Two EC tidbits

Sergi Elizalde
Dartmouth College

In honor of Richard Stanley's 70th birthday

Tidbit 1

A bijection for pairs of non-crossing lattice paths

Tidbit 1

A bijection for pairs of non-crossing lattice paths

Stanley \#70

Grand Dyck paths and Dyck path prefixes

We consider two kinds of lattice paths with steps $U=(1,1)$ and $D=(1,-1)$ starting at the origin.

Grand Dyck paths end on the x-axis (or at height 1 for paths of odd length):

$\mathcal{G}_{n}=$ set of Grand Dyck paths of length n.

Grand Dyck paths and Dyck path prefixes

We consider two kinds of lattice paths with steps $U=(1,1)$ and $D=(1,-1)$ starting at the origin.

Grand Dyck paths end on the x-axis (or at height 1 for paths of odd length):

$\mathcal{G}_{n}=$ set of Grand Dyck paths of length n.

Dyck path prefixes never go below x-axis, but can end at any height:

$\mathcal{P}_{n}=$ set of Dyck path prefixes of length n.

Grand Dyck paths and Dyck path prefixes

We consider two kinds of lattice paths with steps $U=(1,1)$ and $D=(1,-1)$ starting at the origin.

Grand Dyck paths end on the x-axis (or at height 1 for paths of odd length):

$\mathcal{G}_{n}=$ set of Grand Dyck paths of length n.

Trivial: $\quad\left|\mathcal{G}_{n}\right|=\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor}$.
Dyck path prefixes never go below x-axis, but can end at any height:

$\mathcal{P}_{n}=$ set of Dyck path prefixes of length n.

Grand Dyck paths and Dyck path prefixes

We consider two kinds of lattice paths with steps $U=(1,1)$ and $D=(1,-1)$ starting at the origin.

Grand Dyck paths end on the x-axis (or at height 1 for paths of odd length):

$\mathcal{G}_{n}=$ set of Grand Dyck paths of length n.

Trivial: $\quad\left|\mathcal{G}_{n}\right|=\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor}$.
Dyck path prefixes never go below x-axis, but can end at any height:

$\mathcal{P}_{n}=$ set of Dyck path prefixes of length n.

Not so trivial: $\left|\mathcal{P}_{n}\right|=\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor}$.

Grand Dyck paths and Dyck path prefixes A bijection for pairs of paths

A classical bijection $\xi: \mathcal{P}_{n} \rightarrow \mathcal{G}_{n}$

A classical bijection $\xi: \mathcal{P}_{n} \rightarrow \mathcal{G}_{n}$

- Match Us and Ds that "face" each other.

A classical bijection $\xi: \mathcal{P}_{n} \rightarrow \mathcal{G}_{n}$

- Match Us and Ds that "face" each other.
- Among the unmatched steps (which are all Us), change the lefmost half of them into D steps.

A classical bijection $\xi: \mathcal{P}_{n} \rightarrow \mathcal{G}_{n}$

- Match Us and Ds that "face" each other.
- Among the unmatched steps (which are all Us), change the lefmost half of them into D steps.

To reverse, simply change unmatched $D \mathrm{~s}$ into Us.

k-tuples of non-crossing paths

For lattice paths P and Q, write $Q \leq P$ if Q is weakly below P. $\left(P_{1}, \ldots, P_{k}\right)$ is a k-tuple of nested paths if $P_{k} \leq \cdots \leq P_{1}$.

k-tuples of non-crossing paths

For lattice paths P and Q, write $Q \leq P$ if Q is weakly below P.
$\left(P_{1}, \ldots, P_{k}\right)$ is a k-tuple of nested paths if $P_{k} \leq \cdots \leq P_{1}$.

$$
\mathcal{G}_{n}^{(k)}=k \text {-tuples of nested paths in } \mathcal{G}_{n}
$$

$\mathcal{P}_{n}^{(k)}=k$-tuples of nested paths in \mathcal{P}_{n}

k-tuples of non-crossing paths

For lattice paths P and Q, write $Q \leq P$ if Q is weakly below P.
$\left(P_{1}, \ldots, P_{k}\right)$ is a k-tuple of nested paths if $P_{k} \leq \cdots \leq P_{1}$.
$\mathcal{G}_{n}^{(k)}=k$-tuples of nested paths in \mathcal{G}_{n}

Gessel-Viennot, MacMahon:

$$
\begin{aligned}
\left|\mathcal{G}_{n}^{(k)}\right| & =\operatorname{det}\left(\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor-i+j}\right)_{i, j=1}^{k} \\
& =\prod_{i=1}^{\left\lceil\frac{n}{2}\right\rfloor} \prod_{j=1}^{\left\lfloor\frac{n}{2}\right\rfloor} \prod_{l=1}^{k} \frac{i+j+I-1}{i+j+l-2}
\end{aligned}
$$

$\mathcal{P}_{n}^{(k)}=k$-tuples of nested paths in \mathcal{P}_{n}

k-tuples of non-crossing paths

For lattice paths P and Q, write $Q \leq P$ if Q is weakly below P.
$\left(P_{1}, \ldots, P_{k}\right)$ is a k-tuple of nested paths if $P_{k} \leq \cdots \leq P_{1}$.
$\mathcal{G}_{n}^{(k)}=k$-tuples of nested paths in \mathcal{G}_{n}

Gessel-Viennot, MacMahon:

$$
\begin{aligned}
\left|\mathcal{G}_{n}^{(k)}\right| & =\operatorname{det}\left(\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor-i+j}\right)_{i, j=1}^{k} \\
& =\prod_{i=1}^{\left\lceil\frac{n}{2}\right\rfloor} \prod_{j=1}^{\left\lfloor\frac{n}{2}\right\rfloor} \prod_{l=1}^{k} \frac{i+j+I-1}{i+j+l-2}
\end{aligned}
$$

$\mathcal{P}_{n}^{(k)}=k$-tuples of nested paths in \mathcal{P}_{n}

$$
\left|\mathcal{P}_{n}^{(k)}\right|=?
$$

Richard Stanley to the rescue

Computing the first few terms, it seems that

$$
\left|\mathcal{G}_{n}^{(k)}\right|=\left|\mathcal{P}_{n}^{(k)}\right| .
$$

I asked Richard if this was known...

Richard Stanley to the rescue

Computing the first few terms, it seems that

$$
\left|\mathcal{G}_{n}^{(k)}\right|=\left|\mathcal{P}_{n}^{(k)}\right| .
$$

I asked Richard if this was known...

Yes!
[EC1, Exercise 3.47(f)]

Richard Stanley to the rescue

Computing the first few terms, it seems that

$$
\left|\mathcal{G}_{n}^{(k)}\right|=\left|\mathcal{P}_{n}^{(k)}\right| .
$$

I asked Richard if this was known...

Yes!

[EC1, Exercise 3.47(f)]

Prove that the following posets have the same order polynomial:

- $\mathbf{q} \times \mathbf{p}$ (product of two chains),
- pairs $\{(i, j): 1 \leq i \leq j \leq p+q-i, 1 \leq i \leq q\}$ ordered by $(i, j) \leq\left(i^{\prime}, j^{\prime}\right)$ if $i \leq i^{\prime}$ and $j \leq j^{\prime}$.

Richard Stanley to the rescue

Computing the first few terms, it seems that

$$
\left|\mathcal{G}_{n}^{(k)}\right|=\left|\mathcal{P}_{n}^{(k)}\right| .
$$

I asked Richard if this was known...

Yes!

[EC1, Exercise 3.47(f)]

Prove that the following posets have the same order polynomial:

- $\mathbf{q} \times \mathbf{p}$ (product of two chains),
- pairs $\{(i, j): 1 \leq i \leq j \leq p+q-i, 1 \leq i \leq q\}$ ordered by $(i, j) \leq\left(i^{\prime}, j^{\prime}\right)$ if $i \leq i^{\prime}$ and $j \leq j^{\prime}$.

For $p=q$, this is equivalent to $\left|\mathcal{G}_{n}^{(k)}\right|=\left|\mathcal{P}_{n}^{(k)}\right|$.

Richard Stanley to the rescue

This was proved by Robert Proctor in the following form:
Theorem (Proctor '83)
\# plane partitions inside rectangle shape (p^{q}) = with entries $\leq k$ $[p+q-1, p+q-3, \ldots, p-q+1]$ with entries $\leq k$

Richard Stanley to the rescue

This was proved by Robert Proctor in the following form:
Theorem (Proctor '83)
\# plane partitions inside rectangle shape (p^{q}) = with entries $\leq k$ $[p+q-1, p+q-3, \ldots, p-q+1]$ with entries $\leq k$

Proctor's proof uses representations of semisimple Lie algebras, and it is not bijective.

A bijective proof for $k=2$

E. '14: Explicit bijection $\mathcal{G}_{n}^{(2)} \rightarrow \mathcal{P}_{n}^{(2)}$.
$\mathcal{G}_{n}^{(2)}$

A bijective proof for $k=2$

E. '14: Explicit bijection $\mathcal{G}_{n}^{(2)} \rightarrow \mathcal{P}_{n}^{(2)}$.
$\mathcal{G}_{n}^{(2)}$

Step 1:

Consider the average path $\frac{P+Q}{2}$.

A bijective proof for $k=2$

E. '14: Explicit bijection $\mathcal{G}_{n}^{(2)} \rightarrow \mathcal{P}_{n}^{(2)}$.

Step 1:

Consider the average path $\frac{P+Q}{2}$.

Find its unmatched $D \mathrm{~s}$, and turn them into U s to get P_{1} and Q_{1}.

Grand Dyck paths and Dyck path prefixes A bijection for pairs of paths

A bijective proof for $k=2$

A bijective proof for $k=2$

Step 2:

Let Q_{2} be the path obtained by flipping the steps of Q_{1} that end strictly below the x-axis.

Let $P_{2}=P_{1}$.

A bijective proof for $k=2$

A bijective proof for $k=2$

Step 3:

Find the unmatched D steps of $\frac{P_{2}-Q_{2}}{2}$.

A bijective proof for $k=2$

Step 3:

Find the unmatched D steps of $\frac{P_{2}-Q_{2}}{2}$.

Let P_{3} and Q_{3} be the paths obtained by flipping the corresponding steps of P_{2} and Q_{2}.

A bijective proof for $k=2$

Theorem (E.'14)
This map is a bijection between $\mathcal{G}_{n}^{(2)}$ and $\mathcal{P}_{n}^{(2)}$.

A bijective proof for $k=2$

Theorem (E.'14)
This map is a bijection between $\mathcal{G}_{n}^{(2)}$ and $\mathcal{P}_{n}^{(2)}$.

It can be generalized by allowing different endpoints for the paths. It gives a bijective proof of Proctor's result for $k=2$.

A bijective proof for $k=2$

Theorem (E.'14)
This map is a bijection between $\mathcal{G}_{n}^{(2)}$ and $\mathcal{P}_{n}^{(2)}$.

It can be generalized by allowing different endpoints for the paths. It gives a bijective proof of Proctor's result for $k=2$.

Open problem: Generalize to a bijection between $\mathcal{G}_{n}^{(k)}$ and $\mathcal{P}_{n}^{(k)}$.

The bijection in terms of walks

Pairs (P, Q) of lattice paths correspond to walks w in the plane with unit steps N, S, E, W starting at the origin:

P	Q		w
U	U	\mapsto	E
U	D	\mapsto	N
D	U	\mapsto	S
D	D	\mapsto	W

The bijection in terms of walks

Our bijection for paths gives bijections for NSEW-walks of length n :

walks in first octant ending anywhere

walks in
\leftrightarrow first quadrant ending on x-axis
$(0,0):(1,0)$
walks in upper half-plane ending at $(0,0)$ or $(1,0)$

A generalization

More generally, for every $i \geq j \geq 0$ with $i+j \equiv n(\bmod 2)$, we have bijections

walks in
first octant ending in $\operatorname{sh}(i, j)$

walks in
\leftrightarrow first quadrant ending at (i, j)

walks in upper half-plane ending at $(0, j)$ or $(1, j)$ with leftmost point on $x=-\left\lfloor\frac{i}{2}\right\rfloor$

The bijection in terms of walks

 A related result
Example

walks in first octant ending in $\operatorname{sh}(i, j)$

walks in first quadrant ending at (i, j)

Walks ending on the diagonal

Theorem (Bousquet-Mélou, Mishna '10)
The number of walks of length $2 m$ in the first octant ending on the diagonal is the product $C_{m} C_{m+1}$ of Catalan numbers.

Proof uses kernel method and summation of hypergeometric seq.

walks in first octant ending on diagonal

Walks ending on the diagonal

Theorem (Bousquet-Mélou, Mishna '10)
The number of walks of length $2 m$ in the first octant ending on the diagonal is the product $C_{m} C_{m+1}$ of Catalan numbers.

Proof uses kernel method and summation of hypergeometric seq.
We now get a bijective proof by combining our bijection when $i=j=0$

walks in first octant ending on diagonal

$\leftrightarrow \quad$ walks in first quadrant ending at $(0,0)$
together with a bijection of Cori-Dulucq-Viennot '86 (or a more direct one of Bernardi '07).

Tidbit 2

Descents on 321-avoiding involutions

321-avoiding involutions

$\pi \in \mathcal{S}_{n}$ is 321-avoiding if $\pi(1) \pi(2) \ldots \pi(n)$ has no decreasing subsequence of length 3 .
π is an involution if $\pi^{-1}=\pi$.
$\mathcal{I}_{n}(321)=$ set of 321-avoiding involutions of length n

321-avoiding involutions

$\pi \in \mathcal{S}_{n}$ is 321-avoiding if $\pi(1) \pi(2) \ldots \pi(n)$ has no decreasing subsequence of length 3 .
π is an involution if $\pi^{-1}=\pi$.
$\mathcal{I}_{n}(321)=$ set of 321-avoiding involutions of length n

Theorem (Simion-Schmidt '85)

$$
\left|\mathcal{I}_{n}(321)\right|=\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor}
$$

Descents on 321-avoiding involutions

i is a descent of π if $\pi(i)>\pi(i+1)$.
$\operatorname{Des}(\pi)=$ descent set of π

$$
\operatorname{maj}(\pi)=\sum_{i \in \operatorname{Des}(\pi)} i
$$

Descents on 321-avoiding involutions

i is a descent of π if $\pi(i)>\pi(i+1)$.
$\operatorname{Des}(\pi)=$ descent set of π

$$
\operatorname{maj}(\pi)=\sum_{i \in \operatorname{Des}(\pi)} i
$$

Theorem (Barnabei-Bonetti-E.-Silimbani, Dahlberg-Sagan '14)

$$
\sum_{\pi \in \mathcal{I}_{n}(321)} q^{\operatorname{maj}(\pi)}=\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor}_{q}
$$

where $\binom{n}{j}_{q}=\frac{\left(1-q^{n}\right)\left(1-q^{n-1}\right) \ldots\left(1-q^{n-j+1}\right)}{\left(1-q^{j}\right)\left(1-q^{j-1}\right) \ldots(1-q)}$.

Richard Stanley again

From: Richard Stanley

Sent: Wednesday, January 15, 2014
To: Sergi Elizalde

Hi Sergi,
I like your paper (with various coauthors) on descent sets of 321 -avoiding involutions. Perhaps you would be interested to know that the result is easy to prove nonbijectively and extends (in principle) to $k, k-1, \ldots, 2,1$-avoiding involutions. Namely, it follows from Lemma 7.23.1 and Exercise 7.16(a) of EC2 that ...

Richard Stanley again

$$
\sum_{\pi \in \mathcal{I}_{n}(321)} q^{\operatorname{maj}(\pi)} \stackrel{[\text { Lem. } 7.23 .1]}{=} \sum_{\substack{T \in \mathrm{SYT}_{n} \\ \leq 2 \text { rows }}} q^{\operatorname{maj}(T)}
$$

$\stackrel{[\text { Prop. 7.19.11] }}{=}(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{n}\right) \sum_{\substack{\lambda \vdash n \\ \leq 2 \text { parts }}} s_{\lambda}\left(1, q, q^{2}, \ldots\right)$
$\stackrel{[\text { Ex. }}{=}{ }^{7.16 \mathrm{a}]}(1-q) \cdots\left(1-q^{n}\right) h_{\left\lfloor\frac{n}{2}\right\rfloor}\left(1, q, q^{2}, \ldots\right) h_{\left\lceil\frac{n}{2}\right\rceil}\left(1, q, q^{2}, \ldots\right)$

$$
=\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor}_{q}
$$

A bijective proof

Recall that $\left|\mathcal{G}_{n}\right|=\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor}$.
\mathcal{G}_{n} is in bijection with the set Λ_{n} of partitions whose Young diagram fits inside a $\left\lfloor\frac{n}{2}\right\rfloor \times\left\lceil\frac{n}{2}\right\rceil$ box.

$$
\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor}_{q}=\sum_{\lambda \in \Lambda_{n}} q^{\operatorname{area}(\lambda)}
$$

A bijective proof

Recall that $\left|\mathcal{G}_{n}\right|=\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor}$.
\mathcal{G}_{n} is in bijection with the set Λ_{n} of partitions whose Young diagram fits inside a $\left\lfloor\frac{n}{2}\right\rfloor \times\left\lceil\frac{n}{2}\right\rceil$ box.

$$
\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor}_{q}=\sum_{\lambda \in \Lambda_{n}} q^{\operatorname{area}(\lambda)}
$$

To give a bijective proof of

$$
\sum_{\pi \in \mathcal{I}_{n}(321)} q^{\operatorname{maj}(\pi)}=\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor}_{q}
$$

we need a bijection $\mathcal{I}_{n}(321) \rightarrow \Lambda_{n}$ that maps maj to area.

A refinement

For $\lambda \vdash m$, define its hook decomposition $\mathrm{HD}(\lambda)$ to be the set of hook lengths obtained by repeatedly peeling off the largest hook.

$$
\begin{aligned}
& \lambda=(4,3,3,2,1) \\
& \operatorname{HD}(\lambda)=\{1,4,8\}
\end{aligned}
$$

A refinement

For $\lambda \vdash m$, define its hook decomposition $\mathrm{HD}(\lambda)$ to be the set of hook lengths obtained by repeatedly peeling off the largest hook.

$$
\begin{aligned}
& \lambda=(4,3,3,2,1) \\
& H D(\lambda)=\{1,4,8\}
\end{aligned}
$$

Theorem (Barnabei-Bonetti-E.-Silimbani '14)
There is a bijection $\mathcal{I}_{n}(321) \rightarrow \Lambda_{n}$ that maps Des to HD (and thus maj to area).

A refinement

For $\lambda \vdash m$, define its hook decomposition $\mathrm{HD}(\lambda)$ to be the set of hook lengths obtained by repeatedly peeling off the largest hook.

$$
\begin{aligned}
& \lambda=(4,3,3,2,1) \\
& H D(\lambda)=\{1,4,8\}
\end{aligned}
$$

Theorem (Barnabei-Bonetti-E.-Silimbani '14)
There is a bijection $\mathcal{I}_{n}(321) \rightarrow \Lambda_{n}$ that maps Des to HD (and thus maj to area).

Proof: Composition of bijections

$$
\begin{array}{clcccc}
\mathcal{I}_{n}(321) & \longrightarrow & \mathcal{P}_{n} & \longrightarrow & \mathcal{G}_{n} & \longrightarrow \\
\text { Nes } & \leftrightarrow & \text { Peak set } & \longleftrightarrow & \text { Peak set } & \longleftrightarrow
\end{array}
$$

The bijections

$$
\begin{array}{rllcll}
\mathcal{I}_{n}(321) & \longrightarrow & \mathcal{P}_{n} & \longrightarrow & \mathcal{G}_{n} & \longrightarrow \\
\Lambda_{n} \\
\text { Des } & \leftrightarrow & \text { Peak set } & \leftrightarrow & \text { Peak set } & \leftrightarrow \\
H D
\end{array}
$$

$34|1279| 510 \mid 681112 \in \mathcal{I}_{n}(321)$
\downarrow RSK

1	2	5	6	8	11	12
3	4	7	9	10		

Des $=\{2,6,8\}$

Peak set $=\{2,6,8\}$

The bijections

$$
\begin{array}{rllccc}
\mathcal{I}_{n}(321) & \longrightarrow & \mathcal{P}_{n} & \longrightarrow & \mathcal{G}_{n} & \longrightarrow \\
\Lambda_{n} \\
\text { Des } & \leftrightarrow & \text { Peak set } & \leftrightarrow & \text { Peak set } & \leftrightarrow \\
H D
\end{array}
$$

Peak set $=\{2,6,8\}$

The bijections

$$
\begin{array}{clcccc}
\mathcal{I}_{n}(321) & \longrightarrow & \mathcal{P}_{n} & \longrightarrow & \mathcal{G}_{n} & \longrightarrow \\
\Lambda_{n} \\
\text { Des } & \leftrightarrow & \text { Peak set } & \leftrightarrow & \text { Peak set } & \leftrightarrow
\end{array} \mathrm{HD}
$$

Peak set $=\{2,6,8\}$

The bijections

$$
\begin{array}{clclcll}
\mathcal{I}_{n}(321) & \longrightarrow & \mathcal{P}_{n} & \longrightarrow & \mathcal{G}_{n} & \longrightarrow & \Lambda_{n} \\
\text { Des } & \leftrightarrow & \text { Peak set } & \leftrightarrow & \text { Peak set } & \leftrightarrow & H D
\end{array}
$$

Peak set $=\{2,6,8\}$

The bijections

$$
\begin{array}{clclcll}
\mathcal{I}_{n}(321) & \longrightarrow & \mathcal{P}_{n} & \longrightarrow & \mathcal{G}_{n} & \longrightarrow & \Lambda_{n} \\
\text { Des } & \longleftrightarrow & \text { Peak set } & \longleftrightarrow & \text { Peak set } & \longleftrightarrow & H D
\end{array}
$$

Peak set $=\{2,6,8\}$

$\mathrm{HD}=\{2,6,8\}$

Conclusion

If you want to know all the material in EC1 and EC2

Conclusion

If you want to know all the material in EC1 and EC2 start learning it at an early age.

Happy 70th Birthday, Richard!

