Bijections for lattice paths between two boundaries

Sergi Elizalde

Dartmouth College

Joint work with Martin Rubey

Sergi Elizalde Bijections for lattice paths between two boundaries

Paths with steps N, E The bijection

A different Dartmouth

ergi Elizalde Bijections for lattice paths between two boundaries

æ

Paths with steps N, E The bijection

Dyck paths

For $P \in \mathcal{D}_n$ (Dyck paths with 2n steps), let t(P) = # of E steps in common with T = "height" of the last "peak" b(P) = # of E steps in common with B= number of returns

(D) (A) (A) (A)

э

Paths with steps N, E The bijection

Dyck paths

For $P \in \mathcal{D}_n$ (Dyck paths with 2n steps), let t(P) = # of E steps in common with T = "height" of the last "peak" b(P) = # of E steps in common with B= number of returns

Theorem (Deutsch '98)

The joint distribution of the pair (t, b) over \mathcal{D}_n is symmetric, i.e.,

$$\sum_{P\in\mathcal{D}_n} x^{t(P)} y^{b(P)} = \sum_{P\in\mathcal{D}_n} x^{b(P)} y^{t(P)}.$$

イロト イポト イヨト イヨト

Paths with steps N, E The bijection

Dyck paths

For $P \in \mathcal{D}_n$ (Dyck paths with 2n steps), let t(P) = # of E steps in common with T = "height" of the last "peak" b(P) = # of E steps in common with B= number of returns

Theorem (Deutsch '98)

The joint distribution of the pair (t, b) over \mathcal{D}_n is symmetric, i.e.,

$$\sum_{P\in\mathcal{D}_n} x^{t(P)} y^{b(P)} = \sum_{P\in\mathcal{D}_n} x^{b(P)} y^{t(P)}.$$

Proof 1 (Deutsch): Recursive bijection. Proof 2: Generating fcts. Both proofs rely on the recursive structure of Dyck paths.

Paths with steps N, E The bijection

A generalization to arbitrary boundaries

T P B C t(P) = 4 b(P) = 3

T and B paths from O to F with steps N and E, with T weakly above B

 $P \in \mathcal{P}(\mathcal{T}, \mathcal{B}) = \mathsf{set} \mathsf{ of paths from } \mathcal{O} \mathsf{ to } \mathcal{F}$

weakly between T and B

t(P) = # of E steps in common with T (top contacts of P)

b(P) = # of E steps in common with B (bottom contacts of P)

Paths with steps N, E The bijection

A generalization to arbitrary boundaries

F

T and B paths from O to F with steps N and E, with T weakly above B

 $P \in \mathcal{P}(\mathsf{T}, \mathsf{B}) = \mathsf{set} \mathsf{ of paths from } O \mathsf{ to } F$

weakly between T and B

t(P) = # of E steps in common with T(top contacts of P) b(P) = # of E steps in common with B(bottom contacts of P)

Theorem

The joint distribution of (t, b) over $\mathcal{P}(T, B)$ is symmetric, i.e.,

$$\sum_{P \in \mathcal{P}(\mathcal{T},B)} x^{t(P)} y^{b(P)} = \sum_{P \in \mathcal{P}(\mathcal{T},B)} x^{b(P)} y^{t(P)}.$$

Top and bottom contacts Variations and generalizations

Applications

Paths with steps N, E The bijection

Example

Sergi Elizalde Bijections for lattice paths between two boundaries

Paths with steps N, EThe bijection

Proof

The known proofs for Dyck paths do not seem to generalize to arbitrary boundaries.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

э

Paths with steps N, EThe bijection

Proof

The known proofs for Dyck paths do not seem to generalize to arbitrary boundaries.

We give an involution

$$\Phi: \mathcal{P}(\textbf{T},\textbf{B}) \to \mathcal{P}(\textbf{T},\textbf{B})$$

with the property $t(\Phi(P)) = b(P)$ and $b(\Phi(P)) = t(P)$.

Idea: Given $P \in \mathcal{P}(T, B)$ with t(P) > b(P), turn some of its top contacts into bottom contacts, one at a time.

イロト イヨト イヨト イヨト

Paths with steps N, EThe bijection

Proof

The known proofs for Dyck paths do not seem to generalize to arbitrary boundaries.

We give an involution

$$\Phi: \mathcal{P}(\textbf{T},\textbf{B}) \to \mathcal{P}(\textbf{T},\textbf{B})$$

with the property $t(\Phi(P)) = b(P)$ and $b(\Phi(P)) = t(P)$.

Idea: Given $P \in \mathcal{P}(T, B)$ with t(P) > b(P), turn some of its top contacts into bottom contacts, one at a time.

Which ones? How?

イロト イヨト イヨト イヨト

Paths with steps N, EThe bijection

Proof – warm up

A transformation on words

Given a **w** word over the alphabet $\{\mathbf{t}, \mathbf{b}\}$, define $\mu(\mathbf{w})$ as follows:

▶ Draw a path with a step (1, 1) for each t, and a step (1, -1) for each b.

w = bttbtbbbttbttbtt

Paths with steps N, EThe bijection

Proof – warm up

A transformation on words

Given a **w** word over the alphabet $\{\mathbf{t}, \mathbf{b}\}$, define $\mu(\mathbf{w})$ as follows:

- ► Draw a path with a step (1, 1) for each t, and a step (1, -1) for each b.
- Match t's and b's that "face" each other in the path.

w = bttbtbbbttbttbtt

Proof – warm up

A transformation on words

Given a **w** word over the alphabet $\{\mathbf{t}, \mathbf{b}\}$, define $\mu(\mathbf{w})$ as follows:

- ► Draw a path with a step (1, 1) for each t, and a step (1, -1) for each b.
- Match t's and b's that "face" each other in the path.
- Replace the leftmost unmatched t with a b. (If no unmatched t, then μ(w) is not defined.)

Paths with steps N, EThe bijection

Proof – warm up

A transformation on words

Note: w can be recovered from $\mu(w)$ by replacing the rightmost unmatched b with a t.

Paths with steps *N*, *E* The bijection

Proof – warm up

A transformation on words

Note: w can be recovered from $\mu(w)$ by replacing the rightmost unmatched b with a t.

Lemma

 μ^{e-f} is a bijection between

w = bttbtbbbttbttbttbtt

 $\mu(\mathbf{w}) = \mathbf{bttbtbbbbbtbttbtt}$

- words with e t's and f b's, and
- words with f t's and e b's.

Paths with steps N, EThe bijection

Proof – the bijection

A transformation on paths

Given $P \in \mathcal{P}(\mathcal{T}, \mathcal{B})$, define $\phi(P)$ as follows:

Record top and bottom contacts of P as a word w over {t, b}.

rgi Elizalde Bijections for lattice paths between two boundaries

Paths with steps N, EThe bijection

Proof - the bijection

A transformation on paths

Given $P \in \mathcal{P}(T, B)$, define $\phi(P)$ as follows:

- ▶ Record top and bottom contacts of *P* as a word **w** over {**t**, **b**}.
- Find leftmost unmatched t; let *E* be the corresponding step.

Sergi Elizalde Bijections for lattice paths between two boundaries

Paths with steps N, EThe bijection

Proof - the bijection

A transformation on paths

Given $P \in \mathcal{P}(T, B)$, define $\phi(P)$ as follows:

- ▶ Record top and bottom contacts of *P* as a word **w** over {**t**, **b**}.
- Find leftmost unmatched t; let *E* be the corresponding step.
- Write P = XYEZ, where Y touches B only at its left endpoint.

Sergi Elizalde Bijections for lattice paths between two boundaries

Paths with steps N, EThe bijection

Proof - the bijection

A transformation on paths

Given $P \in \mathcal{P}(\mathcal{T}, \mathcal{B})$, define $\phi(P)$ as follows:

- ▶ Record top and bottom contacts of *P* as a word **w** over {**t**, **b**}.
- Find leftmost unmatched t; let *E* be the corresponding step.
- Write P = XYEZ, where Y touches B only at its left endpoint.

Bijections for lattice paths between two boundaries

Paths with steps N, EThe bijection

Proof – the bijection

A transformation on paths

For
$$P \in \mathcal{P}(\mathcal{T}, B)$$
 with $t(P) = e$ and $b(P) = f$, define

$$\Phi(P) = \phi^{e-f}(P).$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

æ

Paths with steps N, EThe bijection

Proof – the bijection

A transformation on paths

For
$$P\in \mathcal{P}(\mathcal{T},\mathcal{B})$$
 with $t(P)=e$ and $b(P)=f$, define

$$\Phi(P) = \phi^{e-f}(P).$$

Theorem

 Φ is an involution on $\mathcal{P}(T, B)$ that satisfies $t(\Phi(P)) = b(P)$ and $b(\Phi(P)) = t(P)$.

・ロト ・ 同ト ・ ヨト ・ ヨト

э

Paths with steps N, EThe bijection

Proof - the bijection

A transformation on paths

For
$$P \in \mathcal{P}(\mathcal{T}, \mathcal{B})$$
 with $t(P) = e$ and $b(P) = f$, define

$$\Phi(P) = \phi^{e-f}(P).$$

Theorem

 Φ is an involution on $\mathcal{P}(T, B)$ that satisfies $t(\Phi(P)) = b(P)$ and $b(\Phi(P)) = t(P)$.

Bijections for lattice paths between two boundaries

Paths with steps N, E, S Left and right contacts Another generalization of the main theorem

A generalization to paths with S steps

 $\mathcal{P}(T, B) = \text{set of paths from } O \text{ to } F$ with steps N, E and Sweakly between T and B.

For $P \in \widetilde{\mathcal{P}}(T, B)$, define t(P) and b(P) as before. The *descent set* of P is the set of *x*-coordinates where *S* steps occur.

Paths with steps N, E, S Left and right contacts Another generalization of the main theorem

A generalization to paths with S steps

 $\widetilde{\mathcal{P}}(T, B) = \text{set of paths from } O \text{ to } F$ with steps N, E and Sweakly between T and B.

For $P \in \widetilde{\mathcal{P}}(T, B)$, define t(P) and b(P) as before. The *descent set* of P is the set of *x*-coordinates where *S* steps occur.

Theorem

There is an involution $\widetilde{\mathcal{P}}(T, B) \to \widetilde{\mathcal{P}}(T, B)$ that switches the statistics (t, b) and preserves the descent set.

Paths with steps N, E, S Left and right contacts Another generalization of the main theorem

A generalization: examples

The map ϕ for paths with S steps:

Elizalde Bijections for lattice paths between two boundaries

(D) (A) (A)

Paths with steps N, E, S Left and right contacts Another generalization of the main theorem

A generalization: examples

The involution Φ for paths with S steps:

gi Elizalde Bijections for lattice paths between two boundaries

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Paths with steps N, E, SLeft and right contacts Another generalization of the main theorem

A related theorem

For
$$P \in \mathcal{P}(T, B)$$
, let

 $\ell(P) = \#$ of N steps in common with T r(P) = # of N steps in common with B

Example:
$$t(P) = 4$$
, $b(P) = 3$, $\ell(P) = 2$, $r(P) = 1$.

・ロト ・ 同ト ・ ヨト ・ ヨト

æ

Paths with steps N, E, S Left and right contacts Another generalization of the main theorem

A related theorem

For
$$P \in \mathcal{P}(T, B)$$
, let

 $\ell(P) = \#$ of N steps in common with T r(P) = # of N steps in common with B

Example:
$$t(P) = 4$$
, $b(P) = 3$, $\ell(P) = 2$, $r(P) = 1$.

Theorem

The pairs (b, ℓ) and (t, r) have the same joint distribution over $\mathcal{P}(T, B)$, i.e.,

$$\sum_{P \in \mathcal{P}(\mathcal{T}, B)} x^{b(P)} y^{\ell(P)} = \sum_{P \in \mathcal{P}(\mathcal{T}, B)} x^{t(P)} y^{r(P)}$$

イロト イポト イヨト イヨト

Paths with steps N, E, S Left and right contacts Another generalization of the main theorem

A related theorem

For
$$P \in \mathcal{P}(T, B)$$
, let

 $\ell(P) = \#$ of N steps in common with T r(P) = # of N steps in common with B

Example:
$$t(P) = 4$$
, $b(P) = 3$, $\ell(P) = 2$, $r(P) = 1$.

Theorem

The pairs (b, ℓ) and (t, r) have the same joint distribution over $\mathcal{P}(T, B)$, i.e.,

$$\sum_{P \in \mathcal{P}(\mathsf{T},\mathsf{B})} x^{b(P)} y^{\ell(P)} = \sum_{P \in \mathcal{P}(\mathsf{T},\mathsf{B})} x^{t(P)} y^{r(P)}$$

We do not know of a bijective proof similar to the previous one.

• • = • • = •

Paths with steps N, E, SLeft and right contacts Another generalization of the main theorem

Proof idea

Both

$$\sum_{P \in \mathcal{P}(\mathsf{T},\mathsf{B})} x^{b(P)} y^{\ell(P)} \quad \text{and} \quad \sum_{P \in \mathcal{P}(\mathsf{T},\mathsf{B})} x^{t(P)} y^{r(P)}$$

equal the Tutte polynomial of a *lattice path matroid*, as defined by Bonin-De Mier-Noy '03.

The statistics b and ℓ (t and r) are internal and external activities with respect to different linear orderings of the ground set.

(D) (A) (A)

Paths with steps N, E, S Left and right contacts Another generalization of the main theorem

k-fans of paths

 $\begin{array}{l} P_1, P_2, \ldots, P_k \in \mathcal{P}(T, B), \\ P_i \text{ weakly above } P_{i+1} \text{ for all } i. \\ \text{Let } P_0 = T, P_{k+1} = B. \\ \text{For } 0 \leq i \leq k, \text{ let} \end{array}$

 $h_i = \#$ of E steps where P_i and P_{i+1} conincide

(D) (A) (A)

Paths with steps N, E, S Left and right contacts Another generalization of the main theorem

k-fans of paths

 $\begin{array}{l} P_1, P_2, \ldots, P_k \in \mathcal{P}(\mathcal{T}, \mathcal{B}), \\ P_i \text{ weakly above } P_{i+1} \text{ for all } i. \\ \text{Let } P_0 = \mathcal{T}, \ P_{k+1} = \mathcal{B}. \\ \text{For } 0 \leq i \leq k, \text{ let} \end{array}$

 $h_i = \#$ of E steps where P_i and P_{i+1} conincide

(D) (A) (A)

Theorem

The distribution of (h_0, h_1, \ldots, h_k) over k-fans of paths as above is symmetric.

Flagged SSTY k-triangulations

Connection to flagged SSYT

Let
$$T = NN \dots NEE \dots E$$
.

$$h_i = \# E$$
 steps in $P_i \cap \mathcal{P}_{i+1}$
 $h_0 = 4$ $h_1 = 3$ $h_2 = 3$ $h_3 = 3$

Sergi Elizalde Bijections for lattice paths between two boundaries

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

æ

Flagged SSTY k-triangulations

Connection to flagged SSYT

 $h_i = \# E$ steps in $P_i \cap \mathcal{P}_{i+1}$ $h_0 = 4$ $h_1 = 3$ $h_2 = 3$ $h_3 = 3$ $u_i = \#$ of unused E steps at level j

・ロト ・回 ト ・ヨト ・ヨト

Flagged SSTY k-triangulations

Connection to flagged SSYT

T and B form the shape of a Young diagram of a partition λ .

イロト イポト イヨト イヨト

э

Flagged SSTY k-triangulations

Connection to flagged SSYT

 $h_i = \# E \text{ steps in } P_i \cap \mathcal{P}_{i+1}$ $h_0 = 4 \quad h_1 = 3 \quad h_2 = 3 \quad h_3 = 3$ $u_j = \# \text{ of } unused E \text{ steps at level } j$ $\lambda = (6, 4, 3, 3, 1)$

T and B form the shape of a Young diagram of a partition λ . Def: A SSYT of shape λ is called k-flagged if the entries in row r are $\leq k + r$ for each r.

1	1	2	2	3	4	\leq 4
2	3	3	4			\leq 5
4	5	6		-		\leq 6
5	6	7				≤ 7
8						\leq 8

(D) (A) (A) (A) (A)

Flagged SSTY k-triangulations

Connection to flagged SSYT

 $h_i = \# E \text{ steps in } P_i \cap \mathcal{P}_{i+1}$ $h_0 = 4 \quad h_1 = 3 \quad h_2 = 3 \quad h_3 = 3$ $u_j = \# \text{ of } unused E \text{ steps at level } j$ $\lambda = (6, 4, 3, 3, 1)$

T and B form the shape of a Young diagram of a partition λ . Def: A SSYT of shape λ is called k-flagged if the entries in row r are $\leq k + r$ for each r.

weight =
$$(\#1s, \#2s, ...)$$

= $(2,3,3,3,2,2,1,1)$

Elizalde Bijections for lattice paths between two boundaries

Flagged SSTY k-triangulations

Connection to flagged SSYT

Theorem

There is an explicit bijection between

- k-fans of paths in $\mathcal{P}(\mathsf{T},\mathsf{B})$ with statistics h_i and u_j , and
- ► k-flagged SSYT of shape λ and weight $(\lambda_1 - h_0, \lambda_1 - h_1, \dots, \lambda_1 - h_k, u_1, u_2, \dots, u_r).$

1	1	2	2	3	4	\leq 4			
2	3	3	4			\leq 5			
4	5	6				\leq 6			
5	6	7				≤ 7			
8						\leq 8			
$\lambda_1 = 6$									
weight $= (2, 3, 3, 3, 2, 2, 1, 1)$									

Flagged SSTY k-triangulations

Connection to flagged SSYT

Theorem

There is an explicit bijection between

- k-fans of paths in $\mathcal{P}(\mathsf{T},\mathsf{B})$ with statistics h_i and u_j , and
- ► k-flagged SSYT of shape λ and weight $(\lambda_1 - h_0, \lambda_1 - h_1, \dots, \lambda_1 - h_k, u_1, u_2, \dots, u_r).$

The bijection uses a variation of *jeu de taquin*

Flagged SSTY k-triangulations

Connection to k-triangulations

Theorem (E.-Rubey '11, conjectured by C. Nicolás '09)

The joint distribution of the degrees of k + 1 consecutive vertices in a k-triangulation of a convex n-gon equals the distribution of (h_0, h_1, \ldots, h_k) over k-fans of Dyck paths of semilength n - 2k.

(日) (同) (三) (三)

Flagged SSTY k-triangulations

Connection to *k*-triangulations

Theorem (E.-Rubey '11, conjectured by C. Nicolás '09)

The joint distribution of the degrees of k + 1 consecutive vertices in a k-triangulation of a convex n-gon equals the distribution of (h_0, h_1, \ldots, h_k) over k-fans of Dyck paths of semilength n - 2k.

The proof uses the previous theorem in the special case of Dyck paths, together with a bijection of Serrano–Stump between k-triangulations and k-flagged SSYT.

