following continued fraction.

F231(x, q, z) =
1

1− zK ′
0 +

qz

1− zK ′
1 +

qz

1− zK ′
2 +

qz

1− zK ′
3 +

qz

. . .

,

where K ′
n = (x− q)Cnz

n + (1− q)C<n(z).

The first values of K ′
n are

K ′
0 = x− q, K ′

1 = (x− q)z + 1− q,
K ′

2 = 2(x− q)z2 + (1− q)(1 + z), K ′
3 = 5(x− q)z3 + (1− q)(1 + z + 2z2).

Proof. By Lemma 1.2, we have that F231(x, q, z) = F312(x/q, 1/q, qz), so the expression
follows from Theorem 5.9. �
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5.3 Double restrictions

In this section we consider simultaneous avoidance of any two patterns of length 3. Using
Lemma 1.2, the pairs of patterns fall into the following equivalence classes.

a) {123, 132} ≈ {123, 213}
b) {231, 321} ∼ b’) {312, 321}

c) {132, 213}
d) {231, 312}

e) {132, 231} ≈ {213, 231} ∼ e’) {132, 312} ≈ {213, 312}
f) {132, 321} ≈ {213, 321}

g) {123, 231} ∼ g’) {123, 312}
h) {123, 321}

In [79] it is shown that the number of permutations in Sn avoiding any of the pairs in
the classes a), b), b’), c), d), e), and e’) is 2n−1, and that for the pairs in f), g) and g’),
the number of permutations avoiding any of them is

(n
2

)
+ 1. The case h) is trivial because

this pair is avoided only by permutations of length at most 4.

In terms of generating functions, this means that when we substitute x = q = 1 in
FΣ(x, q, z), where Σ is any of the pairs in the classes from a) to e’), we get

FΣ(1, 1, z) =
∑

n≥0

2n−1zn =
1− z
1− 2z

.

If Σ is a pair from the classes f), g), g’), we get

FΣ(1, 1, z) =
∑

n≥0

(

(
n

2

)
+ 1)zn =

1− 2z + 2z2

(1− z)3 .

5.3.1 a) {123, 132} ≈ {123, 213}
Proposition 5.11

F{123,132}(x, q, z) = F{123,213}(x, q, z)

=
1 + xz + (x2 − 4q)z2 + (−3xq + q + q2)z3 + (xq + xq2 − 3x2q + 3q2)z4

(1− qz2)(1− 4qz2)
. (5.7)

Proof. Consider the bijection ϕ : Sn(132) −→ Dn described in Section 2.2. Part (4) of
Proposition 2.4 says that the height of the Dyck path ϕ(π) is the length of the longest
increasing subsequence of π. In particular, π ∈ Sn(12 · · · (k+1), 132) if and only if ϕ(π) has
height at most k. Thus, by Lemma 5.1, F{123,132}(x, q, z) can be written in terms of Dyck
paths as ∑

D∈D≤2

xct(D)qrt(D)z|D|. (5.8)

Let us first find the univariate GF for paths of height at most 2 (with no statistics).
Clearly, the GF for Dyck paths of height at most 1 is 1

1−z , since such paths are just sequences
of hills. A path D of height at most 2 can be written uniquely as D = uA1duA2d · · ·uArd,
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where each Ai is a path of height at most 1. The GF for each uAid is z
1−z . Thus,

∑

D∈D≤2

z|D| =
1

1− z
1−z

=
1− z
1− 2z

=
∑

n≥0

2n−1zn.

In the rest of this proof, we assume that all Dyck paths that appear have height at
most 2 unless otherwise stated. To compute (5.8), we will separate paths according to their
height at the middle. Consider first paths whose height at the middle is 0. Splitting such a
path at its midpoint we obtain a pair of paths of the same length. Thus, the corresponding
GF is ∑

m≥0

2m−1zm · 2m−1qmzm =
1− 3qz2

1− 4qz2
, (5.9)

since the number of right tunnels of such a path is the semilength of its right half.

Figure 5-8: A path of height 2 with a centered tunnel.

Now we consider paths whose height at the middle is 1. It is easy to check that without
the variables x and q, the GF for such paths is

z

1− 4z2
. (5.10)

Let us first look at paths of this kind that have a centered tunnel. They must be of the
form D = AuBdC where A,C ∈ D≤2 have the same length, and B is a sequence of an even
number of hills. Thus, their GF is

xz · 1

1− qz2
· 1− 3qz2

1− 4qz2
, (5.11)

where x marks the centered tunnel, 1
1−qz2 corresponds to the sequence of hills B, half of

which give right tunnels, and the last fraction comes from the pair AC, which is counted
as in (5.9). From (5.10) and (5.11) it follows that the univariate GF (with just variable z)
for paths with height at the middle 1, not having a centered tunnel, is

z

1− 4z2
− z(1− 3z2)

(1− z2)(1 − 4z2)
=

2z3

(1− z2)(1− 4z2)
.

By symmetry, in half of these paths, the tunnel of height 0 that goes across the middle is
a right tunnel. Thus, the multivariate GF for all paths with height 1 at the middle is

xz(1− 3qz2)

(1− qz2)(1 − 4qz2)
+

(q + 1)qz3

(1− qz2)(1 − 4qz2)
. (5.12)

Here the right summand corresponds to paths with no centered tunnel: the term (q + 1)
distinguishes whether the tunnel that goes across the middle is a right tunnel or not, and
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the other q’s mark tunnels completely contained in the right half.

Paths with height 2 at the middle are easy to enumerate now. Indeed, they must have
a peak ud in the middle, whose removal induces a bijection between these paths and paths
with height 1 at the middle. This bijection preserves the number of right tunnels, and
decreases the length and the number of centered tunnels by one. Thus, the GF for paths
with height 2 at the middle is xz times expression (5.12). Adding up this GF for paths
with height 2 at the middle, to the expressions (5.9) and (5.12) for paths whose height at
the middle is 0 and 1 respectively, we obtain expression (5.7) for F{123,132}(x, q, z). �

Let us see how the same technique used in this proof can be generalized to enumerate
fixed points in Sn(132, 12 · · · (k + 1)) for an arbitrary k ≥ 0.

Theorem 5.12 For k ≥ 0, let

Jk(x, z) := F{132,12···(k+1)}(x, 1, z) =
∑

n≥0

∑

π∈Sn(132,12···(k+1))

xfp(π)zn.

Then the Jk’s satisfy the recurrence

Jk(x, z) =

k∑

`=0

Ik,`(z)(1 + (x− 1)zJ`−1(x, z)), (5.13)

where J−1(x, z) := 0, and Ik,`(z) is defined as

Ik,`(z) :=
∑

n≥0

g2
k,`(n)zn, where

∑

n≥0

gk,`(n)zn =
U`(

1
2z )

zUk+1(
1
2z )

,

where Um are the Chebyshev polynomials of the second kind, defined in Section 1.3.2.

Before proving this theorem, let us show how to apply it to obtain the GFs Jk for the
first few values of k. For k = 1, we have I1,0(z) = z

1−z2 , I1,1(z) = 1
1−z2 , so

J1(x, z) =
1 + xz

1− z2
.

For k = 2, we get I2,0(z) = z2

1−4z2 , I2,1(z) = z
1−4z2 , I2,2(z) = 1 + z2

1−4z2 , thus

J2(x, z) =
1 + xz + (x2 − 4)z2 + (2− 3x)z3 + (3 + 2x− 3x2)z4

(1− z2)(1 − 4z2)
,

which is the expression of Proposition 5.11 for q = 1.

For k = 3, we obtain I3,0(z) = z3+z5

(1−z2)(1−7z2+z4)
, I3,1(z) = z2+z4

(1−z2)(1−7z2+z4)
, I3,2(z) =

z(1−4z2+z4)
(1−z2)(1−7z2+z4)

, I3,2(z) = 1 + z2(1−4z2+z4)
(1−z2)(1−7z2+z4)

, so

J3(x, z) = [1+xz+(x2−12)z2+(x3−11x+2)z3+(−10x2+4x+45)z4+(−10x3+4x2+37x−10)z5

+(25x2−22x−52)z6+(25x3−22x2−41x+16)z7+(−12x2+16x+16)z8+(−12x3+16x2

+12x− 8)z9] / [(1− z2)2(1− 4z2)(1− 7z2 + z4)].
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Proof. As mentioned in the previous proof, ϕ induces a bijection between Sn(132, 12 · · · (k+
1)) and D≤k, the set of Dyck paths of height at most k. Thus, by Lemma 5.1,

Jk(x, z) =
∑

D∈D≤k

xct(D)z|D|.

In order to find a recursion for this GF, we are going to apply the same technique of
marking tunnels that we used in Sections 2.2.1 and 2.2.2. We count pairs (D,S) where
D ∈ D≤k and S is a subset of CT(D), the set of centered tunnels of D. In other words, we
are considering Dyck paths where some centered tunnels (namely those in S) are marked.
Each such pair is given weight (x − 1)|S|z|D|, so that for a fixed D, the sum of weights of
all pairs (D,S) is xct(D)z|D|, which is the weight that D has in Jk(x, z).

k

k−l
u d

A
C

B

Figure 5-9: A path of height k with two marked centered tunnels.

If D ∈ D≤k has some marked centered tunnel, consider the decomposition D = AuBdC
given by the longest marked tunnel (i.e., all the other marked tunnels are inside the part B
of the path). Let ` be the distance between this tunnel and the line y = k (see Figure 5-9).
Equivalently, A ends at height k − `, the same height where C begins. Then, B is an
arbitrary Dyck path of height at most `−1 with possibly some marked centered tunnels, so
its corresponding GF is J`−1(x, z) (with the convention J−1(x, z) := 0, since for ` = 0 there
is no such B). Giving weight (x− 1) to the tunnel that determines our decomposition, we
have that the part uBd of the path contributes (x− 1)zM`−1(x, z) to the GF.

Now we look at the GF for the part A of the path. Let gk,`(n) be the number of paths
from (0, 0) to (n, k − `) staying always between y = 0 and y = k. A path of this type can
be decomposed uniquely as A = EkuEk−1u · · ·uE`+1uE`, where each Ei ∈ D≤i. The GF
of Dyck paths of height at most i is

Ji(1, z) =
Ui(

1
2
√

z
)

√
zUi+1(

1
2
√

z
)
,

as shown for example in [52]. Let w =
√
z, which is the weight of a single step of a path,

and let R̃k,`(w) :=
∑

n≥0 gk,`(n)wn. From the above decomposition of A,

R̃k,`(w) = Jk(1, w
2)wJk−1(1, w

2)w · · ·wJ`(1, w
2) =

U`(
1

2w )

wUk+1(
1

2w )
.

The part C of the path D, flipped over a vertical line, can be regarded as a path with the
same endpoints as A, since it must have the same length and end at the same height k− `.
Thus, the GF for pairs (A,C) of paths of the same length from height 0 to height k− ` and
not going above y = k is

∑
n≥0 g

2
k,`(n)zn = Ik,`(z).
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Hence, the GF for paths D ∈ D≤k having the longest marked centered tunnel at height
k − ` is Ik,`(z)(x− 1)zM`−1(x, z).

If D has no marked tunnel, decompose it as D = AC where A and C have the same
length. Letting k−` be again the height whereA ends and C begins, the situation is the same
as above but without any contribution coming from the central part of D. The parameter
` can take any value between 0 and k. Thus, summing over all possible decompositions of
D, we get

Jk(x, z) =

k∑

`=0

Ik,`(z)(1 + (x− 1)zJ`−1(x, z)).

�

5.3.2 b, b’) {231, 321} ∼ {312, 321}
Proposition 5.13

F{312,321}(x, q, z) =
1− qz

1− (x+ q)z + (x− 1)qz2
. (5.14)

Proof. The length of the longest decreasing subsequence of π equals the height of the Dyck
path ϕ(π̄). In particular, we have a bijection

Sn(312, 321) ←→ D≤2
n

π 7→ ϕ(π̄)

Thus, by Lemma 5.1,

F{312,321}(x, q, z) =
∑

D∈D≤2

xtd0(D)qtd<0(D)z|D|.

But the only tunnels of depth 0 that a Dyck path of height at most 2 can have are hills, and
the only tunnels of negative depth that it can have are peaks at height 2. A path D ∈ D≤2

can be written uniquely as D = uA1duA2d · · ·uArd, where each Ai is a (possibly empty)
sequence of hills. An empty Ai creates a tunnel of depth 0 in D, so it contributes as x. An
Ai of length 2j > 0 contributes as qjzj , since it creates j peaks at height 2 in D. Thus,

F{312,321}(x, q, z) =
1

1− z
(
x+

qz

1− qz

) ,

which is equivalent to (5.14). �

Corollary 5.14

F{231,321}(x, q, z) =
1− z

1− (x+ 1)z + (x− q)z2
.

Proof. It follows from Lemma 1.2 that F{231,321}(x, q, z) = F{312,321}(x/q, 1/q, qz). �

As in the previous section, these results can be generalized to the case when instead of
the pattern 321 we have a decreasing pattern (k+1)k · · · 21 of arbitrary length. For i, h ≥ 0,
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let C≤h
i be the number of Dyck paths of length 2i and height at most h. As mentioned

before, it is known that
∑

i≥0

C≤h
i zi =

Uh( 1
2
√

z
)

√
zUh+1(

1
2
√

z
)
,

where Um are the Chebyshev polynomials of the second kind. Let

C≤h
<i (z) :=

i−1∑

j=0

C≤h
j zj .

The following theorem deals with fixed points and excedances in Sn(312, (k + 1)k · · · 1) for
any k ≥ 0.

Theorem 5.15 Let C≤h
i = |D≤h

i | and C≤h
<i (z) be defined as above. Then, for k ≥ 0,

F{312,(k+1)k···21}(x, q, z) = Ak
0(x, q, z),

where Ak
i is recursively defined by

Ak
i (x, q, z) =





1

1− z[(x− 1)C≤k−i−1
i qizi + (q − 1)C≤k−i−1

<i (qz) +Ak
i+1(x, q, z)]

if i < k,

1 if i = k.

For example, for k = 2 we obtain Proposition 5.13, and for k = 3 we get

F{312,4321}(x, q, z) =
1

1− z


x− 1 +

1

1− z
[
(x− 1)qz + q − 1 + 1

1−qz

]




=
1− 2qz + (q2 − xq)z2 + (xq2 − q2)z3

1− (x+ 2q)z + (xq + q2 − q)z2 + (x2q − xq)z3 + (−x2q2 + 2xq2 − q2)z4
.

Proof. It is analogous to the proof of Theorem 5.9, with the only difference that here we
consider only those paths that do not go above the line y = k. �

Making the appropriate substitutions in the statement of Theorem 5.15, we obtain an
expression for the generating function F{231,(k+1)k···1}(x, q, z) = F{312,(k+1)k···1}(

x
q ,

1
q , qz).

5.3.3 c) {132, 213}
Proposition 5.16

F{132,213}(x, q, z) =
1− (1 + q)z − 2qz2 + 4q(1 + q)z3 − (xq2 + xq + 5q2)z4 + 2xq2z5

(1− z)(1− xz)(1 − qz)(1− 4qz2)
.

Proof. We use again the bijection ϕ : Sn(132) −→ Dn. From its description given in
Section 2.2, it is not hard to see that a permutation π ∈ Sn(132) avoids 213 if and only if
all the valleys of the corresponding Dyck path ϕ(π) have their lowest point on the x-axis. A
path with such property can be described equivalently as a sequence of pyramids. Denote by
Pyrn ⊆ Dn the set of sequences of pyramids of length 2n, and let Pyr :=

⋃
n≥0 Pyrn. We
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have just seen that ϕ restricts to a bijection between Sn(132, 213) and Pyrn. By Lemma 5.1,
we can write F{132,213}(x, q, z) as

∑

D∈Pyr

xct(D)qrt(D)z|D|.

Since for each n ≥ 1 there is exactly one pyramid of length 2n, the univariate GF of
sequences of pyramids is just

∑
D∈Pyr z

|D| = 1
1− z

1−z

= 1−z
1−2z = 1 +

∑
n≥1 2n−1zn.

Let us first consider elements of Pyr that have height 0 in the middle (equivalently, the
two central steps are du). Each one of their halves is a sequence of pyramids, both of the
same length. They have no centered tunnels, and the number of right tunnels is given by
the semilength of the right half. Thus, their multivariate GF is

1 +
∑

m≥1

4m−1qmz2m = 1 +
qz2

1− 4qz2
. (5.15)

Now we count elements of Pyr whose two central steps are ud. They are obtained
uniquely by inserting a pyramid of arbitrary length in the middle of a path with height 0
at the middle. The tunnels created by the inserted pyramid are all centered tunnels, so the
corresponding GF is

xz

1− xz

(
1 +

qz2

1− 4qz2

)
. (5.16)

Figure 5-10: A sequence of pyramids.

It remains to count the elements of Pyr that in the middle have neither a peak nor a
valley. From a non-empty sequence of pyramids with height 0 in the middle, if we increase
the size of the leftmost pyramid of the right half by an arbitrary number of steps, we obtain a
sequence of pyramids whose two central steps are uu. Reciprocally, by this procedure every
such sequence of pyramids can be obtained in a unique way from a sequence of pyramids
with height 0 in the middle. Thus, the GF for the elements of Pyr whose two central steps
are uu is

qz

1− qz ·
qz2

1− 4qz2
. (5.17)

By symmetry, the GF for the elements of Pyr whose two central steps are dd is

z

1− z ·
qz2

1− 4qz2
, (5.18)

where the difference with respect to 5.17 is that now the pyramid across the middle does
not create right tunnels. Adding up (5.15), (5.16), (5.17) and (5.18) we get the desired GF.

�
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5.3.4 d) {231, 312}
Proposition 5.17

F{231,312}(x, q, z) =
1− qz2

1− xz − 2qz2
.

Proof. We have shown in the proof of Proposition 5.16 that ϕ induces a bijection between
Sn(132, 213) and Pyrn, the set of sequences of pyramids of length 2n. Composing it with
the complementation operation, we get a bijection π 7→ ϕ(π̄) between Sn(231, 312) and
Pyrn. Together with Lemma 5.1, this allows us to express F{231,312}(x, q, z) as

∑

D∈Pyr

xtd0(D)qtd<0(D)z|D|.

All that remains is to observe how many tunnels of zero and negative depth are created by
a pyramid according to its size. A pyramid of odd semilength 2m+ 1 creates one tunnel of
depth 0 and m tunnels of negative depth. A pyramid of even semilength 2m creates only
m tunnels of negative depth. Thus, we have that

F{231,312}(x, q, z) =
1

1− xz

1− qz2
− qz2

1− qz2

,

which equals the expression above. �

5.3.5 e, e’) {132, 231} ≈ {213, 231} ∼ {132, 312} ≈ {213, 312}
Proposition 5.18

F{132,231}(x, q, z) = F{213,231}(x, q, z) =
1− z − qz2 + xqz3

(1− xz)(1 − z − 2qz2)
.

Proof. As usual, we use the bijection ϕ : Sn(132) −→ Dn. Now we are interested in how
the condition that π avoids 231 is reflected in the Dyck path ϕ(π). It is easy to see from
the description of ϕ and ϕ−1 in Section 2.2 that π is 231-avoiding if and only if ϕ(π) does
not have any two consecutive up-steps after the first down-step (equivalently, all the non-
isolated up-steps occur at the beginning of the path). Let En ⊆ Dn be the set of Dyck paths
with this condition, and let E :=

⋃
n≥0 En. Then, ϕ induces a bijection between Sn(132, 231)

and En. By Lemma 5.1, F{132,231}(x, q, z) can be written as

∑

D∈E
xct(D)qrt(D)z|D|.

If D ∈ E , centered tunnels of D can appear only in the following two places. There can
be a centered tunnel produced by a peak in the middle of D. All the other centered tunnels
of D must have their endpoints in the initial ascending run and the final descending run of
D (that is, in their corresponding decomposition D = AuBdC, A is a sequence of up-steps
and C is a sequence of down-steps). For convenience we call this second kind of tunnels
bottom tunnels. All the right tunnels of D come from peaks on the right half.

It is an exercise to check that the number of paths in En having a peak in the middle
and r peaks on the right half is

(
n−r−1

r

)
2r−1 if r ≥ 1, and 1 if r = 0. Similarly, the number
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Figure 5-11: A path in E with a peak in the middle and two bottom tunnels.

of paths in En with no peak in the middle and r peaks on the right half is
(
n−r

r

)
2r−1 if r ≥ 1,

and 0 if r = 0. Let us ignore for the moment the bottom tunnels. For peaks in the middle
and right tunnels we have the following GF.

Q(x, q, z) :=
∑

D∈E\E0

x#{peaks in the middle of D}qrt(D)z|D|

=
∑

n≥1



bn/2c∑

r=1

(
n− r
r

)
2r−1qr + x


1 +

b(n−1)/2c∑

r=1

(
n− r − 1

r

)
2r−1qr





 zn

=
xz + (q − x)z2 − xqz3

(1− z)(1 − z − 2qz2)
. (5.19)

Now, to take into account all centered tunnels, we use that every D ∈ E can be written
uniquely as D = ukD′dk, where k ≥ 0 and D′ ∈ E has no bottom tunnels. The GF
for elements of E that do have bottom tunnels, where x marks peaks in the middle, is
xz + zQ(x, q, z) (the term xz is the contribution of the path ud). Hence, the sought GF
where x marks all centered tunnels is

F{132,231}(x, q, z) =
1

1− xz [1 +Q(x, q, z) − xz − zQ(x, q, z)] = 1 +
1− z
1− xzQ(x, q, z),

which together with (5.19) implies the proposition. �

Corollary 5.19

F{132,312}(x, q, z) = F{213,312}(x, q, z) =
1− qz − qz2 + xqz3

(1− xz)(1 − qz − 2qz2)
.

Proof. It follows from Lemma 1.2 that F{132,312}(x, q, z) = F{132,231}(x/q, 1/q, qz). �

5.3.6 f) {132, 321} ≈ {213, 321}
Proposition 5.20

F{132,321}(x, q, z) = F{213,321}(x, q, z) =
1− (1 + q)z + 2qz2

(1− z)(1 − xz)(1 − qz) .

Proof. We saw in part (6) of Proposition 2.4 that the number of peaks of the Dyck path
ϕ(π) equals the length of the longest decreasing subsequence of π. In particular, π is 321-
avoiding if and only if ϕ(π) has at most two peaks. By Lemma 5.1, F{132,321}(x, q, z) =∑
xct(D)qrt(D)z|D|, where the sum is over Dyck paths D with at most two peaks. Clearly,
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such a path can be uniquely written as D = ukD′dk, where k ≥ 0 and D′ is either empty
or a pair of adjacent pyramids (see Figure 5-12). Therefore,

F{132,321}(x, q, z) =
1

1− xz

(
1 +

z

1− z ·
qz

1− qz

)
,

since centered tunnels are produced by the steps outside D ′, and right tunnels are created
by the right pyramid of D′. �

Figure 5-12: A path with two peaks.

This case can be generalized to the situation when instead of 321 we have a decreas-
ing pattern of arbitrary length. Observe that by Lemma 1.2, F{132,(k+1)k···21}(x, q, z) =
F{213,(k+1)k···21}(x, q, z) for all k.

Theorem 5.21

∑

k≥0

F{132,(k+1)k···21}(x, q, z) p
k =

2(1 + xz(p− 1))

(1− p)[1 + (1 + q − 2x)z − qz2(p− 1)2 +
√
f1(q, z)]

,

where f1(q, z) = 1−2(1+q)z+[(1−q)2−2q(p−1)(p+3)]z2−2q(1+q)(p−1)2z3+q2(p−1)4z4.

Proof. We use again the fact from Proposition 2.4 that the number of peaks of ϕ(π) equals
the length of the longest decreasing subsequence of π. Thus, ϕ induces a bijection between
Sn(132, (k + 1)k · · · 21) and the subset of Dn of paths with at most k peaks. This implies
that

∑
k≥0 F{132,(k+1)k···21}(x, q, z) p

k can be expressed as

1

1− p
∑

D∈D
xct(D)qrt(D)p#{peaks of D}z|D|.

The result now follows from Theorem 3.10 and the expression for the generating function∑
xct(D)qrt(D)p#{peaks of D}z|D| given in its proof. �

5.3.7 g, g’) {123, 231} ∼ {123, 312}
Proposition 5.22

F{123,312}(x, q, z)

=
1 + xz + (x2 − 2q)z2 + (−x2q + xq2 + 3q2)z4 + 3q3z5 − q3z6 − 4q4z7 − 2xq4z8

(1− qz2)3(1− q2z3)
.

Proof. We have seen in the proof of Proposition 5.20 that ϕ induces a bijection between
Sn(132, 321) and the set of paths in Dn with at most two peaks. Composing it with the
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complementation operation, we get a bijection π 7→ ϕ(π̄) between Sn(123, 312) and such set
of Dyck paths. Using Lemma 5.1, we can write F{123,312}(x, q, z) =

∑
xtd0(D)qtd<0(D)z|D|,

where the sum is over Dyck paths D with at most two peaks. Again, such a D can be
uniquely written as D = ukD′dk, where k ≥ 0 and D′ is either empty or a pair of adjacent
pyramids, i.e., D′ = uidiujdj with i, j ≥ 1. The idea is to consider cases depending on the
relations among i, j and k.

To enumerate Dyck paths with at most two peaks with respect to td0 and td<0, it is
important to look at where the tunnels of depth 0 and depth 1 occur. For convenience
in this proof, we call such tunnels frontier tunnels, since they determine where tunnels of
negative depth are: above them all tunnels have negative depth, and below them tunnels
have positive depth. There are four possibilities according to where the frontier tunnels of
D occur in the decomposition above:

(1) outside D′,

(2) inside one of the pyramids of D′,

(3) inside both pyramids of D′,

(4) D has no frontier tunnel.

(1) (2)

(3) (4)

Figure 5-13: Four possible locations of the frontier tunnels.

Figure 5-13 shows an example of each of the four cases. The frontier tunnels (whose
depth is 0 in this example) are drawn with a solid line, while the dotted lines are the tunnels
of negative depth.

Note that in case (4) the tunnels of negative depth are exactly those in D ′. We show
as an example how to find the GF in case (1). In this case, the frontier tunnel T gives
a decomposition D = AuBdC where A = um, C = dm, m ≥ 0, and B is a Dyck path
with at most two peaks, of semilength |B| = m if depth(T ) = 0, and |B| = m + 1 if
depth(T ) = 1. It follows from Proposition 5.20 that the GF for Dyck paths with at most

two peaks is 1−2z+2z2

(1−z)3
. In the situation where depth(T ) = 0, we have that |D| = 2|B| + 1

and td<0(D) = |B|. Thus, the corresponding GF is

xz · 1− 2qz2 + 2q2z4

(1− qz2)3
.
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Similarly, in the situation where depth(T ) = 1, we have that |D| = 2|B| and td<0(D) = |B|,
thus the corresponding GF is

1− 2qz2 + 2q2z4

(1− qz2)3
.

The other cases are similar. Adding up the GFs obtained in each case, we get the desired
expression for F{123,312}(x, q, z). �

Corollary 5.23

F{123,231}(x, q, z)

=
1 + xz + (x2 − 2q)z2 + (−x2q + xq + 3q2)z4 + 3q2z5 − q3z6 − 4q3z7 − 2xq3z8

(1− qz2)3(1− qz3)
.

Proof. By Lemma 1.2, we have that F{123,231}(x, q, z) = F{123,312}(x/q, 1/q, qz). �

5.3.8 h) {123, 321}
Proposition 5.24

F{123,321}(x, q, z) = 1 + xz + (x2 + q)z2 + (2xq + q2 + q)z3 + 4q2z4.

Proof. By a well-known result of Erdös and Szekeres, any permutation of length at least
5 contains an occurrence of either 123 or 321. This reduces the problem to counting fixed
points and excedances in permutations of length at most 4, which is trivial. �

5.4 Triple restrictions

Here we consider simultaneous avoidance of any three patterns of length 3. Applying
Lemma 1.2, the triplets of patterns fall into the following equivalence classes.

a) {123, 132, 213}
b) {231, 312, 321}

c) {123, 132, 231} ≈ {123, 213, 231} ∼ c’) {123, 132, 312} ≈ {123, 213, 312}
d) {132, 231, 321} ≈ {213, 231, 321} ∼ d’) {132, 312, 321} ≈ {213, 312, 321}

e) {132, 213, 231} ∼ e’) {132, 213, 312}
f) {132, 231, 312} ≈ {213, 231, 312}

g) {123, 231, 312}
h) {132, 213, 321}

i) {123, 132, 321} ≈ {123, 213, 321}
j) {123, 231, 321} ∼ j’) {123, 312, 321}

It is known [79] that the number of permutations in Sn avoiding the triplets in the
classes a) and b) is the Fibonacci number Fn+1. The number of permutations avoiding any
of the triplets in the classes c), c’), d), d’), e), e’), f), g) and h) is n. The cases of the
triplets i), j) and j’) are trivial, because they are avoided only by permutations of length
at most 4.
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In terms of generating functions, when we substitute x = q = 1 in FΣ(x, q, z) where Σ
is a triplet from one of the classes between a) and g), we get

FΣ(1, 1, z) =
∑

n≥0

Fn+1z
n =

1

1− z − z2
.

If Σ is any triplet from the classes between c) and h), we get

FΣ(1, 1, z) =
∑

n≥0

nzn =
1− z + z2

(1− z)2 .

The following theorem gives all the generating functions of permutations avoiding any
triplet of patterns of length 3.

Theorem 5.25 a)

F{123,132,213}(x, q, z) =
1 + xz + (x2 − q)z2 + (−xq + q2 + q)z3 − x2qz4

(1 + qz2)(1 − 3qz2 + q2z4)

b)

F{231,312,321}(x, q, z) =
1

1− xz − qz2

c)

F{123,132,231}(x, q, z) = F{123,213,231}(x, q, z)

=
1 + xz + (x2 − q)z2 + qz3 + (−x2q + xq + q2)z4

(1− qz2)2

c’)

F{123,132,312}(x, q, z) = F{123,213,312}(x, q, z)

=
1 + xz + (x2 − q)z2 + q2z3 + (−x2q + xq2 + q2)z4

(1− qz2)2

d)

F{132,231,321}(x, q, z) = F{213,231,321}(x, q, z) =
1− z + qz2

(1− z)(1 − xz)

d’)

F{132,312,321}(x, q, z) = F{213,312,321}(x, q, z) =
1− qz + qz2

(1− xz)(1 − qz)

e)

F{132,213,231}(x, q, z) =
1− z − qz2 + 2qz3 + (−x2q + q2 − xq)z4 + (x2q − 2q2)z5 + xq2z6

(1− z)(1− xz)(1 − qz2)2
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e’)

F{132,213,312}(x, q, z)

=
1− qz − qz2 + 2q2z3 + (−x2q − xq2 + q2)z4 + (x2q2 − 2q3)z5 + xq3z6

(1− xz)(1− qz)(1 − qz2)2

f)

F{132,231,312}(x, q, z) = F{213,231,312}(x, q, z) =
1 + xqz3

(1− xz)(1− qz2)

g)

F{123,231,312}(x, q, z) =
1 + xz + (x2 − q)z2 + xqz3 + q2z4

(1− qz2)2

h)

F{132,213,321}(x, q, z) =
1− (1 + q)z + 2qz2 − xqz3

(1− z)(1 − xz)(1− qz)
i)

F{123,132,321}(x, q, z) = F{123,213,321}(x, q, z) = 1 + xz + (x2 + q)z2 + (xq + q2 + q)z3 + q2z4

j)
F{123,231,321}(x, q, z) = 1 + xz + (x2 + q)z2 + (2xq + q)z3 + q2z4

j’)
F{123,312,321}(x, q, z) = 1 + xz + (x2 + q)z2 + (2xq + q2)z3 + q2z4

Proof. Throughout this proof we will use the bijection ϕ : Sn(132) −→ Dn described in
Section 2.2.

a) As in the proof of Proposition 5.11, we have that π ∈ Sn(132) avoids 123 if and only
if the Dyck path ϕ(π) has height at most 2. Similarly, from the proof of Proposition 5.16, π
avoids 213 if and only if ϕ(π) is a sequence of pyramids. Thus, ϕ induces a bijection between
Sn(123, 132, 213) and Pyr≤2

n := Pyr≤2 ∩ Dn, where Pyr≤2 denotes the set of sequences of
pyramids of height at most 2. By Lemma 5.1,

F{123,132,213}(x, q, z) =
∑

D∈Pyr≤2

xct(D)qrt(D)z|D|.

To count centered and right tunnels, we distinguish cases according to which steps are
the middle steps of D. A path in Pyr≤2 of height 0 at the middle can be split in two
elements of Pyr≤2 of equal length, only the right one producing right tunnels. Since the
number of D ∈ Pyr≤2

n is Fn+1, the GF for paths of height 0 at the middle is

∑

n≥0

F 2
m+1q

mz2m =
1− qz2

(1 + qz2)(1− 3qz2 + q2z4)
.

Multiplying this expression by xz (resp. by x2z2) we obtain the GF for paths in Pyr≤2

having in the middle a centered pyramid of height 1 (resp. of height 2).
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A B

Figure 5-14: A sequence of pyramids of height at most 2.

Paths D ∈ Pyr≤2 whose two middle steps are dd can be written as D = AuuddB,
where A,B ∈ Pyr≤2 and |B| = |A|+ 1 (see Figure 5-14). Thus, the corresponding GF is

∑

n≥1

FmFm+1q
mz2m+1 =

qz3

(1 + qz2)(1 − 3qz2 + q2z4)
.

By symmetry, multiplying this expression by q we get the GF for paths whose two middle
steps are uu.

Adding up all the cases, we get the desired GF

F{123,132,213}(x, q, z) =
(1 + xz + x2z2)(1− qz2)

(1 + qz2)(1 − 3qz2 + q2z4)
+

(q + q2)z3

(1 + qz2)(1− 3qz2 + q2z4)
.

b) Using the same reasoning as in a), we have that π 7→ ϕ(π̄) induces a bijection between
Sn(231, 312, 321) and Pyr≤2

n . Now, Lemma 5.1 implies that

F{231,312,321}(x, q, z) =
∑

D∈Pyr≤2

xtd0(D)qtd<0(D)z|D|.

Each pyramid of height 1 produces a tunnel of depth 0, and each pyramid of height 2 creates
a tunnel of negative depth. Therefore,

F{231,312,321}(x, q, z) =
1

1− xz − qz2
.

c) We saw in the proof of Proposition 5.18 that π ∈ Sn(132) avoids 231 if and only
if the Dyck path ϕ(π) does not have any two consecutive up-steps after the first down-
step. Therefore, ϕ induces a bijection between Sn(123, 132, 312), and paths in Dn with the
above condition and height at most 2. Such paths (except the empty one) can be expressed
uniquely as D = uAdB, where A and B are sequences of hills (i.e, they have the form
(ud)k for some k ≥ 0). Lemma 5.1 reduces the problem to enumerating centered tunnels
and right tunnels on these paths.

If B is empty, D = uAd has a centered tunnel at height 0. The contribution of paths
of this kind to our GF is xz

1−qz2 for |A| even, and x2z2

1−qz2 for |A| odd.

Assume now that |A| < |B|, so that A is within the left half of D = uAdB. If the
middle of D is at height 0, then D is determined by the length of A and the number of hills
in B to the left of the middle. Thus, the contribution of this subset to the GF is

qz2

(1− qz2)2
.

Multiplying this expression by xz gives the GF for paths whose midpoint is on top of a hill
of B.
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A

Bu d

Figure 5-15: An example with |A| = 3 and |B| = 2.

It remains the case in which |A| ≥ |B| > 0. If |A|− |B| is even, the contribution of these
paths to the GF is

z · qz2

1− qz2
· 1

1− qz2
,

where the last factor counts how larger A is than B. If |A| − |B| is odd, the corresponding
GF is

z · qz2

1− qz2
· xz

1− qz2
,

since in this case there is a centered tunnel of height 1 inside A (see Figure 5-15).
Summing up all the cases, we get

F{123,132,231}(x, q, z) = 1 +
xz + x2z2

1− qz2
+

(1 + xz)qz2

(1− qz2)2
+
qz3(1 + xz)

(1− qz2)2
.

c’) By Lemma 1.2, we have that F{123,132,312}(x, q, z) = F{123,132,231}(x/q, 1/q, qz), so
the formula follows from part c).

d) As in the proof of Proposition 5.18, we use that π ∈ Sn(132) avoids 231 if and only
if the Dyck path ϕ(π) does not have any two consecutive up-steps after the first down-step.
Besides, as in Proposition 5.20, π ∈ Sn(132) avoids 321 if and only if ϕ(π) has at most two
peaks. Thus, π ∈ Sn(132, 231, 321) if and only if ϕ(π) ∈ Dn has the form ukBdk, where B
is either empty or is a pair of pyramids, the second of height 1. Fixed points and excedances
of π are mapped to centered tunnels and right tunnels of ϕ(π) respectively, by Lemma 5.1.
Thus, F{123,132,312}(x, q, z) equals the GF enumerating centered and right tunnels in these
paths.

If B is not empty, the contribution of the first pyramid is z
1−z , and the second pyramid

contributes qz. Centered tunnels come from the steps outside B. Hence,

F{123,132,312}(x, q, z) =
1

1− xz

(
1 +

z

1− z · qz
)
.

d’) It follows from part d) and Lemma 1.2.

e) Let π ∈ Sn(132). We have seen that the condition that π avoids 213 translates into
ϕ(π) being a sequence of pyramids. The additional restriction of π avoiding 231 implies that
all but the first pyramid of the sequence ϕ(π) must have height 1. Thus, by Lemma 5.1,
F{132,213,231}(x, q, z) can be obtained enumerating centered and right tunnels in paths of the
form D = AB, where A is any pyramid and B is a sequence of hills.

The contribution of such paths when B is empty is just 1
1−xz . Assume now that B is

not empty. If |A| > |B|, the corresponding contribution is

qz2

1− qz2
· z

1− z ,
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where the second factor counts how larger A is than B. It remains the case |A| ≤ |B|, in
which A is within the left half of D. If the middle of D is at height 0, then D is determined
by the length of A and the number of hills in B to the left of the middle. Thus, the
contribution of this subset to the GF is

qz2

(1− qz2)2
.

Multiplying this expression by xz gives the GF for paths whose midpoint is on top of a hill
of B.

A
B

Figure 5-16: A pyramid followed by a sequence of hills.

Summing all this up, we get

F{132,213,231}(x, q, z) =
1

1− xz +
qz3

(1− z)(1 − qz2)
+

(1 + xz)qz2

(1− qz2)2
.

e’) It follows from part e) and Lemma 1.2.

f) Reasoning as in the proof of e), we see that π 7→ ϕ(π̄) induces a bijection between
Sn(123, 231, 312) and the subset of paths in Dn consisting of a pyramid followed by a
sequence of hills. By Lemma 5.1, it is enough to enumerate these paths according to the
statistics td0 and td<0. If the path is nonempty, the first pyramid contributes xz

1−qz2 if it

has odd size (since then it contains a tunnel of depth 0) and qz2

1−qz2 if it has even size. The

sequence of hills contributes 1
1−xz . Therefore,

F{132,231,312}(x, q, z) = 1 +
xz + qz2

1− qz2
· 1

1− xz .

g) Let π ∈ Sn(132). We have seen that π avoids 213 if and only if ϕ(π) is a sequence
of pyramids, and that π avoids 321 if and only if ϕ(π) has at most two peaks. In other
words, ϕ induces a bijection between Sn(132, 213, 321) and the subset of paths in Dn that
are a sequence of at most two pyramids. Composing with the complementation operation,
we have that π ∈ Sn(123, 231, 312) if and only if ϕ(π̄) is in that subset. Now, Lemma 5.1
implies that F{123,231,312} can be obtained enumerating sequences of at most 2 pyramids

according to td0 and td<0. Each pyramid contributes xz
1−qz2 if it has odd size and qz2

1−qz2 if
it has even size. Thus,

F{123,231,312}(x, q, z) = 1 +
xz + qz2

1− qz2
+

(
xz + qz2

1− qz2

)2

.

h) We have shown in the proof of g) that π ∈ Sn(132, 213, 321) if and only if ϕ(π)
is a sequence of at most two pyramids. Using Lemma 5.1, it is enough to enumerate
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centered tunnels and right tunnels in such paths. The contribution of paths with exactly
two pyramids is

z

1− z ·
qz

1− qz ,

since only the one on the right gives right tunnels. Centered tunnels appear when there is
only one pyramid. Thus we obtain

F{132,213,321}(x, q, z) =
1

1− xz +
qz2

(1− z)(1 − qz) .

i, j, j’) These cases are trivial because only permutations of length at most 4 can avoid
123 and 321 simultaneously. �

After having studied all the cases of double and triple restrictions, the next step is to
consider restrictions of higher multiplicity. However, for Σ ⊆ S3 with |Σ| ≥ 4, the sets
Sn(Σ) are very easy to describe (see for example [79]), and the distribution of fixed points
and excedances is trivial. In particular, in these cases we have that |Sn(Σ)| ∈ {0, 1, 2} for
all n.

5.5 Pattern-avoiding involutions

Recall that In denotes the set of involutions of length n, i.e., permutations π ∈ Sn such
that π = π−1. In terms of the array representation of π, this condition is equivalent to
arr(π) being symmetric with respect to the main diagonal. In this section we consider the
distribution of the statistics fp and exc in involutions avoiding any subset of patterns of
length 3.

For any π ∈ Sn, it is clear that fp(π) + exc(π) + exc(π−1) = n (each cross in the array
of π is either on, to the right of, or to the left of the main diagonal). Thus, if π ∈ In, then
exc(π) = 1

2(n− fp(π)), so the number of excedances is determined by the number of fixed
points. Therefore, it is enough here to consider only the statistic ‘number of fixed points’
in pattern-avoiding involutions.

For any set of patterns Σ, let In(Σ) := In ∩ Sn(Σ), and let ikn(Σ) := |{π ∈ In(Σ) :
fp(π) = k}|. Define

GΣ(x, z) :=
∑

n≥0

∑

π∈In(Σ)

xfp(π)zn.

By the reasoning above,
∑

n≥0

∑
π∈In(Σ) x

fp(π)qexc(π)zn = GΣ(xq−1/2, zq1/2).

Clearly, π̂ is an involution if and only if π is an involution. Therefore, from Lemma 1.1
we get the following.

Lemma 5.26 Let Σ be any set of patterns. We have

(1) GbΣ(x, z) = GΣ(x, z),

(2) GΣ−1(x, z) = GΣ(x, z).

The property stated in the following lemma is what allows us to apply our techniques
for studying statistics on pattern-avoiding permutations to the case of involutions.
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Lemma 5.27 Let π ∈ Sn(132) and let D = ϕ(π) ∈ Dn. Then,

π is an involution⇐⇒ ϕ(π) is symmetric.

Proof. The array of crosses representing π−1 is obtained from the one of π by reflection over
the main diagonal. Therefore, from the description of the bijection ϕ given in Section 2.2,
we have that ϕ(π−1) = D∗. It follows that π is an involution if and only if D = D∗, which
is equivalent to D being a symmetric Dyck path. �

5.5.1 Single restrictions

It is known [79] that for σ ∈ {123, 132, 213, 321}, |In(σ)| =
( n
bn/2c

)
, and that for σ ∈

{231, 312}, |In(σ)| = 2n−1. From Lemma 5.26 it follows that for all k ≥ 0, ikn(132) = ikn(213)
and ikn(231) = ikn(312). By Theorem 4.6 we have that in fact ikn(132) = ikn(321). Thus, for
single restrictions there are three cases to consider.

Theorem 5.28 ([43, 24]) Let n ≥ 1, k ≥ 0. We have

(1) i0n(123) = i2n(123) =

{ (
n−1

n
2

)
if n is even,

0 if n is odd,

i1n(123) =

{ (
n

n−1
2

)
if n is odd,

0 if n is even,

ikn(123) = 0 if k ≥ 3.

(2) ikn(132) = ikn(213) = ikn(321) =

{
k+1
n+1

(n+1
n−k

2

)
if n− k is even,

0 if n− k is odd.

(3) G231(x, z) = G312(x, z) =
1− z2

1− xz − 2z2
.

Proof. (1) Clearly a 123-avoiding permutation cannot have more than two fixed points. On
the other hand, if π ∈ In, we have fp(π) = n− 2 exc(π), which explains that ikn(123) = 0 if
n− k is odd. This implies that for odd n, fp(π) = 1 for all π ∈ In, so i1n(123) = |In(123)| =( n

n−1
2

)
. For even n, all we have to show is that i0n(123) = i2n(123).

The bijection ψy : Sn(123) −→ Dn described in Section 5.2.1 has the property that
π ∈ In(123) if and only if ψy(π) is a symmetric Dyck path. If n is even, involutions π ∈ In

with fp(π) = 2 are mapped to symmetric Dyck paths with a peak in the middle, and those
with fp(π) = 0 are mapped to symmetric Dyck paths with a valley in the middle. We
can establish a bijection between these two sets of Dyck paths just by changing the middle
peak ud into a middle valley du (this can always be done because the height at the middle
of a Dyck path of even semilength is always even, so it cannot be 1). This proves that
i0n(123) = i2n(123), and in particular it equals 1

2 |In(123)| =
(n−1

n
2

)
.

(2) We use the bijection ϕ : Sn(132) −→ Dn, which by Lemma 5.27 restricts to a
bijection between In(132) and Ds. Thus, by Lemma 5.1, G132(x, z) can be expressed as∑

D∈Ds x
ct(D)z|D|, where the sum is over all symmetric Dyck paths. But the number of

centered tunnels of a symmetric Dyck path is just its height at the middle. Therefore,
taking only the first half of the path, ikn(132) counts the number of paths from (0, 0) to
(n, k) never going below the x-axis, which equals the ballot number given in the theorem.
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(3) Consider the bijection
Sn(312) ←→ Dn

π 7→ ϕ(π̄)
. Then π ∈ In(312) if and only if

ϕ(π̄) is a sequence of pyramids. Together with the proof of Proposition 5.17, this implies
(see also [79]) that In(312) = In(231) = Sn(231, 312). Recall that fixed points of π are
mapped to tunnels of depth 0 of ϕ(π̄), which are produced by pyramids of odd size. Thus,
as in Proposition 5.17,

G312(x, z) =
1

1− xz+z2

1−z2

.

�

5.5.2 Multiple restrictions

Theorem 5.29 a)

G{123,132}(x, z) = G{123,213}(x, z) =
1 + xz + (x2 − 1)z2

1− 2z2

b)

G{231,321}(x, z) = G{312,321}(x, z) =
1

1− xz − z2

c)

G{132,213}(x, z) =
1− z2

(1− xz)(1 − 2z2)

d)

G{231,312}(x, z) =
1− z2

1− xz − 2z2

e)

G{132,231}(x, z) = G{213,231}(x, z) = G{132,312}(x, z) = G{213,312}(x, z) =
1 + xz3

(1− xz)(1− z2)

f)

G{132,321}(x, z) = G{213,321}(x, z) =
1

(1− xz)(1− z2)

g)

G{123,231}(x, z) = G{123,312}(x, z) =
1 + xz + (x2 − 1)z2 + xz3 + z4

(1− z2)2

h)
G{123,321}(x, z) = 1 + xz + (x2 + 1)z2 + 2xz3 + 2z4

Proof. All the equalities between GΣ for different Σ follow trivially from Lemma 5.26. To
find expressions for these GFs, the idea is to use again the same bijections as in Section 5.3,
between permutations avoiding two patterns of length 3 and certain subclasses of Dyck
paths. The main difference is that here we will have to deal only with symmetric Dyck
paths, as a consequence of Lemma 5.27.

a) From the proof of Proposition 5.11 and Lemma 5.27, we have that ϕ restricts to a
bijection between In(123, 132) and symmetric Dyck paths D ∈ Dn of height at most 2. By
Lemma 5.1, ϕ maps fixed points to centered tunnels, so all we have to do is count elements
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D ∈ Ds of height at most 2 according to the number of centered tunnels. Such a D can
be uniquely written as D = ABC, where A = C∗ ∈ D≤2 and B is either empty or has the
form B = uB1d, where B1 is a sequence of hills. If |B1| is even (resp. odd), then D has one

(resp. two) centered tunnels, so the contribution of B is 1+ (1+xz)xz
1−z2 . The contribution of A

and C is 1−z2

1−2z2 . The product of these two quantities gives the expression for G{123,132}(x, z).
b) As shown above and also in [79], we have that In(231) = Sn(231, 312). Therefore,

In(231, 321) = Sn(231, 312, 321). This case was treated in Theorem 5.25 b).

c) From the proof of Proposition 5.16 and Lemma 5.27, we have that ϕ gives a bijection
between In(132, 213) and symmetric sequences of pyramids D ∈ Pyrn, and that it maps
fixed points of the permutation to centered tunnels of the Dyck path. Such a D can be
written uniquely as D = ABC, where A = C∗ ∈ Pyr, and B is either empty or a pyramid.
The contribution of B is 1

1−xz , whereas A and C contribute 1−z2

1−2z2 . Multiplying these two
expressions we get a formula for G{132,213}(x, z).

d) Again, In(231) = Sn(231, 312) implies that In(231, 312) = Sn(231, 312), which has
been considered in Proposition 5.17.

e) We have that In(132, 231) = Sn(132, 231, 312), so the formula follows from Theo-
rem 5.25 f).

f) From the proof of Proposition 5.20 and Lemma 5.27, we have that ϕ gives a bijection
between In(132, 321) and symmetric paths D ∈ Dn with at most two peaks. Counting
centered tunnels in such paths is very easy, since they have the form D = ukBdk, where
k ≥ 0 and B is either empty or a pair of identical pyramids. The contribution of B is 1

1−z2 ,

whereas the rest contributes 1
1−xz .

g) We have that In(123, 231) = Sn(123, 231, 312), so the formula follows from Theo-
rem 5.25 g).

h) It is trivial since Sn(123, 321) = ∅ for n ≥ 5. �

The case of involutions avoiding simultaneously three or more patterns of length 3 is
very easy and does not involve any new idea, so we omit it here.

5.6 Expected number of fixed points

It is well known that the expected number of fixed points of a permutation π ∈ Sn chosen
uniformly at random is 1. One can ask whether this is true for a random permutation in
Sn(σ), for a given pattern σ. In the case of patterns of length 3 we can answer this question
easily using the results from this chapter.

For any pattern σ, let Xσ
n the random variable on the probability space Sn(σ) that gives

the number of fixed points. Let E[Xσ
n ] denote its expectation. If we have an expression for

Fσ(x, 1, z) =
∑

n,k≥0 |{π ∈ Sn(σ) : fp(π) = k}|xkzn, then the derivative with respect to x
gives

∂Fσ(x, 1, z)

∂x
=

∑

n,k

k · |{π ∈ Sn(σ) : fp(π) = k}|xk−1zn.

Evaluating at x = 1, we get

∂Fσ(x, 1, z)

∂x

∣∣∣∣
x=1

=
∑

n≥0

∑

k≥0

k · |{π ∈ Sn(σ) : fp(π) = k}| zn =
∑

n≥0

E[Xσ
n ] |Sn(σ)| zn. (5.20)
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5.6.1 a) 123

For the expectation of X123
n we have the formula

E[X123
n ] =

s1n(123) + 2s2n(123)

Cn
,

since 123-avoiding permutations cannot have more than two fixed points. Now, applying
Corollary 5.3 we get the following result.

Proposition 5.30 For all n ≥ 1,

E[X123
n ] =





2Cn−1

Cn
=

n+ 1

2n− 1
if n is even,

2Cn−1 −C2
n−1

2

Cn
if n is odd.

In both cases, the expectation is asymptotically 1
2 , which agrees with the intuitive fact that

the condition of avoiding 123 restrains the number of fixed points of a permutation.

5.6.2 b) 132 ≈ 213 ≈ 321

We clearly have that E[X132
n ] = E[X213

n ] = E[X321
n ], since the distribution of fixed points is

the same in permutations avoiding each one of the three patterns. Theorem 5.6 gives the
GF F132(x, 1, z) = 2

1+2(1−x)z+
√

1−4z
, from where we get

∂F132(x, 1, z)

∂x

∣∣∣∣
x=1

=
1− 2z −

√
1− 4z

2z
= C(z)− 1 =

∑

n≥1

Cnz
n.

So, by (5.20), we get the following proposition.

Proposition 5.31 For all n ≥ 1,

E[X132
n ] = E[X213

n ] = E[X321
n ] = 1.

This shows the a priori surprising phenomenon that the expected number of fixed points of
a random permutation is not affected by the condition that it avoids one of the patterns
132, 213 or 321. This contrasts with the fact that, given 1 ≤ i ≤ n, whereas for a random
π ∈ Sn the probability that i is a fixed point of π is 1

n and does not depend on i, for a

random π ∈ Sn(321) the probability that i is a fixed point of π is Ci−1Cn−i

Cn
, since πi = i if

and only if π1π2 · · · πi−1 ∈ Si−1(321) and (πi+1 − i)(πi+2 − i) · · · (πn − i) ∈ Sn−i(321). Note
that in particular this gives a more direct way to compute E[X 321

n ]: for 1 ≤ i ≤ n, let X321
n,i

be the indicator random variable that equals 1 if i is a fixed point of π ∈ Sn(321) and 0
otherwise. Clearly, X321

n =
∑

iX
321
n,i , and

E[X321
n ] =

n∑

i=1

E[X321
n,i ] =

n∑

i=1

Ci−1Cn−i

Cn
= 1. (5.21)

One can also ask what proportion of 132-avoiding permutations do not have fixed points.
For permutations in Sn, it is known (see for example [85]) that the proportion of derange-
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ments is
#{π ∈ Sn : fp(π) = 0}

n!
= 1− 1

1!
+

1

2!
− 1

3!
+ · · ·+ (−1)n

n!
,

which tends to e−1 as n goes to infinity. We showed that the number of 132-avoiding
derangements is s0

n(132) = s0n(213) = s0n(321) = Fn, the n-th Fine number. Therefore, the
proportion of them in Sn(132) is Fn

Cn
, which tends to the constant 4

9 as n goes to infinity.

5.6.3 c, c’) 231 ∼ 312

Clearly E[X231
n ] = E[X312

n ]. The generating function F312(x, 1, z) was computed in Theo-
rem 5.8. An alternative way of expressing it is as F312(x, 1, z) = A0(x, z) where Ai is defined
by the recurrence

Ah(x, z) =
1

1− z[(x− 1)Chzh +Ah+1(x, z)]

for all h ≥ 0. Taking partial derivatives, we get

∂Ah(x, z)

∂x
=

z

[
Chz

h +
∂Ah+1(x, z)

∂x

]

(1− z[(x− 1)Chzh +Ah+1(x, z)])2
.

Let Bi(z) = ∂Ai(x,z)
∂x

∣∣∣
x=1

. Evaluating at x = 1, we obtain the following recurrence for the Bi:

Bh(z) =
z(Chz

h +Bh+1(z))

(1− zAh+1(1, z))2
= zC(z)2(Chz

h +Bh+1(z)),

where the last equality follows from the fact that Ah(1, z) = 1
1−zAh+1(1,z) for all h, and

therefore Ah(1, z) = C(z) = 1
1−zC(z) . Denoting K := zC(z)2 = C(z) − 1, we can write the

recurrence as Bh(z) = K(Chz
h + Bh+1(z)). Expanding it for B0(z) = ∂F312(x,1,z)

∂x

∣∣∣
x=1

we

get

B0(z) = K(1 +K(z +K(2z2 +K(5z3 +K(· · · (Chz
h +K( · · · )) · · · )))))

= K +K2z +K32z2 +K45z3 + · · ·+Kh+1Chz
h + · · · (5.22)

= K
∑

h≥0

Ch(zK)h = KC(zK) = (C(z)− 1)C(z(C(z) − 1)).

This proves the following proposition.

Proposition 5.32

∑

n≥1

E[X312
n ]Cnz

n =
1−

√
−1 + 4z + 2

√
1− 4z

2z
.

In particular, it follows from expression (5.22) that E[X 312
n ] > 1 for n ≥ 3.

5.6.4 Other cases

From the GFs in Sections 5.3 and 5.4, one can easily compute in the same way the expec-
tation of the random variables XΣ

n for the number of fixed points in a random permutation
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in Sn(Σ).

It is interesting to observe that whereas E[X132
n ] = E[X321

n ] = 1, we have that

E[X{132,321}
n ] =

(
n
3

)
+ n(n

2

)
+ 1
6= 1.

In fact, the only subsets Σ ⊂ S3 of two or three patterns for which E[XΣ
n ] = 1 for all n ≥ 1

are Σ = {123, 231, 312} and Σ = {132, 213, 321}.
A natural question to ask is whether there exist patterns σ ∈ Sk with k ≥ 4 for which

E[Xσ
n ] = 1 for all n ≥ 1. We have checked that no such patterns exist for k = 4, 5. Note

that the condition E[Xσ
k ] = 1, together with the fact that Sk(σ) = Sk \ {σ}, forces σ to

have exactly one fixed point.

5.7 Final remarks and possible extensions

Looking at the results of this chapter, one can observe that the GFs FΣ(x, q, z) that we have
obtained for Σ ⊆ S3 are all rational functions when |Σ| ≥ 2. This is in contrast with the fact

that they are not rational when |Σ| = 1, since in that case FΣ(1, 1, z) = 1−
√

1−4z
2z = C(z).

For the case of involutions, all the GFs GΣ(x, z) for Σ ⊆ S3 are rational except when
Σ ∈ {{123}, {132}, {213}, {321}}.

Regarding possible extensions of this work, one could try to find a generating function
for fixed points and excedances in 123-avoiding permutations, the only case of patterns of
length 3 that remains unsolved. Even for the enumeration of fixed points in these permu-
tations, we expect that a simpler expression than the one in Theorem 5.4 can be given.

Another interesting extension would be to study the distribution of statistics in per-
mutations avoiding longer patterns. The enumeration of such permutations is itself a very
difficult problem, and not even the case of length 4 is completely solved (see [11, 38, 40, 64]
for single patterns, [13, 53, 91, 92] for pairs of patterns of length 4, and [19, 52, 59, 60, 61]
for other pairs). For the case of patterns of length 4, we have checked by computer that the
only cases in which the number of derangements in Sn(σ) is the same for different patterns
σ ∈ S4 are those in which there exists a trivial bijection (such as π 7→ π−1 or π 7→ π̂) proving
this fact. Therefore, Theorems 1.4 and 2.1 do not seem to have an analogue for patterns of
length 4. Still, there would be some interest in finding generating functions to enumerate
permutations avoiding patterns of length 4 or more with respect to statistics such as the
number of fixed points and the number of excedances. For permutations avoiding a pattern
of length 4 there are 13 different equivalence classes with respect to the distribution of the
statistic fp.

It is possible that Theorem 2.1 admits generalizations to other permutation statistics,
or some variations. We have not succeeded in finding any other case of equidistribution of a
statistic for different patterns having such an interesting and nontrivial proof. An example
of a much simpler result is that the statistic number of descents has the same distribution
in Sn(132), Sn(213), Sn(231) and Sn(312).

5.7.1 Cycle structure

Another further direction of research would consist in describing the cycle structure of
pattern-avoiding permutations. Using the same bijective techniques as in Section 5.3, we
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can easily derive generating functions for the augmented cycle index of permutations in
Sn(231, 312), in Sn(231, 321) and in Sn(132, 321). However, it is not clear whether for
permutations avoiding other subsets of patterns of length 3, the distribution of the cycle
type has a simple description.

For π ∈ Sn, define Z(π) = tc11 t
c2
2 · · · tcn

n , where ci is the number of cycles of length i of π
(in particular,

∑
ici = n). For any subset A ∈ Sn, its augmented cycle index is defined as

Z̃(A) =
∑

π∈A

Z(π).

In some cases we can give GFs for the cycle index.

Proposition 5.33
∑

n≥0

Z̃(Sn(231, 312))zn =
1− t2z2

1− t1z − 2t2z2
,

∑

n≥0

Z̃(Sn(231, 321))zn =
1

1−∑
i≥1 tiz

i
,

∑

n≥0

Z̃(Sn(132, 321))zn =
1

1− t1z


1 +

∑

i,j≥1

t
gcd(i,j)

i+j

gcd(i,j)

zi+j


 .

Proof. In the proof of the third part of Theorem 5.28 we saw that all the permutations in
Sn(231, 312) are involutions. In Proposition 5.17 we gave a bijection between Sn(231, 312)

and sequences of pyramids. Each pyramid contributes t1z+t2z2

1−t2z2 to the GF for the augmented
cycle index, so the first part follows.

In the case of Sn(231, 321) and Sn(312, 321), we saw in Proposition 5.13 that these sets
are in bijection with Dyck paths of height at most 2. Such paths can be written as sequences
of paths of the form uAd, where A is a (possibly empty) sequence of hills. Each part uAd
contributes to the cycle index of the permutation as tiz

i, where i − 1 is the semilength of
A. This gives the second formula.

For the last part of the proposition, recall the bijection given in Proposition 5.20 between
Sn(132, 321) and Dyck paths D with at most two peaks. These can be uniquely written
as D = ukD′dk, where k ≥ 0 and D′ is either empty or a pair of adjacent pyramids. The
part outside D′ corresponds to k fixed points of the permutation, hence the term 1

1−t1z in
the GF. Let us assume now that k = 0 and that D ′ is not empty, and let i and j be the
semilenghts of the two pyramids in D ′. Then, the permutation π such that ϕ(π) = D can
be easily described as

πm =

{
m+ i if m ≤ j,
m− j if m > j.

It follows that all the cycles of π have length i+j
gcd(i,j) , so we get the contribution t

gcd(i,j)
i+j

gcd(i,j)

zi+j

to the GF. �

One might wonder if the fact that the number of fixed points has the same distribution
in both 321- and in 132-avoiding permutations admits a generalization concerning the cycle
structure in Sn(321) and Sn(132). We have for example that Z̃(In(321)) = Z̃(In(132)) for
all n. However, it is not true that Z̃(S6(321)) = Z̃(S6(132)), as shown in [24].
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Chapter 6

Motzkin permutations

In this chapter we study a very special case of pattern-avoiding permutations, which we call
Motzkin permutations. This name is motivated by the fact that they are enumerated by the
Motzkin numbers. A permutation π is a Motzkin permutation if it avoids 132 and there do
not exist indices a < b such that πa < πb < πb+1. This definition falls inside a more general
notion of pattern avoidance, which is described in Section 6.1.1. We study the distribution
of several statistics on Motzkin permutations, including the length of the longest increasing
and decreasing subsequences and the number of ascents. Much of the work in this chapter
was suggested by Toufik Mansour.

We start by introducing some preliminaries. In Section 6.2 we exhibit a bijection be-
tween the set of Motzkin permutations and the set of Motzkin paths. Then we use it
to obtain generating functions of Motzkin permutations with respect to the length of the
longest decreasing and increasing subsequences together with the number of ascents. The
chapter ends with another application of the bijection, to the enumeration of fixed points
in permutations avoiding simultaneously 231 and 32-1.

6.1 Preliminaries

6.1.1 Generalized patterns

In [4], Babson and Steingŕımsson introduced the notion of generalized patterns, which allows
the requirement that two adjacent letters in a pattern must be adjacent in the permutation.
A generalized pattern is written as a sequence where two adjacent elements may or may
not be separated by a dash. In this context, we write a classical pattern with dashes
between any two adjacent letters of the pattern (for example, 1423 as 1-4-2-3). If we omit
the dash between two letters, we mean that for it to be an occurrence in a permutation
π, the corresponding elements of π have to be adjacent. For example, in an occurrence
of the pattern 12-3-4 in a permutation π, the entries in π that correspond to 1 and 2
are adjacent. The permutation π = 3542617 has only one occurrence of the pattern 12-3-4,
namely the subsequence 3567, whereas π has two occurrences of the pattern 1-2-3-4, namely
the subsequences 3567 and 3467.

If σ is a generalized pattern, Sn(σ) denotes the set of permutations in Sn that have no
occurrences of σ in the sense described above. Here is a remark about notation. Throughout
this chapter, a pattern represented with no dashes will always denote a classical pattern (i.e.,
with no requirement about elements being consecutive) unless otherwise stated, following
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the same notation used in the previous chapters. All the generalized patterns that we will
consider here will have at least one dash.

6.1.2 Motzkin paths

A Motzkin path of length n is a lattice path in Z
2 between (0, 0) and (n, 0) consisting of

up-steps (1, 1), down-steps (1,−1), and horizontal steps (1, 0) which never goes below the
x-axis. Denote by Mn the set of Motzkin paths with n steps, and let M =

⋃
n≥0Mn.

We will write |M | = n if M ∈ Mn. Sometimes it will be convenient to encode each
up-step by a letter u, each down-step by d, and each horizontal step by h. Denote by
Mn = |Mn| the n-th Motzkin number. The generating function for these numbers is

M(z) =
∑

n≥0 Mnz
n = 1−z−

√
1−2z−3z2

2z2 .

The definition of tunnel of a Dyck path can be generalized naturally to Motzkin paths.
A tunnel of M ∈ M is a horizontal segment between two lattice points of the path that
intersects M only in these two points, and stays always below M . Tunnels are in one-to-one
correspondence with decompositions of the path as M = XuY dZ, where Y ∈ M. In the
decomposition, the tunnel is the segment that goes from the beginning of the u to the end
of the d.

Define a Motzkin permutation π to be a 132-avoiding permutation in which there do not
exist indices a < b such that πa < πb < πb+1. In the context of generalized patterns, the
second condition is just saying that π avoids 1-23. Denote by Mn = Sn(132, 1-23) the set
of all Motzkin permutations in Sn. For example, there are exactly 4 Motzkin permutations
of length 3, namely, M3 = {213, 231, 312, 321}. The main reason for the term “Motzkin
permutation” is that |Mn| = Mn, as we will see in Section 6.2. For any pattern σ, denote
by Mn(σ) the set of Motzkin permutations of length n that avoid σ.

It follows from the definition that the set Mn is the same as the set of 132-avoiding
permutations π ∈ Sn where there is no a such that πa < πa+1 < πa+2. Indeed, assume that
π ∈ Sn(132) has an occurrence of 1-23, say πa < πb < πb+1 with a < b. Now, if πb−1 > πb,
then π would have an occurrence of 132, namely πaπb−1πb+1. Therefore, πb−1 < πb < πb+1,
so π has three consecutive increasing elements.

6.2 The bijection Υ

In this section we establish a bijection between Motzkin permutations and Motzkin paths.
This allows us to study the distribution of certain statistics on the set of Motzkin permu-
tations.

6.2.1 Definition of Υ

The construction of the bijection Υ : Mn −→ Mn is done in two parts. The first step is
again the bijection ϕ from Sn(132) to Dn given in Section 2.2. One can see that π ∈ Sn(132)
avoids 1-23 if and only if the Dyck path ϕ(π) does not contain three consecutive up-steps
(a triple rise). Indeed, assume that ϕ(π) has three consecutive up-steps. Then, the path
from the lower-left corner to the upper-right corner of arr(π) used to define ϕ(π) has three
consecutive north steps. The crosses in the corresponding three rows give three consecutive
increasing elements in π (this follows from the description of ϕ−1), and hence an occurrence
of 1-23.
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Reciprocally, assume now that π has an occurrence of 1-23. The path from the lower-left
to the upper-right corner of arr(π) must have two consecutive north steps in the rows of
the crosses corresponding to ‘2’ and ‘3’. But if ϕ(π) has no triple rise, the next step of this
path must be an east step, and the cross corresponding to ‘2’ must be right below it. But
then all the crosses above this cross are to the right of it, which contradicts the fact that
this was an occurrence of 1-23.

Denote by Tn the set of Dyck paths of length 2n with no triple rise. We have given a
bijection between Mn and Tn. The second step is to exhibit a bijection between Tn andMn,
so that Υ will be defined as the composition of the two bijections. Given D ∈ Tn, divide it
in n blocks, splitting after each down-step. Since D has no triple rises, each block is of one
of these three forms: uud, ud, d. From left to right, transform the blocks according to the
rule

uud → u,

ud → h, (6.1)

d → d.

We obtain a Motzkin path of length n. This step is clearly a bijection.
Up to reflection of the Motzkin path over a vertical line, Υ is essentially the same

bijection that was given by Claesson [20] between Mn andMn, using a recursive definition.

6.2.2 Statistics on Mn

Here we show how the bijection Υ can be applied to give generating functions for some
statistics on Motzkin permutations. The following lemma follows from the definition of Υ
and from Proposition 2.4. Recall from Chapter 1 that lds, asc and dr denote the length of
the longest decreasing subsequence, the number of ascents, and the number of double rises
respectively.

Lemma 6.1 Let π ∈Mn, let D = ϕ(π) ∈ Dn, and let M = Υ(π) ∈Mn. We have

(1) lds(π) = #{peaks of D} = #{steps u in M}+ #{steps h in M},

(2) lis(π) = height of D = height of M + 1,

(3) asc(π) = dr(D) = #{steps u in M}.

Theorem 6.2 The generating function for Motzkin permutations with respect to the length
of the longest decreasing subsequence and to the number of ascents is

A(v, y, z) :=
∑

n≥0

∑

π∈Mn

vlds(π)yasc(π)zn =
1− vz −

√
1− 2vz + (v2 − 4vy)z2

2vyz2
.

Moreover,

A(v, y, z) =
∑

n≥0

∑

m≥0

1

n+ 1

(
2n

n

)(
m+ 2n

2n

)
zm+2nvm+nyn.

Proof. By Lemma 6.1, we can express A as

A(v, y, z) =
∑

M∈M
v#{steps u in M}+#{steps h in M}y#{steps u in M}z|M |.
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Using the standard decomposition of Motzkin paths, we obtain the following equation for
the generating function A.

A(v, y, z) = 1 + vzA(v, y, z) + vyz2A2(v, y, z). (6.2)

Indeed, any nonempty M ∈ M can be written uniquely as either M = hM1 or M =
uM2dM3, where M1,M2,M3 are arbitrary Motzkin paths. In the first case, the number of
horizontal steps of hM1 is one more than in M1, the number of up-steps is the same, and
|hM1| = |M1|+1, so we get the term vzA(v, y, z). Similarly, the second case gives the term
vyz2A2(v, y, z). Solving equation (6.2) we get the desired expression. �

Theorem 6.3 For k > 0, let

Bk(v, y, z) =
∑

n≥0

∑

π∈Mn(12...(k+1))

vlds(π)yasc(π)zn

be the generating function for Motzkin permutations avoiding 12 . . . (k + 1) with respect to
the length of the longest decreasing subsequence and to the number of ascents. Then we have
the recurrence

Bk(v, y, z) =
1

1− vz − vyz2Bk−1(v, y, z)
,

with B1(v, y, z) = 1
1−vz . Thus, Bk can be expressed as

Bk(v, y, z) =
1

1− vz − vyz2

. . .

1− vz − vyz2

1− vz

,

where the fraction has k levels, or in terms of Chebyshev polynomials of the second kind, as

Bk(v, y, z) =
Uk−1

(
1−vz
2z

√
vy

)

z
√
vyUk

(
1−vz
2z

√
vy

) .

Proof. The condition that π avoids 12 . . . (k + 1) is equivalent to the condition lis(π) ≤ k.
By Lemma 6.1, permutations in Mn whose longest increasing subsequence has length at
most k are mapped by Υ to Motzkin paths of height strictly less than k. Thus, we can
express Bk as

Bk(v, y, z) =
∑

M∈M of height<k

v#{steps u in M}+#{steps h in M}y#{steps u in M}z|M |.

For k > 1, we use again the standard decomposition of Motzkin paths. In the first of the
above cases, the height of hM1 is the same as the height of M1. However, in the second
case, in order for the height of uM2dM3 to be less than k, the height of M2 has to be less
than k − 1. So we obtain the equation

Bk(v, y, z) = 1 + vzBk(v, y, z) + vyz2Bk−1(v, y, z)Bk(v, y, z).
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For k = 1, the path can have only horizontal steps, so we get B1(v, y, z) = 1
1−vz . Now,

using the above recurrence and equation (1.2) we get the desired result. �

6.3 Fixed points in the reversal of Motzkin permutations

Here we show another application of Υ. A slight modification of it will allow us to enumerate
fixed points in another class of pattern-avoiding permutations closely related to Motzkin
permutations. Recall that πR = πn . . . π2π1 denotes the reversal of π ∈ Sn. Let M

R
n := {π ∈

Sn : πR ∈ Mn}. In terms of pattern avoidance, M
R
n = Sn(231, 32-1), i.e., it is the set of

231-avoiding permutations π ∈ Sn where there do not exist a < b such that πa−1 > πa > πb.

Theorem 6.4 The generating function
∑

n≥0

∑
π∈MR

n
xfp(π)zn for permutations avoiding

simultaneously 231 and 32-1 with respect to the number of fixed points is

1

1− xz − z2

1− z −M0(x− 1)z2 − z2

1− z −M1(x− 1)z3 − z2

1−z−M2(x−1)z4− z2

...

, (6.3)

where after the second level, the coefficient of (x− 1)zn+2 is the Motzkin number Mn.

Proof. We have the following composition of bijections:

M
R
n ←→ Mn ←→ Tn ←→ Mn

π 7→ πR 7→ ϕ(πR) 7→ Υ(πR)

The idea of the proof is to look at how the fixed points of π are transformed by each of
these bijections.

Fixed points of π are mapped by the reversal operation to elements j such that πR
j =

n+ 1− j, which in the array of πR correspond to crosses on the secondary diagonal. Each
cross in this array naturally corresponds to a tunnel of the Dyck path ϕ(πR), namely the
one determined by the north step in the same row as the cross and the east step in the
same column as the cross. The reasoning given in Section 5.1 to prove Lemma 5.1 shows
that crosses on the secondary diagonal correspond to tunnels of depth 0 in the Dyck path
(i.e., tunnels T satisfying the condition height(T ) + 1 = 1

2 length(T )).

The next step is to see how these tunnels are transformed by the bijection from Tn to
Mn. Tunnels of height 0 and length 2 in the Dyck path D := ϕ(πR) are just hills ud on the
x-axis. By the rule (6.1) they are mapped to horizontal steps at height 0 in the Motzkin
path M := Υ(πR). Assume now that k ≥ 1. A tunnel T of height k and length 2(k + 1) in
D corresponds to a decomposition D = XuY dZ where X ends at height k and Y ∈ D2k.
Note that Y has to begin with an up-step (since it is a nonempty Dyck path) followed by
a down-step, otherwise D would have a triple rise. Thus, we can write D = XuudY ′dZ
where Y ′ ∈ D2(k−1). When we apply to D the bijection given by rule (6.1), X is mapped

to an initial segment X̃ of a Motzkin path ending at height k, uud is mapped to u, Y ′ is
mapped to a Motzkin path Ỹ ′ ∈ Mk−1 of length k − 1, the d following Y ′ is mapped to
d (since it is preceded by another d), and Z is mapped to a final segment Z̃ of a Motzkin
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path going from height k to the x-axis. Thus, we have that M = X̃uỸ ′dZ̃. It follows that
tunnels T of D satisfying height(T ) + 1 = 1

2 length(T ) are transformed by the bijection into

tunnels T̃ of M satisfying height(T̃ ) + 1 = length(T̃ ). We will call good tunnels the tunnels
of M satisfying this last condition. It remains to show that the generating function for
Motzkin paths where x marks the number of good tunnels plus the number of horizontal
steps at height 0, and z marks the length of the path, is given by (6.3).

To do this we repeat the technique used in Theorem 5.8 to enumerate fixed points in
312-avoiding permutations. We will separate good tunnels according to their height. Notice
that if a good tunnel of M corresponds to a decomposition M = XuY dZ, then M has no
good tunnels inside the part given by Y . In other words, the projections on the x-axis of
all the good tunnels of a given Motzkin path are disjoint. Clearly, they are also disjoint
from horizontal steps at height 0. Using this we will express our generating function as a
continued fraction.

For every k ≥ 1, let gtk(M) be the number of tunnels of M of height k and length
k + 1. Let hor(M) be the number of horizontal steps at height 0. We have seen that for
π ∈M

R
n , fp(π) = hor(Υ(πR)) +

∑
k≥1 gtk(Υ(πR)). We will show now that for every k ≥ 1,

the generating function for Motzkin paths where x marks the statistic hor+gt1 + · · ·+gtk−1

is given by the continued fraction (6.3) truncated at level k, with the (k+1)-st level replaced
with M(z).

A Motzkin path M can be written uniquely as a sequence of horizontal steps h and
elevated Motzkin paths uM ′d, where M ′ ∈M. In terms of the generating function M(z) =∑

M∈M z|M |, this translates into the equation M(z) = 1
1−z−z2M(z) . The generating function

where x marks horizontal steps at height 0 is just

∑

M∈M
xhor(M)z|M | =

1

1− xz − z2M(z)
.

If we want x to mark also good tunnels at height 1, each M ′ from the elevated paths
above has to be decomposed as a sequence of horizontal steps and elevated Motzkin paths
uM ′′d. In this decomposition, a tunnel of height 1 and length 2 is produced by each empty
M ′′, so we have

∑

M∈M
xhor(M)+gt1(M)z|M | =

1

1− xz − z2

1− z − z2[x− 1 + M(z)]

. (6.4)

Indeed, the case where M ′′ is empty has to be counted as x, not as 1.

Let us now enumerate simultaneously horizontal steps at height 0 and good tunnels at
heights 1 and 2. We can rewrite (6.4) as

1

1− xz − z2

1− z − z2

[
x− 1 +

1

1− z − z2M(z)

]
.

Combinatorially, this corresponds to expressing each M ′′ as a sequence of horizontal steps
and elevated paths uM ′′′d, where M ′′′ ∈ M. Notice that since uM ′′′d starts at height 2,
a tunnel of height 2 and length 3 is created whenever M ′′′ ∈ M1. Thus, if we want x to
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mark also these tunnels, such an M ′′′ has to be counted as xz, not z. The corresponding
generating function is

∑

M∈M
xhor(M)+gt1(M)+gt2(M)z|M |

=
1

1− xz − z2

1− z − z2

[
x− 1 +

1

1− z − z2[(x− 1)z + M(z)]

]
.

Now it is clear how iterating this process indefinitely we obtain the continued fraction
(6.3). From the generating function where x marks hor + gt1 + · · ·+ gtk, we can obtain the
one where x marks hor + gt1 + · · ·+ gtk+1 by replacing the M(z) at the lowest level with

1

1− z − z2[Mk(x− 1)zk + M(z)]
,

to account for tunnels of height k and length k+ 1, which in the decomposition correspond
to the Mk possible elevated Motzkin paths at height k. �
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[64] D. Marinov, R. Radoičić, Counting 1324-avoiding permutations, Electron. J. Combin.
9 (2002-3), #R13.

[65] J. Noonan, D. Zeilberger, The enumeration of permutations with a prescribed number
of “forbidden” patterns, Adv. in Appl. Math. 17 (1996), 381–407.

[66] J-C. Novelli, A.V. Stoyanovsky, I. Pak, A direct bijective proof of the hook-length
formula, Discrete Math. Theor. Comput. Sci. 1 (1997), 53–67.

[67] I. Pak, Partition Bijections, a Survey, to appear in Ramanujan Journal.

[68] A. Reifegerste, A generalization of Simion-Schmidt’s bijection for restricted permuta-
tions, Electron. J. Combin. 9 (2002-3), no. 2, #R14.

[69] A. Reifegerste, On the diagram of 132-avoiding permutations, European J. Combin. 24
(2003), 759–776.

[70] D. Richards, Ballot sequences and restricted permutations, Ars Combin. 25 (1988),
83–86.

[71] T. Rivlin, Chebyshev polynomials. From approximation theory to algebra and number
theory, John Wiley, New York, 1990.

[72] A. Robertson, Permutations containing and avoiding 123 and 132 patterns, Discrete
Math. Theor. Comput. Sci. 3 (1999), 151–154.

114



[73] A. Robertson, D. Saracino, D. Zeilberger, Refined Restricted Permutations, Ann.
Comb. 6 (2003), 427–444.

[74] A. Robertson, H. Wilf, D. Zeilberger, Permutation patterns and continued fractions,
Electron. J. Combin. 6 (1999), #R38.

[75] B.E. Sagan, The symmetric group. Representations, combinatorial algorithms, and
symmetric functions, Wadsworth & Brooks/Cole, Pacific Grove, CA, 1991; second
edition, Springer-Verlag, New York, 2001.

[76] C. Schensted, Longest increasing and decreasing subsequences, Canad. J. Math. 13
(1961), 179–191.

[77] M-P. Schützenberger, Quelques remarques sur une construction de Schensted, Math.
Scand. 12 (1963), 117–128.

[78] R. Sedgewick, P. Flajolet, An Introduction to the Analysis of Algorithms, Addison-
Wesley, Reading, MA, 1996.

[79] R. Simion, F.W. Schmidt, Restricted Permutations, European J. Combin. 6 (1985),
383–406.
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