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π = π1π2 . . . πn ∈ Sn, σ ∈ Sm.

De�nition. π contains σ as a consecutive pattern if it has a

subsequence of adjacent entries order-isomorphic to σ.

Examples: 25134 avoids 132

42531 contains 132

15243 contains two occurrences of 132

In this talk, containment and avoidance will always refer to

consecutive patterns.
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Consecutive patterns generalize basic combinatorial concepts:

I Occurrences of 21 are descents.

I Occurrences of 132 and 231 are peaks.

I Permutations avoiding 123 and 321 are alternating

permutations.

The systematic study of consecutive

patterns in permutations started 13

years ago. Work in the area by

Consecutive patterns arise naturally in dynamical systems, and play

a role in distinguishing deterministic from random sequences.
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Notation

For a �xed pattern σ, let

Pσ(u, z) =
∑
n≥0

∑
π∈Sn

u#{occurrences of σ in π} z
n

n!
,

Pσ(0, z) =
∑
n≥0

αn(σ)
zn

n!
,

where αn(σ) = #{π ∈ Sn : π avoids σ}.

Let

ωσ(u, z) =
1

Pσ(u, z)
.
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Some questions being studied

I Exact enumeration: �nd Pσ(u, z) or Pσ(0, z).

In this talk: Formulas for Pσ(u, z) for σ of certain shapes.

I Classi�cation of patterns according to c-Wilf-equivalence.

We write σ ∼ τ if Pσ(u, z) = Pτ (u, z).

Example: 1342 ∼ 1432.

In this talk: Classi�cation of patterns of length up to 6.

I Comparison of αn(σ) for di�erent patterns.

Example: αn(132) < αn(123) for n ≥ 4.

In this talk: For which pattern σ ∈ Sm is αn(σ) largest.
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Patterns of small length

Length 3: 2 c-Wilf classes (compare: 1 Wilf class in classical case)

123 ∼ 321

132 ∼ 231 ∼ 312 ∼ 213

Length 4: 7 c-Wilf classes (compare: 3 Wilf classes in classical case)

1234 ∼ 4321 enumeration solved

2413 ∼ 3142 enumeration unsolved

2143 ∼ 3412

1324 ∼ 4231

1423 ∼ 3241 ∼ 4132 ∼ 2314

1342 ∼ 2431 ∼ 4213 ∼ 3124
∗∼ 1432 ∼ 2341 ∼ 4123 ∼ 3214

1243 ∼ 3421 ∼ 4312 ∼ 2134

All ∼ follow from reversal and complementation except for
∗∼.
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Clusters

We use an adaptation of the cluster method of Goulden and

Jackson, based on inclusion-exclusion.

A k-cluster w.r.t. σ ∈ Sm is a permutation �lled with k marked

occurrences of σ that overlap with each other.

Example: 142536879 is a 3-cluster w.r.t. 1324.
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The cluster method

Let the EGF for clusters be

Cσ(u, z) =
∑
n,k

cσn,ku
k z

n

n!
,

where cσn,k := number of k-clusters of length n w.r.t. σ.

Theorem (Goulden-Jackson '79, adapted)

Pσ(u, z) =
1

ωσ(u, z)
=

1

1− z − Cσ(u − 1, z)
.

This reduces the computation of Pσ(u, z) to the enumeration of

clusters.
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Clusters as linear extensions of posets

π1π2π3π4π5π6π7π8π9π10π11 is a cluster w.r.t. σ = 14253

m
π1 < π3 < π5 < π2 < π4
π3 < π5 < π7 < π4 < π6
π7 < π9 < π11 < π8 < π10

m

π is a linear extension of the

poset given by these relations

(called a cluster poset)

Ex: 1 6 2 8 3 11 4 9 5 10 7

π1 = 1

π3 = 2

π5 = 3

π2 = 6 π7 = 4

π4 = 8

π6 = 11

π9 = 5

π11 = 7

π8 = 9

π10 = 10
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The pattern σ = 12 . . .m and generalizations

Theorem (Goulden-Jackson '83, E.-Noy '01)

For σ = 12 . . .m, ωσ(u, z) is the solution of

ω(m−1) + (1− u)(ω(m−2) + · · ·+ ω′ + ω) = 0.

It follows that ω12...m(0, z) =
∑
j≥0

(
z jm

(jm)!
− z jm+1

(jm + 1)!

)
.

Example:

P1234(0, z) =
1

ω1234(0, z)
=

2

cos z − sin z + e−z
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The pattern σ = 12 . . .m and generalizations

More generally...

Theorem (E.-Noy '11)

Let σ ∈ Sm be such that all its cluster posets are chains. Then

ωσ(u, z) is the solution of

ω(m−1) + (1− u)
∑
d∈Oσ

ω(m−d−1) = 0,

for a certain set Oσ easily de�ned from σ.

An example of such a pattern is

σ = 12 . . . (s−1)(s+1)s(s+2)(s+3) . . .m.
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Non-overlapping patterns

σ ∈ Sm is non-overlapping if two occurrences of σ can't overlap in

more than one position.

Example: 132, 1243, 1342, 21534, 34671285 are non-overlapping.

Theorem (Bóna '10)

The proportion of non-overlapping patterns of length m is > 0.364.

Proposition (Dotsenko-Khoroshkin, Remmel '10)

For σ ∈ Sm non-overlapping, Pσ(u, z) depends only on σ1 and σm.
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Non-overlapping patterns

Theorem (E.-Noy '01)

Let σ ∈ Sm be non-overlapping with σ1 = 1, σm = b. Then

ωσ(u, z) is the solution of

ω(b) + (1− u)
zm−b

(m − b)!
ω′ = 0.

Example:

P1342(u, z) =
1

ω1342(u, z)
=

1

1−
∫ z
0
e(u−1)t3/6dt

E.-Noy '11: Similar di�erential equations for ωσ(u, z) for

σ = 12534 and σ = 13254 (which aren't non-overlapping).
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The pattern 134 . . . (s+1)2(s+2)(s+3) . . .m

Theorem (E.-Noy, Liese-Remmel, Dotsenko-Khoroshkin)

For σ = 1324, ωσ(u, z) is the solution of

zω(5)−((u−1)z−3)ω(4)−3(u−1)(2z+1)ω(3)+(u−1)((4u−5)z−6)ω′′

+ (u − 1)(8(u − 1)z − 3)ω′ + 4(u − 1)2zω = 0

The construction generalizes to patterns of the form

σ = 134 . . . (s + 1)2(s + 2)(s + 3) . . .m.
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Other patterns of length 4

For the remaining cases, 1423, 2143 and 2413, we have recurrences

for the cluster numbers, but no closed form or di�. eq. for ωσ(u, z).

Conjecture

For σ = 1423, ω1423(0, z) is not D-�nite.

(i.e., it does not satisfy a linear di�. eq. with polynomial coe�s.)

This would be the �rst known instance of a pattern with this

property. Equivalent to showing that S(x) = 1 + x
1+x

S
(

x
1+x2

)
is

not D-�nite. In contrast:

�Conjecture� (Noonan-Zeilberger '96)

For every classical pattern σ (i.e., where occurrences are not

constrained to consecutive positions), the generating function for

σ-avoiding permutations is D-�nite.
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Consecutive Wilf-equivalence

One can classify patterns of length up to 6 into

consecutive-Wilf-equivalence classes, proving

four conjectures of Nakamura:

n # of classes

3 2

4 7

5 25

6 92

Theorem (E.-Noy '11)

I 123546 ∼ 124536→ solution of ω(5) + (1− u)(ω′ + ω) = 0.

I 123645 ∼ 124635→ solution of ω(5) + (1− u)z(ω′′ + ω′) = 0.

I 132465 ∼ 142365→ solution of ω(5) + (1− u)(ω′′ + zω′) = 0.

I 154263 ∼ 165243.
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Asymptotic behavior

Theorem (E. '05)

For every σ, the limit

ρσ := lim
n→∞

(
αn(σ)

n!

)1/n

exists.

This limit is known only for some patterns.

Theorem (Ehrenborg-Kitaev-Perry '11)

For every σ,
αn(σ)

n!
= γσρ

n
σ + O(δn),

for some constants γσ and δ < ρσ.

The proof uses methods from spectral theory.
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The most avoided pattern

For what pattern σ ∈ Sm is αn(σ) largest?

Theorem (E. '12)

For every σ ∈ Sm there exists n0 such that

αn(σ) ≤ αn(12 . . .m)

for all n ≥ n0.

Interestingly, the analogous result for classical patterns (i.e.,

without the adjacency requirement) is false.

The theorem is equivalent to ρσ being largest for σ = 12 . . .m.
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Theorem (E. '12)
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Proof idea � 1. Singularity analysis

Let σ ∈ Sm \ {12 . . .m,m . . . 21}. Want to show: ρσ < ρ12...m.

Recall: ρσ is the growth rate of the coe�cients of

Pσ(0, z) =
1

ωσ(0, z)
=
∑
n≥0

αn(σ)
zn

n!
,

so ρ−1σ is the smallest singularity of Pσ(0, z).

One can show that ωσ(z) := ωσ(0, z) is analytic near the origin, so

I ρ−1σ is the smallest zero of ωσ(z),

I ρ−112...m is the smallest zero of ω12...m(z).
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Proof idea � 1. Singularity analysis

I ρ−1σ is the smallest zero of ωσ(z),

I ρ−112...m is the smallest zero of ω12...m(z).

To show that ρσ < ρ12...m, it is
enough to show that

ω12...m(z) < ωσ(z)

for 0 < z < 1.276.

0.25 0.5 0.75 1 1.25
0

0.5

1
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Proof idea � 2. Comparing cluster numbers

We show that ω12...m(z) < ωσ(z) for 0 < z < 1.276:

ω12...m(z) =
∑
j≥0

(
z jm

(jm)!
− z jm+1

(jm + 1)!

)
< 1−z+

zm

m!
− zm+1

(m + 1)!
+

z2m

(2m)!
,

∧

ωσ(z) = 1− z −
∑
k≥1

(−1)k
∑
n

rσn,k
zn

n!︸ ︷︷ ︸
sσ
k
(z)

> 1− z +
zm

m!
− sσ2 (z).

Key fact #1: The sequence {sσk (z)}k≥1 is decreasing.

Key fact #2: sσ2 (z) < zm+1

(m+1)! −
z2m

(2m)! .
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The least avoided pattern

For what pattern σ ∈ Sm is αn(σ) smallest?

Theorem (E. '12, conjectured by Nakamura)

For every σ ∈ Sm there exists n0 such that

αn(123 . . . (m−2)m(m−1)) ≤ αn(σ)

for all n ≥ n0.

Proposition (E. 12)

For every non-overlapping σ ∈ Sm there exists n0 s.t.

αn(123 . . . (m−2)m(m−1)) ≤ αn(σ) ≤ αn(134 . . .m2)

for all n ≥ n0.
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in dynamical systems
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Deterministic or random?

Two sequences of numbers in [0, 1]:

.6416, .9198, .2951, .8320, .5590, .9861, .0550, .2078, .6584, .8996,
.3612, .9230, .2844, .8141, .6054, . . .

.9129, .5257, .4475, .9815, .4134, .9930, .1576, .8825, .3391, .0659,
.1195, .5742, .1507, .5534, .0828, . . .

Which one is random? Which one is deterministic?

The �rst one is deterministic: taking f (x) = 4x(1− x), we have

f (.6146) = .9198,
f (.9198) = .2951,
f (.2951) = .8320,
. . .
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Allowed and forbidden patterns of maps
Example: shifts
A more general example: signed shifts

Allowed patterns of a map

Let X be a linearly ordered set, f : X → X . For each x ∈ X and

n ≥ 1, consider the sequence

x , f (x), f 2(x), . . . , f n−1(x).

If there are no repetitions, the relative order of the entries

determines a permutation, called an allowed pattern of f .
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Example

f : [0, 1] → [0, 1]
x 7→ 4x(1− x).

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

x

For x = 0.8 and n = 4, the sequence

0.8, 0.64, 0.9216, 0.2890
determines the permutation 3241, so it is an allowed pattern.
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Allowed and forbidden patterns

Allow(f ) = set of allowed patterns of f .

Allow(f ) is closed under consecutive pattern containment.

E.g., if 4156273 ∈ Allow(f ), then 2314 ∈ Allow(f ).

Thus, Allow(f ) can be characterized by avoidance of a (possibly

in�nite) set of consecutive patterns.

The permutations not in Allow(f ) are called forbidden patterns of f .
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Example: L(x) = 4x(1− x)

Taking di�erent x ∈ [0, 1], the patterns 123, 132, 231, 213, 312 are

realized. However, 321 is a forbidden pattern of L.

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

x

L(x) L(L(x))

123 132 231 213 312

Also forbidden: 1432, 2431, 3214, . . .︸ ︷︷ ︸
anything containing 321

, 1423, 2134, 2143, 3142, 4231, . . .︸ ︷︷ ︸
basic: not containing smaller forbidden patterns

Theorem (E.-Liu): L has in�nitely many basic forbidden patterns.
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Forbidden patterns

Let I ⊂ R be a closed interval.

Theorem (Bandt-Keller-Pompe '02)

Let f : I → I be a piecewise monotone map. Then

I f has forbidden patterns,

I limn→∞ |Allown(f )|1/n exists, and its logarithm equals the

topological entropy of f .

Provides a combinatorial way to compute the topological entropy,

which is a measure of the complexity of the dynamical system.
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Deterministic vs. random sequences

Back to the original sequence:

.6416, .9198, .2951, .8320, .5590, .9861, .0550, .2078, .6584, .8996, .3612,

.9230, .2844, .8141, .6054, . . .

We see that the pattern 321 is missing from it.

This suggests that the sequence is of the form xi+1 = f (xi ) for

some f .

If it was a random sequence, any pattern would eventually appear.
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Allowed and forbidden patterns of maps
Example: shifts
A more general example: signed shifts

Some (mostly open) questions

I How are properties of Allow(f ) related to properties of f ?

In particular,

I when is the set of basic forbidden patterns of f �nite?

I what is the length of the shortest forbidden pattern of f ?

I

I What sets of permutations can be Allow(f ) for some f ?

I Use this to design better tests to distinguish random sequences

from deterministic ones.
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Shift maps

Mk : [0, 1) → [0, 1)
x 7→ {kx}

(fractional part)

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

x

Considering the expansions in base k of x ∈ [0, 1), this map is

�equivalent� to the shift map on the set Wk = {0, 1, . . . , k−1}N of

in�nite words on a k-letter alphabet, ordered lexicographically:

Σk : Wk −→ Wk

w1w2w3 . . . 7→ w2w3w4 . . .
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Example

The permutation 4217536 is realized (i.e., allowed) by Σ3, because

taking w = 2102212210 . . . ∈ W3, we have

w = 2102212210 . . . 4

Σ3(w) = 102212210 . . . 2

Σ3
2(w) = 02212210 . . . 1

Σ3
3(w) = 2212210 . . . 7

Σ3
4(w) = 212210 . . . 5

Σ3
5(w) = 12210 . . . 3

Σ3
6(w) = 2210 . . . 6


lexicographic order

of the shifted words
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Forbidden patterns of shifts

Theorem (Amigó-E.-Kennel)

Σk has no forbidden patterns of length n ≤ k + 1, but it has basic

forbidden patterns of each length n ≥ k + 2.

Proposition (E.)

Σk has exactly 6 forbidden patterns of length k + 2.

Example

The shortest forbidden patterns of Σ4 are

615243, 324156, 342516, 162534, 453621, 435261.
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The smallest # of letters needed to realize π by a shift

For π ∈ Sn, let N(π) = min{k : π ∈ Allow(Σk)}.

Theorem (E.): N(π) = 1 + des(π̂) + ε(π̂)︸︷︷︸
0 or 1

.

An example of the construction π 7→ π̂:

π = 892364157 (8,9,2,3,6,4,1,5,7) 536174892 536174 92 = π̂

des(π̂) = des(53617492) = 4

N(892364157) = 1 + 4 + 0 = 5

This characterizes permutations realized by Σk , and can be used to

deduce a (complicated) formula for |Allown(Σk)|, for given n and k .
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Signed shifts

For �xed σ = σ0σ1 . . . σk−1 ∈ {+,−}k , the signed shift with

signature σ is

Σσ : Wk −→ Wk

w1w2w3 . . . 7→

{
w2w3w4 . . . if σw1 = +,

w̄2w̄3w̄4 . . . if σw1 = −,

where w̄i = k−1−wi .

Thinking of words as expansions

in base k of numbers in [0, 1),
Σσ is �equivalent� to a piecewise

linear map.
0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Σ++−−+
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Signed shifts

Archer '13:

I Characterization of permutations realized by Σσ, for any σ
(�xing and simplifying a result of Amigó).

I Upper and lower bounds on |Allow(Σσ)|.
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Periodic orbits

Let Pn(Σσ) be the set of permutations realized by the periodic

orbits of Σσ of size n.

Theorem (Archer-E. '12)

Assuming σ 6= −k or n 6= 2 mod 4,

π ∈ Pn(Σσ) ⇔ the cycle π̂ can be drawn on the graph of Σσ.

Examples: π ∈ Pn(Σ+−) ⇔ π̂ is unimodal.

π ∈ Pn(Σ+k ) ⇔ π̂ has at most k − 1 descents.

For n 6= 2 mod 4, π ∈ Pn(Σ−k ) ⇔ π̂ has at most k − 1 ascents.

Corollary (Archer-E. '12)

Enumeration formulas for cyclic permutations avoiding some sets of

patterns (in the classical sense).
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π ∈ Pn(Σ+k ) ⇔ π̂ has at most k − 1 descents.

For n 6= 2 mod 4, π ∈ Pn(Σ−k ) ⇔ π̂ has at most k − 1 ascents.

Corollary (Archer-E. '12)

Enumeration formulas for cyclic permutations avoiding some sets of

patterns (in the classical sense).
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