Bijections for lattice paths between two boundaries

Sergi Elizalde
Dartmouth College

Joint work with Martin Rubey

Top and bottom contacts
Variations and generalizations Applications

Paths with steps N, E
The bijection

A different Dartmouth

Dyck paths

For $P \in \mathcal{D}_{n}$ (Dyck paths with $2 n$ steps), let $t(P)=\#$ of E steps in common with T
$=$ "height" of the last "peak"
$b(P)=\#$ of E steps in common with B
$=$ number of returns

Dyck paths

For $P \in \mathcal{D}_{n}$ (Dyck paths with $2 n$ steps), let $t(P)=\#$ of E steps in common with T
$=$ "height" of the last "peak"
$b(P)=\#$ of E steps in common with B
$=$ number of returns

Theorem (Deutsch '98)

The joint distribution of the pair (t, b) over \mathcal{D}_{n} is symmetric, i.e.,

$$
\sum_{P \in \mathcal{D}_{n}} x^{t(P)} y^{b(P)}=\sum_{P \in \mathcal{D}_{n}} x^{b(P)} y^{t(P)}
$$

Dyck paths

$$
t(P)=3 \quad b(P)=2
$$

For $P \in \mathcal{D}_{n}$ (Dyck paths with $2 n$ steps), let $t(P)=\#$ of E steps in common with T
$=$ "height" of the last "peak"
$b(P)=\#$ of E steps in common with B
$=$ number of returns
Theorem (Deutsch '98)
The joint distribution of the pair (t, b) over \mathcal{D}_{n} is symmetric, i.e.,

$$
\sum_{P \in \mathcal{D}_{n}} x^{t(P)} y^{b(P)}=\sum_{P \in \mathcal{D}_{n}} x^{b(P)} y^{t(P)}
$$

Proof 1 (Deutsch): Recursive bijection. Proof 2: Generating fcts. Both proofs rely on the recursive structure of Dyck paths.

A generalization to arbitrary boundaries

T and B paths from O to F with steps N and E, with T weakly above B
$P \in \mathcal{P}(T, B)=$ set of paths from O to F weakly between T and B
$t(P)=\#$ of E steps in common with T (top contacts of P)
$b(P)=\#$ of E steps in common with B (bottom contacts of P)

A generalization to arbitrary boundaries

T and B paths from O to F with steps
N and E, with T weakly above B
$P \in \mathcal{P}(T, B)=$ set of paths from O to F weakly between T and B
$t(P)=\#$ of E steps in common with T (top contacts of P)
$b(P)=\#$ of E steps in common with B (bottom contacts of P)
Theorem
The joint distribution of (t, b) over $\mathcal{P}(T, B)$ is symmetric, i.e.,

$$
\sum_{P \in \mathcal{P}(T, B)} x^{t(P)} y^{b(P)}=\sum_{P \in \mathcal{P}(T, B)} x^{b(P)} y^{t(P)}
$$

Paths with steps N, E
The bijection

Example

Proof

The known proofs for Dyck paths do not seem to generalize to arbitrary boundaries.

Proof

The known proofs for Dyck paths do not seem to generalize to arbitrary boundaries.

We give an involution

$$
\Phi: \mathcal{P}(T, B) \rightarrow \mathcal{P}(T, B)
$$

with the property $t(\Phi(P))=b(P)$ and $b(\Phi(P))=t(P)$.

Idea: Given $P \in \mathcal{P}(T, B)$ with $t(P)>b(P)$, turn some of its top contacts into bottom contacts, one at a time.

Proof

The known proofs for Dyck paths do not seem to generalize to arbitrary boundaries.

We give an involution

$$
\Phi: \mathcal{P}(T, B) \rightarrow \mathcal{P}(T, B)
$$

with the property $t(\Phi(P))=b(P)$ and $b(\Phi(P))=t(P)$.

Idea: Given $P \in \mathcal{P}(T, B)$ with $t(P)>b(P)$, turn some of its top contacts into bottom contacts, one at a time.

Which ones? How?

Proof - warm up

A transformation on words
Given a w word over the alphabet $\{\mathbf{t}, \mathbf{b}\}$, define $\mu(\mathbf{w})$ as follows:

- Draw a path with a step $(1,1)$ for each \mathbf{t}, and a step $(1,-1)$ for each b.

$\mathbf{w}=$ bttbtbbbttbttbtbtt

Proof - warm up

A transformation on words
Given a w word over the alphabet $\{\mathbf{t}, \mathbf{b}\}$, define $\mu(\mathbf{w})$ as follows:

- Draw a path with a step $(1,1)$ for each \mathbf{t}, and a step $(1,-1)$ for each \mathbf{b}.
- Match t's and b's that "face" each other in the path.

$\mathbf{w}=$ bttbtbbbttbttbtbtt

Proof - warm up

A transformation on words
Given a w word over the alphabet $\{\mathbf{t}, \mathbf{b}\}$, define $\mu(\mathbf{w})$ as follows:

- Draw a path with a step $(1,1)$ for each \mathbf{t}, and a step $(1,-1)$ for each \mathbf{b}.
- Match t's and b's that "face" each other in the path.
- Replace the leftmost unmatched \mathbf{t} with a b. (If no unmatched \mathbf{t}, then $\mu(\mathbf{w})$ is not defined.)
$\mathbf{w}=\mathbf{b t t b t b b b} t \mathrm{tb} t \mathrm{tb} t b t \mathbf{t}$
$\mu(\mathbf{w})=$ bttbtbbbbtbttbtbtt

Proof - warm up

A transformation on words

$$
\mathbf{w}=\text { bttbtbbbttbttbtbtt }
$$

$\mu(\mathbf{w})=$ bttbtbbbbtbttbtbtt

Note: w can be recovered from $\mu(\mathbf{w})$ by replacing the rightmost unmatched \mathbf{b} with a \mathbf{t}.

Proof - warm up

A transformation on words
$\mathbf{w}=$ bttbtbbbttbttbtbtt
$\mu(\mathbf{w})=$ bttbtbbbbtbttbtbtt

Note: \mathbf{w} can be recovered from $\mu(\mathbf{w})$ by replacing the rightmost unmatched \mathbf{b} with a \mathbf{t}.

Lemma
μ^{e-f} is a bijection between

- words with e t's and f b's, and
- words with f t's and e b's.

Proof - the bijection

A transformation on paths
Given $P \in \mathcal{P}(T, B)$, define $\phi(P)$ as follows:

- Record top and bottom contacts of P as a word \mathbf{w} over $\{\mathbf{t}, \mathbf{b}\}$.

$$
\mathbf{w}=\mathrm{bttbtt}
$$

Proof - the bijection

A transformation on paths
Given $P \in \mathcal{P}(T, B)$, define $\phi(P)$ as follows:

- Record top and bottom contacts of P as a word \mathbf{w} over $\{\mathbf{t}, \mathbf{b}\}$.
- Find leftmost unmatched \mathbf{t}; let E be the corresponding step.

$$
\mathbf{w}=\mathbf{b t t b t t}
$$

Proof - the bijection

A transformation on paths
Given $P \in \mathcal{P}(T, B)$, define $\phi(P)$ as follows:

- Record top and bottom contacts of P as a word \mathbf{w} over $\{\mathbf{t}, \mathbf{b}\}$.
- Find leftmost unmatched \mathbf{t}; let E be the corresponding step.
- Write $P=X Y E Z$, where Y touches B only at its left endpoint.

$$
\mathbf{w}=\mathbf{b} t \mathbf{t b t t}
$$

Proof - the bijection

A transformation on paths
Given $P \in \mathcal{P}(T, B)$, define $\phi(P)$ as follows:

- Record top and bottom contacts of P as a word \mathbf{w} over $\{\mathbf{t}, \mathbf{b}\}$.
- Find leftmost unmatched \mathbf{t}; let E be the corresponding step.
- Write $P=X Y E Z$, where Y touches B only at its left endpoint.
- Let $\phi(P)=X E Y Z$.

$$
\mathbf{w}=\mathbf{b t t b t t}
$$

$$
\mu(\mathbf{w})=\mathbf{b b t b t t}
$$

Proof - the bijection

A transformation on paths
For $P \in \mathcal{P}(T, B)$ with $t(P)=e$ and $b(P)=f$, define

$$
\Phi(P)=\phi^{e-f}(P)
$$

Proof - the bijection

A transformation on paths
For $P \in \mathcal{P}(T, B)$ with $t(P)=e$ and $b(P)=f$, define

$$
\Phi(P)=\phi^{e-f}(P)
$$

Theorem
Φ is an involution on $\mathcal{P}(T, B)$ that satisfies $t(\Phi(P))=b(P)$ and $b(\Phi(P))=t(P)$.

Proof - the bijection

A transformation on paths

For $P \in \mathcal{P}(T, B)$ with $t(P)=e$ and $b(P)=f$, define

$$
\Phi(P)=\phi^{e-f}(P)
$$

Theorem

Φ is an involution on $\mathcal{P}(T, B)$ that satisfies $t(\Phi(P))=b(P)$ and $b(\Phi(P))=t(P)$.

$(t, b)=(4,2)$

$(t, b)=(3,3)$

$(t, b)=(2,4)$

A generalization to paths with S steps

$$
\begin{aligned}
\widetilde{\mathcal{P}}(T, B)= & \text { set of paths from } O \text { to } F \\
& \text { with steps } N, E \text { and } S \\
& \text { weakly between } T \text { and } B .
\end{aligned}
$$

For $P \in \widetilde{\mathcal{P}}(T, B)$, define $t(P)$ and $b(P)$ as before.
The descent set of P is the set of x-coordinates where S steps occur.

A generalization to paths with S steps

$$
\begin{aligned}
\widetilde{\mathcal{P}}(T, B)= & \text { set of paths from } O \text { to } F \\
& \text { with steps } N, E \text { and } S \\
& \text { weakly between } T \text { and } B .
\end{aligned}
$$

For $P \in \widetilde{\mathcal{P}}(T, B)$, define $t(P)$ and $b(P)$ as before.
The descent set of P is the set of x-coordinates where S steps occur.

Theorem

There is an involution $\widetilde{\mathcal{P}}(T, B) \rightarrow \widetilde{\mathcal{P}}(T, B)$ that switches the statistics (t, b) and preserves the descent set.

A generalization: examples

The map ϕ for paths with S steps:

A generalization: examples

The involution Φ for paths with S steps:

A related theorem

For $P \in \mathcal{P}(T, B)$, let
$\ell(P)=\#$ of N steps in common with T $r(P)=\#$ of N steps in common with B

Example: $t(P)=4, b(P)=3, \ell(P)=2, r(P)=1$.

A related theorem

For $P \in \mathcal{P}(T, B)$, let
$\ell(P)=\#$ of N steps in common with T
$r(P)=\#$ of N steps in common with B
Example: $t(P)=4, b(P)=3, \ell(P)=2, r(P)=1$.
Theorem
The pairs (b, ℓ) and (t, r) have the same joint distribution over $\mathcal{P}(T, B)$, i.e.,

$$
\sum_{P \in \mathcal{P}(T, B)} x^{b(P)} y^{\ell(P)}=\sum_{P \in \mathcal{P}(T, B)} x^{t(P)} y^{r(P)}
$$

A related theorem

For $P \in \mathcal{P}(T, B)$, let
$\ell(P)=\#$ of N steps in common with T
$r(P)=\#$ of N steps in common with B
Example: $t(P)=4, b(P)=3, \ell(P)=2, r(P)=1$.
Theorem
The pairs (b, ℓ) and (t, r) have the same joint distribution over $\mathcal{P}(T, B)$, i.e.,

$$
\sum_{P \in \mathcal{P}(T, B)} x^{b(P)} y^{\ell(P)}=\sum_{P \in \mathcal{P}(T, B)} x^{t(P)} y^{r(P)} .
$$

We do not know of a bijective proof similar to the previous one.

Proof idea

Both

$$
\sum_{P \in \mathcal{P}(T, B)} x^{b(P)} y^{\ell(P)} \quad \text { and } \sum_{P \in \mathcal{P}(T, B)} x^{t(P)} y^{r(P)}
$$

equal the Tutte polynomial of a lattice path matroid, as defined by Bonin-De Mier-Noy '03.

The statistics b and ℓ (t and r) are internal and external activities with respect to different linear orderings of the ground set.

k-fans of paths

$$
P_{1}, P_{2}, \ldots, P_{k} \in \mathcal{P}(T, B)
$$

P_{i} weakly above P_{i+1} for all i.
Let $P_{0}=T, P_{k+1}=B$.
For $0 \leq i \leq k$, let

$$
\begin{aligned}
h_{i}= & \# \text { of } E \text { steps where } \\
& P_{i} \text { and } P_{i+1} \text { conincide }
\end{aligned}
$$

k-fans of paths

$$
h_{0}=4 \quad h_{1}=4 \quad h_{2}=6
$$

$$
P_{1}, P_{2}, \ldots, P_{k} \in \mathcal{P}(T, B)
$$

P_{i} weakly above P_{i+1} for all i.
Let $P_{0}=T, P_{k+1}=B$.
For $0 \leq i \leq k$, let

$$
\begin{aligned}
h_{i}= & \# \text { of } E \text { steps where } \\
& P_{i} \text { and } P_{i+1} \text { conincide }
\end{aligned}
$$

Theorem
The distribution of $\left(h_{0}, h_{1}, \ldots, h_{k}\right)$ over k-fans of paths as above is symmetric.

Connection to flagged SSYT

Let $T=N N \ldots N E E \ldots E$.

$$
\begin{aligned}
& h_{i}=\# E \text { steps in } P_{i} \cap \mathcal{P}_{i+1} \\
& h_{0}=4 \quad h_{1}=3 \quad h_{2}=3 \quad h_{3}=3
\end{aligned}
$$

Connection to flagged SSYT

$$
\text { Let } T=N N \ldots N E E \ldots E \text {. }
$$

$$
\begin{aligned}
& h_{i}=\# E \text { steps in } P_{i} \cap \mathcal{P}_{i+1} \\
& h_{0}=4 \quad h_{1}=3 \quad h_{2}=3 \quad h_{3}=3 \\
& u_{j}=\# \text { of unused } E \text { steps at level } j
\end{aligned}
$$

Connection to flagged SSYT

$$
\begin{aligned}
& \text { Let } T=N N \ldots N E E \ldots E . \\
& u_{1}=2 \\
& u_{2}=2 \\
& u_{3}=1 \\
& u_{4}=1
\end{aligned}
$$

T and B form the shape of a Young diagram of a partition λ.

Connection to flagged SSYT

$$
\begin{aligned}
& \text { Let } T=N N \ldots N E E \ldots E . \\
& u_{1}=2 \\
& u_{2}=2 \\
& u_{3}=1 \\
& u_{4}=1
\end{aligned}
$$

T and B form the shape of a Young diagram of a partition λ.
Def: A SSYT of shape λ is called k-flagged if the entries in row r are $\leq k+r$ for each r.

1	1	2	2	3	4	≤ 4
2	3	3	4			≤ 5
4	5	6				≤ 6
5	6	7				≤ 7
8						≤ 8

Connection to flagged SSYT

$$
\begin{aligned}
& \text { Let } T=N N \ldots N E E \ldots E . \\
& u_{1}=2 \\
& u_{2}=2 \\
& u_{3}=1 \\
& u_{4}=1
\end{aligned}
$$

T and B form the shape of a Young diagram of a partition λ.
Def: A SSYT of shape λ is called k-flagged if the entries in row r are $\leq k+r$ for each r.

1	1	2	2	3	4	≤ 4
2	3	3	4			≤ 5
4	5	6				≤ 6
5	6	7				≤ 7
8						≤ 8

$$
\begin{aligned}
\text { weight } & =(\# 1 s, \# 2 s, \ldots) \\
& =(2,3,3,3,2,2,1,1)
\end{aligned}
$$

Connection to flagged SSYT

Theorem

There is an explicit bijection between

- k-fans of paths in $\mathcal{P}(T, B)$ with statistics h_{i} and u_{j}, and
- k-flagged SSYT of shape λ and weight

$$
\left(\lambda_{1}-h_{0}, \lambda_{1}-h_{1}, \ldots, \lambda_{1}-h_{k}, u_{1}, u_{2}, \ldots, u_{r}\right)
$$

$h_{0}=4 \quad h_{1}=3 \quad h_{2}=3 \quad h_{3}=3$

weight $=(2,3,3,3,2,2,1,1)$

Connection to flagged SSYT

Theorem

There is an explicit bijection between

- k-fans of paths in $\mathcal{P}(T, B)$ with statistics h_{i} and u_{j}, and
- k-flagged SSYT of shape λ and weight

$$
\left(\lambda_{1}-h_{0}, \lambda_{1}-h_{1}, \ldots, \lambda_{1}-h_{k}, u_{1}, u_{2}, \ldots, u_{r}\right)
$$

1	1	2	2	3	4	≤ 4
2	3	3	4			≤ 5
4	5	6				≤ 6
5	6	7				≤ 7
8						≤ 8

$h_{0}=4 \quad h_{1}=3 \quad h_{2}=3 \quad h_{3}=3$
weight $=(2,3,3,3,2,2,1,1)$
The bijection uses a variation of jeu de taquin.

Connection to k-triangulations

Theorem (E.-Rubey '11, conjectured by C. Nicolás '09)
The joint distribution of the degrees of $k+1$ consecutive vertices in a k-triangulation of a convex n-gon equals the distribution of $\left(h_{0}, h_{1}, \ldots, h_{k}\right)$ over k-fans of Dyck paths of semilength $n-2 k$.

Connection to k-triangulations

Theorem (E.-Rubey '11, conjectured by C. Nicolás '09)
The joint distribution of the degrees of $k+1$ consecutive vertices in a k-triangulation of a convex n-gon equals the distribution of $\left(h_{0}, h_{1}, \ldots, h_{k}\right)$ over k-fans of Dyck paths of semilength $n-2 k$.

The proof uses the previous theorem in the special case of Dyck paths, together with a bijection of Serrano-Stump between k-triangulations and k-flagged SSYT.

