Consecutive patterns in permutations

Sergi Elizalde
Dartmouth College
Permutation Patterns 2013
Paris

Consecutive patterns

$$
\pi=\pi_{1} \pi_{2} \ldots \pi_{n} \in \mathcal{S}_{n}, \quad \sigma \in \mathcal{S}_{m}
$$

Definition. π contains σ as a consecutive pattern if it has a subsequence of adjacent entries order-isomorphic to σ.

Consecutive patterns

$$
\pi=\pi_{1} \pi_{2} \ldots \pi_{n} \in \mathcal{S}_{n}, \quad \sigma \in \mathcal{S}_{m}
$$

Definition. π contains σ as a consecutive pattern if it has a subsequence of adjacent entries order-isomorphic to σ.

Examples: 25134 avoids 132
42531 contains 132

Consecutive patterns

$$
\pi=\pi_{1} \pi_{2} \ldots \pi_{n} \in \mathcal{S}_{n}, \quad \sigma \in \mathcal{S}_{m}
$$

Definition. π contains σ as a consecutive pattern if it has a subsequence of adjacent entries order-isomorphic to σ.

Examples: 25134 avoids 132
42531 contains 132
15243 contains two occurrences of 132

In this talk, containment and avoidance will always refer to consecutive patterns.

Consecutive patterns

Consecutive patterns generalize basic combinatorial concepts:

- Occurrences of 21 are descents.
- Occurrences of 132 and 231 are peaks.
- Permutations avoiding 123 and 321 are alternating permutations.

Consecutive patterns

Consecutive patterns generalize basic combinatorial concepts:

- Occurrences of 21 are descents.
- Occurrences of 132 and 231 are peaks.
- Permutations avoiding 123 and 321 are alternating permutations.

The systematic study of consecutive patterns in permutations started 13 years ago.

Consecutive patterns

Consecutive patterns generalize basic combinatorial concepts:

- Occurrences of 21 are descents.
- Occurrences of 132 and 231 are peaks.
- Permutations avoiding 123 and 321 are alternating permutations.

The systematic study of consecutive patterns in permutations started 13 years ago. Work in the area by

Consecutive patterns

Consecutive patterns generalize basic combinatorial concepts:

- Occurrences of 21 are descents.
- Occurrences of 132 and 231 are peaks.
- Permutations avoiding 123 and 321 are alternating permutations.

The systematic study of consecutive patterns in permutations started 13 years ago. Work in the area by

Consecutive patterns arise naturally in dynamical systems, and play a role in distinguishing deterministic from random sequences.

Notation

For a fixed pattern σ, let

$$
P_{\sigma}(u, z)=\sum_{n \geq 0} \sum_{\pi \in \mathcal{S}_{n}} u^{\#\{\text { occurrences of } \sigma \text { in } \pi\}} \frac{z^{n}}{n!},
$$

Notation

For a fixed pattern σ, let

$$
\begin{aligned}
P_{\sigma}(u, z) & =\sum_{n \geq 0} \sum_{\pi \in \mathcal{S}_{n}} u^{\#\{\text { occurrences of } \sigma \text { in } \pi\}} \frac{z^{n}}{n!} \\
P_{\sigma}(0, z) & =\sum_{n \geq 0} \alpha_{n}(\sigma) \frac{z^{n}}{n!} \\
& \text { where } \alpha_{n}(\sigma)=\#\left\{\pi \in \mathcal{S}_{n}: \pi \text { avoids } \sigma\right\} .
\end{aligned}
$$

Notation

For a fixed pattern σ, let

$$
\begin{aligned}
P_{\sigma}(u, z) & =\sum_{n \geq 0} \sum_{\pi \in \mathcal{S}_{n}} u^{\#\{\text { occurrences of } \sigma \text { in } \pi\}} \frac{z^{n}}{n!} \\
P_{\sigma}(0, z) & =\sum_{n \geq 0} \alpha_{n}(\sigma) \frac{z^{n}}{n!} \\
& \text { where } \alpha_{n}(\sigma)=\#\left\{\pi \in \mathcal{S}_{n}: \pi \text { avoids } \sigma\right\} .
\end{aligned}
$$

Let

$$
\omega_{\sigma}(u, z)=\frac{1}{P_{\sigma}(u, z)} .
$$

Some questions being studied

- Exact enumeration: find $P_{\sigma}(u, z)$ or $P_{\sigma}(0, z)$.

In this talk: Formulas for $P_{\sigma}(u, z)$ for σ of certain shapes.

Some questions being studied

- Exact enumeration: find $P_{\sigma}(u, z)$ or $P_{\sigma}(0, z)$.

In this talk: Formulas for $P_{\sigma}(u, z)$ for σ of certain shapes.

- Classification of patterns according to c-Wilf-equivalence. We write $\sigma \sim \tau$ if $P_{\sigma}(u, z)=P_{\tau}(u, z)$.
Example: $1342 \sim 1432$.
In this talk: Classification of patterns of length up to 6 .

Some questions being studied

- Exact enumeration: find $P_{\sigma}(u, z)$ or $P_{\sigma}(0, z)$.

In this talk: Formulas for $P_{\sigma}(u, z)$ for σ of certain shapes.

- Classification of patterns according to c-Wilf-equivalence. We write $\sigma \sim \tau$ if $P_{\sigma}(u, z)=P_{\tau}(u, z)$.
Example: $1342 \sim 1432$.
In this talk: Classification of patterns of length up to 6 .
- Comparison of $\alpha_{n}(\sigma)$ for different patterns.

Example: $\alpha_{n}(132)<\alpha_{n}(123)$ for $n \geq 4$.
In this talk: For which pattern $\sigma \in \mathcal{S}_{m}$ is $\alpha_{n}(\sigma)$ largest.

Patterns of small length

Length 3: 2 c -Wilf classes (compare: 1 Wilf class in classical case) $123 \sim 321$
$132 \sim 231 \sim 312 \sim 213$

Patterns of small length

Length 3: 2 c -Wilf classes (compare: 1 Wilf class in classical case)

$$
\begin{aligned}
& 123 \sim 321 \\
& 132 \sim 231 \sim 312 \sim 213
\end{aligned}
$$

Length 4: 7 c -Wilf classes (compare: 3 Wilf classes in classical case) $1234 \sim 4321$
$2413 \sim 3142$
$2143 \sim 3412$
$1324 \sim 4231$
$1423 \sim 3241 \sim 4132 \sim 2314$
$1342 \sim 2431 \sim 4213 \sim 3124 \stackrel{*}{\sim} 1432 \sim 2341 \sim 4123 \sim 3214$
$1243 \sim 3421 \sim 4312 \sim 2134$
All \sim follow from reversal and complementation except for $\stackrel{*}{\sim}$.

Patterns of small length

Length 3: 2 c -Wilf classes (compare: 1 Wilf class in classical case)

```
123 ~ 321
132~231~312~213
```

Length 4: $\mathbf{7 c}$ c-Wilf classes (compare: 3 Wilf classes in classical case)

```
1234 ~ 4321 enumeration solved
2413 ~ 3142 enumeration unsolved
2143 ~ 3412
1324 ~ 4231
1423 ~ 3241 ~ 4132 ~ 2314
1342~ 2431~4213~3124 *
1243 ~ 3421 ~ 4312 ~ 2134
```

All \sim follow from reversal and complementation except for $\stackrel{*}{\sim}$,

Clusters

We use an adaptation of the cluster method of Goulden and Jackson, based on inclusion-exclusion.

A k-cluster w.r.t. $\sigma \in \mathcal{S}_{m}$ is a permutation filled with k marked occurrences of σ that overlap with each other.

Clusters

We use an adaptation of the cluster method of Goulden and Jackson, based on inclusion-exclusion.

A k-cluster w.r.t. $\sigma \in \mathcal{S}_{m}$ is a permutation filled with k marked occurrences of σ that overlap with each other.

Example: $\underline{1425} \underline{6879}$ is a 3-cluster w.r.t. 1324.

The cluster method

Let the EGF for clusters be

$$
C_{\sigma}(u, z)=\sum_{n, k} c_{n, k}^{\sigma} u^{k} \frac{z^{n}}{n!},
$$

where $c_{n, k}^{\sigma}:=$ number of k-clusters of length n w.r.t. σ.

The cluster method

Let the EGF for clusters be

$$
C_{\sigma}(u, z)=\sum_{n, k} c_{n, k}^{\sigma} u^{k} \frac{z^{n}}{n!},
$$

where $c_{n, k}^{\sigma}:=$ number of k-clusters of length n w.r.t. σ.
Theorem (Goulden-Jackson '79, adapted)

$$
P_{\sigma}(u, z)=\frac{1}{\omega_{\sigma}(u, z)}=\frac{1}{1-z-C_{\sigma}(u-1, z)}
$$

The cluster method

Let the EGF for clusters be

$$
C_{\sigma}(u, z)=\sum_{n, k} c_{n, k}^{\sigma} u^{k} \frac{z^{n}}{n!}
$$

where $c_{n, k}^{\sigma}:=$ number of k-clusters of length n w.r.t. σ.
Theorem (Goulden-Jackson '79, adapted)

$$
P_{\sigma}(u, z)=\frac{1}{\omega_{\sigma}(u, z)}=\frac{1}{1-z-C_{\sigma}(u-1, z)}
$$

This reduces the computation of $P_{\sigma}(u, z)$ to the enumeration of clusters.

Clusters as linear extensions of posets

$\underline{\pi_{1} \pi_{2} \pi_{3} \pi_{4} \pi_{5} \pi_{6} \pi_{7} \pi_{8} \pi_{9} \pi_{10} \pi_{11}}$ is a cluster w.r.t. $\sigma=14253$ I

$$
\begin{aligned}
\pi_{1}<\pi_{3}<\pi_{5}<\pi_{2}<\pi_{4} \\
\pi_{3}<\pi_{5}<\pi_{7}<\pi_{4}<\pi_{6} \\
\pi_{7}<\pi_{9}<\pi_{11}<\pi_{8}<\pi_{10}
\end{aligned}
$$

Clusters as linear extensions of posets

$\underline{\pi_{1} \pi_{2} \pi_{3} \pi_{4} \pi_{5} \pi_{6} \pi_{7}} \pi_{8} \pi_{9} \pi_{10} \pi_{11}$ is a cluster w.r.t. $\sigma=14253$
I

$$
\begin{aligned}
\pi_{1}<\pi_{3}<\pi_{5}<\pi_{2}<\pi_{4} \\
\pi_{3}<\pi_{5}<\pi_{7}<\pi_{4}<\pi_{6} \\
\pi_{7}<\pi_{9}<\pi_{11}<\pi_{8}<\pi_{10}
\end{aligned}
$$

Clusters as linear extensions of posets

$\underline{\pi_{1} \pi_{2}}{\overline{\pi_{3}} \pi_{4} \pi_{5}}^{\pi_{6} \pi_{7}} \pi_{8} \pi_{9} \pi_{10} \pi_{11}$ is a cluster w.r.t. $\sigma=14253$
I

$$
\begin{aligned}
\pi_{1}<\pi_{3}<\pi_{5}<\pi_{2}<\pi_{4} \\
\pi_{3}<\pi_{5}<\pi_{7}<\pi_{4}<\pi_{6} \\
\pi_{7}<\pi_{9}<\pi_{11}<\pi_{8}<\pi_{10}
\end{aligned}
$$

Clusters as linear extensions of posets

$\underline{\pi_{1} \pi_{2} \pi_{3} \pi_{4} \pi_{5} \pi_{6} \underline{\pi_{7}} \pi_{8} \pi_{9} \pi_{10} \pi_{11}}$ is a cluster w.r.t. $\sigma=14253$ i

$$
\begin{aligned}
\pi_{1}<\pi_{3}<\pi_{5}<\pi_{2}<\pi_{4} \\
\pi_{3}<\pi_{5}<\pi_{7}<\pi_{4}<\pi_{6} \\
\pi_{7}<\pi_{9}<\pi_{11}<\pi_{8}<\pi_{10}
\end{aligned}
$$

I
π is a linear extension of the poset given by these relations (called a cluster poset)

Clusters as linear extensions of posets

$\underline{\pi_{1} \pi_{2} \pi_{3} \pi_{4} \pi_{5} \pi_{6} \underline{\pi_{7}} \pi_{8} \pi_{9} \pi_{10} \pi_{11}}$ is a cluster w.r.t. $\sigma=14253$
I

$$
\begin{gathered}
\pi_{1}<\pi_{3}<\pi_{5}<\pi_{2}<\pi_{4} \\
\pi_{3}<\pi_{5}<\pi_{7}<\pi_{4}<\pi_{6} \\
\pi_{7}<\pi_{9}<\pi_{11}<\pi_{8}<\pi_{10} \\
\mathbb{\Downarrow}
\end{gathered}
$$

π is a linear extension of the poset given by these relations (called a cluster poset)

Ex: $16 \overline{28311495107}$

The pattern $\sigma=12 \ldots m$ and generalizations

Theorem (Goulden-Jackson '83, E.-Noy '01)
For $\sigma=12 \ldots m, \omega_{\sigma}(u, z)$ is the solution of

$$
\omega^{(m-1)}+(1-u)\left(\omega^{(m-2)}+\cdots+\omega^{\prime}+\omega\right)=0 .
$$

The pattern $\sigma=12 \ldots m$ and generalizations

Theorem (Goulden-Jackson '83, E.-Noy '01)
For $\sigma=12 \ldots m, \omega_{\sigma}(u, z)$ is the solution of

$$
\omega^{(m-1)}+(1-u)\left(\omega^{(m-2)}+\cdots+\omega^{\prime}+\omega\right)=0 .
$$

It follows that $\omega_{12 \ldots m}(0, z)=\sum_{j \geq 0}\left(\frac{z^{j m}}{(j m)!}-\frac{z^{j m+1}}{(j m+1)!}\right)$.

The pattern $\sigma=12 \ldots m$ and generalizations

Theorem (Goulden-Jackson '83, E.-Noy '01)
For $\sigma=12 \ldots m, \omega_{\sigma}(u, z)$ is the solution of

$$
\omega^{(m-1)}+(1-u)\left(\omega^{(m-2)}+\cdots+\omega^{\prime}+\omega\right)=0 .
$$

It follows that $\omega_{12 \ldots m}(0, z)=\sum_{j \geq 0}\left(\frac{z^{j m}}{(j m)!}-\frac{z^{j m+1}}{(j m+1)!}\right)$.
Example:

$$
P_{1234}(0, z)=\frac{1}{\omega_{1234}(0, z)}=\frac{2}{\cos z-\sin z+e^{-z}}
$$

The pattern $\sigma=12 \ldots m$ and generalizations

More generally...

Theorem (E.-Noy '11)

Let $\sigma \in \mathcal{S}_{m}$ be such that all its cluster posets are chains. Then $\omega_{\sigma}(u, z)$ is the solution of

$$
\omega^{(m-1)}+(1-u) \sum_{d \in O_{\sigma}} \omega^{(m-d-1)}=0
$$

for a certain set O_{σ} easily defined from σ.

An example of such a pattern is

$$
\sigma=12 \ldots(s-1)(s+1) s(s+2)(s+3) \ldots m
$$

Non-overlapping patterns

$\sigma \in \mathcal{S}_{m}$ is non-overlapping if two occurrences of σ can't overlap in more than one position.

Example: 132, 1243, 1342, 21534, 34671285 are non-overlapping.

Non-overlapping patterns

$\sigma \in \mathcal{S}_{m}$ is non-overlapping if two occurrences of σ can't overlap in more than one position.

Example: 132, 1243, 1342, 21534, 34671285 are non-overlapping.
Theorem (Bóna '10)
The proportion of non-overlapping patterns of length m is >0.364.

Non-overlapping patterns

$\sigma \in \mathcal{S}_{m}$ is non-overlapping if two occurrences of σ can't overlap in more than one position.

Example: 132, 1243, 1342, 21534, 34671285 are non-overlapping.
Theorem (Bóna '10)
The proportion of non-overlapping patterns of length m is >0.364.
Proposition (Dotsenko-Khoroshkin, Remmel '10)
For $\sigma \in \mathcal{S}_{m}$ non-overlapping, $P_{\sigma}(u, z)$ depends only on σ_{1} and σ_{m}.

Non-overlapping patterns

Theorem (E.-Noy '01)

Let $\sigma \in \mathcal{S}_{m}$ be non-overlapping with $\sigma_{1}=1, \sigma_{m}=b$. Then $\omega_{\sigma}(u, z)$ is the solution of

$$
\omega^{(b)}+(1-u) \frac{z^{m-b}}{(m-b)!} \omega^{\prime}=0
$$

Non-overlapping patterns

Theorem (E.-Noy '01)

Let $\sigma \in \mathcal{S}_{m}$ be non-overlapping with $\sigma_{1}=1, \sigma_{m}=b$. Then $\omega_{\sigma}(u, z)$ is the solution of

$$
\omega^{(b)}+(1-u) \frac{z^{m-b}}{(m-b)!} \omega^{\prime}=0
$$

Example:

$$
P_{1342}(u, z)=\frac{1}{\omega_{1342}(u, z)}=\frac{1}{1-\int_{0}^{z} e^{(u-1) t^{3} / 6} d t}
$$

Non-overlapping patterns

Theorem (E.-Noy '01)

Let $\sigma \in \mathcal{S}_{m}$ be non-overlapping with $\sigma_{1}=1, \sigma_{m}=b$. Then $\omega_{\sigma}(u, z)$ is the solution of

$$
\omega^{(b)}+(1-u) \frac{z^{m-b}}{(m-b)!} \omega^{\prime}=0
$$

Example:

$$
P_{1342}(u, z)=\frac{1}{\omega_{1342}(u, z)}=\frac{1}{1-\int_{0}^{z} e^{(u-1) t^{3} / 6} d t}
$$

E.-Noy '11: Similar differential equations for $\omega_{\sigma}(u, z)$ for $\sigma=12534$ and $\sigma=13254$ (which aren't non-overlapping).

The pattern $134 \ldots(s+1) 2(s+2)(s+3) \ldots m$

Theorem (E.-Noy, Liese-Remmel, Dotsenko-Khoroshkin)
For $\sigma=1324, \omega_{\sigma}(u, z)$ is the solution of

$$
\begin{aligned}
z \omega^{(5)}-((u-1) z & -3) \omega^{(4)}-3(u-1)(2 z+1) \omega^{(3)}+(u-1)((4 u-5) z-6) \omega^{\prime \prime} \\
& +(u-1)(8(u-1) z-3) \omega^{\prime}+4(u-1)^{2} z \omega=0
\end{aligned}
$$

The pattern $134 \ldots(s+1) 2(s+2)(s+3) \ldots m$

Theorem (E.-Noy, Liese-Remmel, Dotsenko-Khoroshkin)
For $\sigma=1324, \omega_{\sigma}(u, z)$ is the solution of

$$
\begin{aligned}
z \omega^{(5)}-((u-1) z & -3) \omega^{(4)}-3(u-1)(2 z+1) \omega^{(3)}+(u-1)((4 u-5) z-6) \omega^{\prime \prime} \\
& +(u-1)(8(u-1) z-3) \omega^{\prime}+4(u-1)^{2} z \omega=0
\end{aligned}
$$

The construction generalizes to patterns of the form

$$
\sigma=134 \ldots(s+1) 2(s+2)(s+3) \ldots m .
$$

Other patterns of length 4

For the remaining cases, 1423, 2143 and 2413 , we have recurrences for the cluster numbers, but no closed form or diff. eq. for $\omega_{\sigma}(u, z)$.

Other patterns of length 4

For the remaining cases, 1423, 2143 and 2413, we have recurrences for the cluster numbers, but no closed form or diff. eq. for $\omega_{\sigma}(u, z)$.

Conjecture
For $\sigma=1423, \omega_{1423}(0, z)$ is not D-finite.
(i.e., it does not satisfy a linear diff. eq. with polynomial coeffs.)

Other patterns of length 4

For the remaining cases, 1423, 2143 and 2413, we have recurrences for the cluster numbers, but no closed form or diff. eq. for $\omega_{\sigma}(u, z)$.

Conjecture
For $\sigma=1423, \omega_{1423}(0, z)$ is not D-finite.
(i.e., it does not satisfy a linear diff. eq. with polynomial coeffs.)

This would be the first known instance of a pattern with this property.

Other patterns of length 4

For the remaining cases, 1423, 2143 and 2413, we have recurrences for the cluster numbers, but no closed form or diff. eq. for $\omega_{\sigma}(u, z)$.

Conjecture
For $\sigma=1423, \omega_{1423}(0, z)$ is not D-finite.
(i.e., it does not satisfy a linear diff. eq. with polynomial coeffs.)

This would be the first known instance of a pattern with this property. Equivalent to showing that $S(x)=1+\frac{x}{1+x} S\left(\frac{x}{1+x^{2}}\right)$ is not D-finite.

Other patterns of length 4

For the remaining cases, 1423, 2143 and 2413, we have recurrences for the cluster numbers, but no closed form or diff. eq. for $\omega_{\sigma}(u, z)$.

Conjecture
For $\sigma=1423, \omega_{1423}(0, z)$ is not D-finite.
(i.e., it does not satisfy a linear diff. eq. with polynomial coeffs.)

This would be the first known instance of a pattern with this property. Equivalent to showing that $S(x)=1+\frac{x}{1+x} S\left(\frac{x}{1+x^{2}}\right)$ is not D-finite. In contrast:

"Conjecture" (Noonan-Zeilberger '96)

For every classical pattern σ (i.e., where occurrences are not constrained to consecutive positions), the generating function for σ-avoiding permutations is D-finite.

Consecutive Wilf-equivalence

One can classify patterns of length up to 6 into consecutive-Wilf-equivalence classes, proving four conjectures of Nakamura:

n	\# of classes
3	2
4	7
5	25
6	92

Theorem (E.-Noy '11)

- $123546 \sim 124536 \rightarrow$ solution of $\omega^{(5)}+(1-u)\left(\omega^{\prime}+\omega\right)=0$.
- $123645 \sim 124635 \rightarrow$ solution of $\omega^{(5)}+(1-u) z\left(\omega^{\prime \prime}+\omega^{\prime}\right)=0$.
- $132465 \sim 142365 \rightarrow$ solution of $\omega^{(5)}+(1-u)\left(\omega^{\prime \prime}+z \omega^{\prime}\right)=0$.
- $154263 \sim 165243$.

Asymptotic behavior

Theorem (E. '05)
For every σ, the limit

$$
\rho_{\sigma}:=\lim _{n \rightarrow \infty}\left(\frac{\alpha_{n}(\sigma)}{n!}\right)^{1 / n} \quad \text { exists. }
$$

Asymptotic behavior

Theorem (E. '05)
For every σ, the limit

$$
\rho_{\sigma}:=\lim _{n \rightarrow \infty}\left(\frac{\alpha_{n}(\sigma)}{n!}\right)^{1 / n} \quad \text { exists. }
$$

This limit is known only for some patterns.

Asymptotic behavior

Theorem (E. '05)
For every σ, the limit

$$
\rho_{\sigma}:=\lim _{n \rightarrow \infty}\left(\frac{\alpha_{n}(\sigma)}{n!}\right)^{1 / n} \quad \text { exists. }
$$

This limit is known only for some patterns.
Theorem (Ehrenborg-Kitaev-Perry '11)
For every σ,

$$
\frac{\alpha_{n}(\sigma)}{n!}=\gamma_{\sigma} \rho_{\sigma}^{n}+O\left(\delta^{n}\right),
$$

for some constants γ_{σ} and $\delta<\rho_{\sigma}$.
The proof uses methods from spectral theory.

The most avoided pattern

For what pattern $\sigma \in \mathcal{S}_{m}$ is $\alpha_{n}(\sigma)$ largest?

The most avoided pattern

For what pattern $\sigma \in \mathcal{S}_{m}$ is $\alpha_{n}(\sigma)$ largest?
Theorem (E. '12)
For every $\sigma \in \mathcal{S}_{m}$ there exists n_{0} such that

$$
\alpha_{n}(\sigma) \leq \alpha_{n}(12 \ldots m)
$$

for all $n \geq n_{0}$.

Interestingly, the analogous result for classical patterns (i.e., without the adjacency requirement) is false.

The most avoided pattern

For what pattern $\sigma \in \mathcal{S}_{m}$ is $\alpha_{n}(\sigma)$ largest?
Theorem (E. '12)
For every $\sigma \in \mathcal{S}_{m}$ there exists n_{0} such that

$$
\alpha_{n}(\sigma) \leq \alpha_{n}(12 \ldots m)
$$

for all $n \geq n_{0}$.

Interestingly, the analogous result for classical patterns (i.e., without the adjacency requirement) is false.

The theorem is equivalent to ρ_{σ} being largest for $\sigma=12 \ldots m$.

Proof idea -1 . Singularity analysis

Let $\sigma \in \mathcal{S}_{m} \backslash\{12 \ldots m, m \ldots 21\}$. Want to show: $\rho_{\sigma}<\rho_{12 \ldots m}$.

Proof idea - 1. Singularity analysis

Let $\sigma \in \mathcal{S}_{m} \backslash\{12 \ldots m, m \ldots 21\}$. Want to show: $\rho_{\sigma}<\rho_{12 \ldots m}$.
Recall: ρ_{σ} is the growth rate of the coefficients of

$$
P_{\sigma}(0, z)=\frac{1}{\omega_{\sigma}(0, z)}=\sum_{n \geq 0} \alpha_{n}(\sigma) \frac{z^{n}}{n!}
$$

so ρ_{σ}^{-1} is the smallest singularity of $P_{\sigma}(0, z)$.

Proof idea - 1. Singularity analysis

Let $\sigma \in \mathcal{S}_{m} \backslash\{12 \ldots m, m \ldots 21\}$. Want to show: $\rho_{\sigma}<\rho_{12 \ldots m}$.
Recall: ρ_{σ} is the growth rate of the coefficients of

$$
P_{\sigma}(0, z)=\frac{1}{\omega_{\sigma}(0, z)}=\sum_{n \geq 0} \alpha_{n}(\sigma) \frac{z^{n}}{n!}
$$

so ρ_{σ}^{-1} is the smallest singularity of $P_{\sigma}(0, z)$.
One can show that $\omega_{\sigma}(z):=\omega_{\sigma}(0, z)$ is analytic near the origin, so

- ρ_{σ}^{-1} is the smallest zero of $\omega_{\sigma}(z)$,
- $\rho_{12 \ldots m}^{-1}$ is the smallest zero of $\omega_{12 \ldots m}(z)$.

Proof idea - 1. Singularity analysis

- ρ_{σ}^{-1} is the smallest zero of $\omega_{\sigma}(z)$,
- $\rho_{12 \ldots m}^{-1}$ is the smallest zero of $\omega_{12 \ldots m}(z)$.

Proof idea - 1. Singularity analysis

- ρ_{σ}^{-1} is the smallest zero of $\omega_{\sigma}(z)$,
- $\rho_{12 \ldots m}^{-1}$ is the smallest zero of $\omega_{12 \ldots m}(z)$.

To show that $\rho_{\sigma}<\rho_{12 \ldots m}$, it is enough to show that

$$
\omega_{12 \ldots m}(z)<\omega_{\sigma}(z)
$$

for $0<z<1.276$.

Proof idea - 2. Comparing cluster numbers

We show that $\omega_{12 \ldots m}(z)<\omega_{\sigma}(z)$ for $0<z<1.276$:

$$
\omega_{12 \ldots m}(z)=\sum_{j \geq 0}\left(\frac{z^{j m}}{(j m)!}-\frac{z^{j m+1}}{(j m+1)!}\right)<1-z+\frac{z^{m}}{m!}-\frac{z^{m+1}}{(m+1)!}+\frac{z^{2 m}}{(2 m)!},
$$

Proof idea - 2. Comparing cluster numbers

We show that $\omega_{12 \ldots m}(z)<\omega_{\sigma}(z)$ for $0<z<1.276$:

$$
\omega_{12 \ldots m}(z)=\sum_{j \geq 0}\left(\frac{z^{j m}}{(j m)!}-\frac{z^{j m+1}}{(j m+1)!}\right)<1-z+\frac{z^{m}}{m!}-\frac{z^{m+1}}{(m+1)!}+\frac{z^{2 m}}{(2 m)!},
$$

$$
\omega_{\sigma}(z)=1-z-\sum_{k \geq 1}(-1)^{k} \underbrace{\sum_{n} r_{n, k}^{\sigma} \frac{z^{n}}{n!}}_{s_{k}^{\sigma}(z)}
$$

Proof idea - 2. Comparing cluster numbers

We show that $\omega_{12 \ldots m}(z)<\omega_{\sigma}(z)$ for $0<z<1.276$:

$$
\begin{gathered}
\omega_{12 \ldots m}(z)=\sum_{j \geq 0}\left(\frac{z^{j m}}{(j m)!}-\frac{z^{j m+1}}{(j m+1)!}\right)<1-z+\frac{z^{m}}{m!}-\frac{z^{m+1}}{(m+1)!}+\frac{z^{2 m}}{(2 m)!}, \\
\omega_{\sigma}(z)=1-z-\sum_{k \geq 1}(-1)^{k} \underbrace{\sum_{n} r_{n, k}^{\sigma} \frac{z^{n}}{n!}}_{s_{k}^{\sigma}(z)}>1-z+\frac{z^{m}}{m!}-s_{2}^{\sigma}(z) .
\end{gathered}
$$

Key fact \#1: The sequence $\left\{s_{k}^{\sigma}(z)\right\}_{k \geq 1}$ is decreasing.

Proof idea - 2. Comparing cluster numbers

We show that $\omega_{12 \ldots m}(z)<\omega_{\sigma}(z)$ for $0<z<1.276$:

$$
\omega_{12 \ldots m}(z)=\sum_{j \geq 0}\left(\frac{z^{j m}}{(j m)!}-\frac{z^{j m+1}}{(j m+1)!}\right)<1-z+\frac{z^{m}}{m!}-\frac{z^{m+1}}{(m+1)!}+\frac{z^{2 m}}{(2 m)!},
$$

$$
\omega_{\sigma}(z)=1-z-\sum_{k \geq 1}(-1)^{k} \underbrace{\sum_{n} r_{n, k}^{\sigma} \frac{z^{n}}{n!}}_{s_{k}^{\sigma}(z)}>1-z+\frac{z^{m}}{m!}-s_{2}^{\sigma}(z)
$$

Key fact \#1: The sequence $\left\{s_{k}^{\sigma}(z)\right\}_{k \geq 1}$ is decreasing.
Key fact \#2: $\quad s_{2}^{\sigma}(z)<\frac{z^{m+1}}{(m+1)!}-\frac{z^{2 m}}{(2 m)!}$.

The least avoided pattern

For what pattern $\sigma \in \mathcal{S}_{m}$ is $\alpha_{n}(\sigma)$ smallest?

The least avoided pattern

For what pattern $\sigma \in \mathcal{S}_{m}$ is $\alpha_{n}(\sigma)$ smallest?
Theorem (E. '12, conjectured by Nakamura)
For every $\sigma \in \mathcal{S}_{m}$ there exists n_{0} such that

$$
\alpha_{n}(123 \ldots(m-2) m(m-1)) \leq \alpha_{n}(\sigma)
$$

for all $n \geq n_{0}$.

The least avoided pattern

For what pattern $\sigma \in \mathcal{S}_{m}$ is $\alpha_{n}(\sigma)$ smallest?
Theorem (E. '12, conjectured by Nakamura)
For every $\sigma \in \mathcal{S}_{m}$ there exists n_{0} such that

$$
\alpha_{n}(123 \ldots(m-2) m(m-1)) \leq \alpha_{n}(\sigma)
$$

for all $n \geq n_{0}$.

Proposition (E. 12)

For every non-overlapping $\sigma \in \mathcal{S}_{m}$ there exists n_{0} s.t.

$$
\alpha_{n}(123 \ldots(m-2) m(m-1)) \leq \alpha_{n}(\sigma) \leq \alpha_{n}(134 \ldots m 2)
$$

for all $n \geq n_{0}$.

Consecutive patterns in dynamical systems

Deterministic or random?

Two sequences of numbers in $[0,1]$:
.6416, .9198, .2951, .8320, .5590, .9861, .0550, .2078, .6584, .8996, .3612, .9230, .2844, .8141, . 6054,...
.9129, .5257, .4475, .9815, .4134, .9930, .1576, .8825, .3391, . 0659 , .1195, .5742, .1507, .5534, . $0828, \ldots$

Which one is random? Which one is deterministic?

Deterministic or random?

Two sequences of numbers in $[0,1]$:
.6416, .9198, .2951, .8320, .5590, .9861, . 0550, .2078, .6584, .8996, $.3612, .9230, .2844, .8141, .6054, \ldots$
.9129, .5257, .4475, .9815, .4134, .9930, .1576, .8825, .3391, . 0659 , .1195, .5742, .1507, .5534, . $0828, \ldots$

Which one is random? Which one is deterministic?
The first one is deterministic: taking $f(x)=4 x(1-x)$, we have $f(.6146)=.9198$, $f(.9198)=.2951$, $f(.2951)=.8320$,

Allowed and forbidden patterns of maps Example: shifts
A more general example: signed shifts

Allowed patterns of a map

Let X be a linearly ordered set, $f: X \rightarrow X$. For each $x \in X$ and $n \geq 1$, consider the sequence

$$
x, f(x), f^{2}(x), \ldots, f^{n-1}(x)
$$

Allowed patterns of a map

Let X be a linearly ordered set, $f: X \rightarrow X$. For each $x \in X$ and $n \geq 1$, consider the sequence

$$
x, f(x), f^{2}(x), \ldots, f^{n-1}(x)
$$

If there are no repetitions, the relative order of the entries determines a permutation, called an allowed pattern of f.

Allowed and forbidden patterns of maps Example: shifts
A more general example: signed shifts

Example

$$
\begin{aligned}
f:[0,1] & \rightarrow[0,1] \\
x & \mapsto 4 x(1-x) .
\end{aligned}
$$

Allowed and forbidden patterns of maps Example: shifts
A more general example: signed shifts

Example

$$
\begin{aligned}
f:[0,1] & \rightarrow[0,1] \\
x & \mapsto 4 x(1-x) .
\end{aligned}
$$

For $x=0.8$ and $n=4$, the sequence 0.8,

Allowed and forbidden patterns of maps Example: shifts
A more general example: signed shifts

Example

$$
\begin{aligned}
f:[0,1] & \rightarrow[0,1] \\
x & \mapsto 4 x(1-x) .
\end{aligned}
$$

For $x=0.8$ and $n=4$, the sequence 0.8, 0.64,

Allowed and forbidden patterns of maps Example: shifts
A more general example: signed shifts

Example

$$
\begin{aligned}
f:[0,1] & \rightarrow[0,1] \\
x & \mapsto 4 x(1-x) .
\end{aligned}
$$

For $x=0.8$ and $n=4$, the sequence $0.8,0.64,0.9216$,

Allowed and forbidden patterns of maps Example: shifts
A more general example: signed shifts

Example

$$
\begin{aligned}
f:[0,1] & \rightarrow[0,1] \\
x & \mapsto 4 x(1-x) .
\end{aligned}
$$

For $x=0.8$ and $n=4$, the sequence $0.8,0.64,0.9216,0.2890$

Example

$$
\begin{aligned}
f:[0,1] & \rightarrow[0,1] \\
x & \mapsto 4 x(1-x) .
\end{aligned}
$$

For $x=0.8$ and $n=4$, the sequence $0.8,0.64,0.9216,0.2890$
determines the permutation 3241 , so it is an allowed pattern.

Allowed and forbidden patterns of maps Example: shifts
A more general example: signed shifts

Allowed and forbidden patterns

Allow $(f)=$ set of allowed patterns of f.

Allowed and forbidden patterns of maps Example: shifts
A more general example: signed shifts

Allowed and forbidden patterns

$$
\text { Allow }(f)=\text { set of allowed patterns of } f \text {. }
$$

Allow (f) is closed under consecutive pattern containment. E.g., if $4156273 \in \operatorname{Allow}(f)$, then $2314 \in \operatorname{Allow}(f)$.

Allowed and forbidden patterns

$$
\text { Allow }(f)=\text { set of allowed patterns of } f \text {. }
$$

Allow (f) is closed under consecutive pattern containment.
E.g., if $4156273 \in \operatorname{Allow}(f)$, then $2314 \in \operatorname{Allow}(f)$.

Thus, Allow (f) can be characterized by avoidance of a (possibly infinite) set of consecutive patterns.

The permutations not in $\operatorname{Allow}(f)$ are called forbidden patterns of f.

Allowed and forbidden patterns of maps Example: shifts
A more general example: signed shifts

Example: $L(x)=4 x(1-x)$

Taking different $x \in[0,1]$, the patterns $123,132,231,213,312$ are realized. However, 321 is a forbidden pattern of L.

Allowed and forbidden patterns of maps Example: shifts
A more general example: signed shifts

Example: $L(x)=4 x(1-x)$
Taking different $x \in[0,1]$, the patterns $123,132,231,213,312$ are realized. However, 321 is a forbidden pattern of L.

Also forbidden: $\underbrace{1432,2431,3214, \ldots}$
anything containing 321

Allowed and forbidden patterns of maps Example: shifts
A more general example: signed shifts

Example: $L(x)=4 x(1-x)$
Taking different $x \in[0,1]$, the patterns $123,132,231,213,312$ are realized. However, 321 is a forbidden pattern of L.

Also forbidden: $\underbrace{1432,2431,3214, \ldots}, \underbrace{1423,2134,2143,3142,4231, \ldots}$
anything containing 321 basic: not containing smaller forbidden patterns

Example: $L(x)=4 x(1-x)$
Taking different $x \in[0,1]$, the patterns $123,132,231,213,312$ are realized. However, 321 is a forbidden pattern of L.

Also forbidden: $\underbrace{1432,2431,3214, \ldots}, \underbrace{1423,2134,2143,3142,4231, \ldots}$
anything containing 321 basic: not containing smaller forbidden patterns
Theorem (E.-Liu): L has infinitely many basic forbidden patterns.

Allowed and forbidden patterns of maps Example: shifts
A more general example: signed shifts

Forbidden patterns

Let $I \subset \mathbb{R}$ be a closed interval.
Theorem (Bandt-Keller-Pompe '02)
Let $f: I \rightarrow I$ be a piecewise monotone map. Then

- f has forbidden patterns,

Forbidden patterns

Let $I \subset \mathbb{R}$ be a closed interval.
Theorem (Bandt-Keller-Pompe '02)
Let $f: I \rightarrow I$ be a piecewise monotone map. Then

- f has forbidden patterns,
- $\lim _{n \rightarrow \infty} \mid$ Allow $\left._{n}(f)\right|^{1 / n}$ exists, and its logarithm equals the topological entropy of f.

Forbidden patterns

Let $I \subset \mathbb{R}$ be a closed interval.
Theorem (Bandt-Keller-Pompe '02)
Let $f: I \rightarrow I$ be a piecewise monotone map. Then

- f has forbidden patterns,
- $\lim _{n \rightarrow \infty} \mid$ Allow $\left._{n}(f)\right|^{1 / n}$ exists, and its logarithm equals the topological entropy of f.

Provides a combinatorial way to compute the topological entropy, which is a measure of the complexity of the dynamical system.

Allowed and forbidden patterns of maps Example: shifts
A more general example: signed shifts

Deterministic vs. random sequences

Back to the original sequence:
.6416, . $9198, .2951, .8320, .5590, .9861, .0550, .2078, .6584, .8996, .3612$, .9230, . $2844, .8141, .6054, \ldots$

We see that the pattern 321 is missing from it.

Deterministic vs. random sequences

Back to the original sequence:
.6416, .9198, .2951, .8320, .5590, .9861, . 0550 , .2078, .6584, .8996, .3612, .9230, . $2844, .8141, .6054, \ldots$

We see that the pattern 321 is missing from it.
This suggests that the sequence is of the form $x_{i+1}=f\left(x_{i}\right)$ for some f.

Deterministic vs. random sequences

Back to the original sequence:
.6416, .9198, .2951, .8320, .5590, .9861, . 0550 , .2078, .6584, .8996, .3612, $.9230, .2844, .8141, .6054, \ldots$

We see that the pattern 321 is missing from it.
This suggests that the sequence is of the form $x_{i+1}=f\left(x_{i}\right)$ for some f.

If it was a random sequence, any pattern would eventually appear.

Allowed and forbidden patterns of maps Example: shifts
A more general example: signed shifts

Some (mostly open) questions

- How are properties of Allow (f) related to properties of f ?

Allowed and forbidden patterns of maps Example: shifts

Some (mostly open) questions

- How are properties of Allow (f) related to properties of f ? In particular,
- when is the set of basic forbidden patterns of f finite?

Allowed and forbidden patterns of maps Example: shifts
A more general example: signed shifts

Some (mostly open) questions

- How are properties of Allow (f) related to properties of f ? In particular,
- when is the set of basic forbidden patterns of f finite?
- what is the length of the shortest forbidden pattern of f ?

Some (mostly open) questions

- How are properties of Allow (f) related to properties of f ? In particular,
- when is the set of basic forbidden patterns of f finite?
- what is the length of the shortest forbidden pattern of f ?
- Enumerate or characterize $\operatorname{Allow}(f)$ for some families of maps.

Some (mostly open) questions

- How are properties of Allow (f) related to properties of f ? In particular,
- when is the set of basic forbidden patterns of f finite?
- what is the length of the shortest forbidden pattern of f ?
- Enumerate or characterize $\operatorname{Allow}(f)$ for some families of maps.
- What sets of permutations can be $\operatorname{Allow}(f)$ for some f ?

Some (mostly open) questions

- How are properties of Allow (f) related to properties of f ? In particular,
- when is the set of basic forbidden patterns of f finite?
- what is the length of the shortest forbidden pattern of f ?
- Enumerate or characterize $\operatorname{Allow}(f)$ for some families of maps.
- What sets of permutations can be $\operatorname{Allow}(f)$ for some f ?
- Use this to design better tests to distinguish random sequences from deterministic ones.

Some (mostly open) questions

- How are properties of Allow (f) related to properties of f ? In particular,
- when is the set of basic forbidden patterns of f finite?
- what is the length of the shortest forbidden pattern of f ?
- Enumerate or characterize $\operatorname{Allow}(f)$ for some families of maps.
- What sets of permutations can be $\operatorname{Allow}(f)$ for some f ?
- Use this to design better tests to distinguish random sequences from deterministic ones.

A more general example: signed shifts

Shift maps

$$
\begin{aligned}
M_{k}: \begin{array}{cl}
{[0,1)} & \rightarrow[0,1) \\
x & \mapsto\{k x\}
\end{array} \\
\end{aligned}
$$

(fractional part)

Shift maps

$$
\left.\begin{array}{rl}
M_{k}: \quad[0,1) & \rightarrow
\end{array}\right][0,1)
$$

Considering the expansions in base k of $x \in[0,1)$, this map is "equivalent" to the shift map on the set $\mathcal{W}_{k}=\{0,1, \ldots, k-1\}^{\mathbb{N}}$ of infinite words on a k-letter alphabet, ordered lexicographically:

$$
\begin{array}{cccc}
\Sigma_{k}: & \mathcal{W}_{k} & \longrightarrow & \mathcal{W}_{k} \\
w_{1} w_{2} w_{3} \ldots & \mapsto & w_{2} w_{3} w_{4} \ldots
\end{array}
$$

Example

The permutation 4217536 is realized (i.e., allowed) by Σ_{3}, because taking $w=2102212210 \ldots \in \mathcal{W}_{3}$, we have

$$
\left.\left.\begin{array}{r}
w=2102212210 \ldots \\
\Sigma_{3}(w)=102212210 \ldots \\
\Sigma_{3}{ }^{2}(w)=02212210 \ldots \\
\Sigma_{3}{ }^{3}(w)=2212210 \ldots \\
\Sigma_{3}^{4}(w)=212210 \ldots \\
\Sigma_{3}^{5}(w)=12210 \ldots \\
\Sigma_{3}{ }^{6}(w)=2210 \ldots
\end{array}\right\} \begin{array}{l}
4 \\
7
\end{array}\right\} \begin{aligned}
& \\
& \text { lexicographic order } \\
& \text { of the shifted words }
\end{aligned}
$$

Forbidden patterns of shifts

Theorem (Amigó-E.-Kennel)
Σ_{k} has no forbidden patterns of length $n \leq k+1$, but it has basic forbidden patterns of each length $n \geq k+2$.

Forbidden patterns of shifts

Theorem (Amigó-E.-Kennel)
Σ_{k} has no forbidden patterns of length $n \leq k+1$, but it has basic forbidden patterns of each length $n \geq k+2$.

Proposition (E.)

Σ_{k} has exactly 6 forbidden patterns of length $k+2$.

Forbidden patterns of shifts

Theorem (Amigó-E.-Kennel)
Σ_{k} has no forbidden patterns of length $n \leq k+1$, but it has basic forbidden patterns of each length $n \geq k+2$.

Proposition (E.)

Σ_{k} has exactly 6 forbidden patterns of length $k+2$.

Example

The shortest forbidden patterns of Σ_{4} are

$$
615243,324156,342516,162534,453621,435261 .
$$

Allowed and forbidden patterns of maps Example: shifts
A more general example: signed shifts

The smallest \# of letters needed to realize π by a shift
For $\pi \in \mathcal{S}_{n}$, let $\quad N(\pi)=\min \left\{k: \pi \in \operatorname{Allow}\left(\Sigma_{k}\right)\right\}$.

The smallest \# of letters needed to realize π by a shift

For $\pi \in \mathcal{S}_{n}$, let $\quad N(\pi)=\min \left\{k: \pi \in \operatorname{Allow}\left(\Sigma_{k}\right)\right\}$.

Theorem (E.): $\quad N(\pi)=1+\operatorname{des}(\hat{\pi})+\underbrace{\epsilon(\hat{\pi})}_{0 \text { or } 1}$.

The smallest \# of letters needed to realize π by a shift

For $\pi \in \mathcal{S}_{n}$, let $\quad N(\pi)=\min \left\{k: \pi \in \operatorname{Allow}\left(\Sigma_{k}\right)\right\}$.

Theorem (E.): $\quad N(\pi)=1+\operatorname{des}(\hat{\pi})+\underbrace{\epsilon(\hat{\pi})}_{0 \text { or } 1}$.
An example of the construction $\pi \mapsto \hat{\pi}$:
$\pi=892364157 \rightsquigarrow(8,9,2,3,6,4,1,5,7) \rightsquigarrow 536174892 \rightsquigarrow 53617492=\hat{\pi}$

The smallest \# of letters needed to realize π by a shift

For $\pi \in \mathcal{S}_{n}$, let $\quad N(\pi)=\min \left\{k: \pi \in \operatorname{Allow}\left(\Sigma_{k}\right)\right\}$.

Theorem (E.): $\quad N(\pi)=1+\operatorname{des}(\hat{\pi})+\underbrace{\epsilon(\hat{\pi})}_{0 \text { or } 1}$.
An example of the construction $\pi \mapsto \hat{\pi}$:

$$
\begin{gathered}
\pi=892364157 \rightsquigarrow(8,9,2,3,6,4,1,5,7) \rightsquigarrow 536174892 \rightsquigarrow 53617492=\hat{\pi} \\
\operatorname{des}(\hat{\pi})=\operatorname{des}(53617492)=4
\end{gathered}
$$

The smallest \# of letters needed to realize π by a shift

For $\pi \in \mathcal{S}_{n}$, let $\quad N(\pi)=\min \left\{k: \pi \in \operatorname{Allow}\left(\Sigma_{k}\right)\right\}$.

Theorem (E.): $\quad N(\pi)=1+\operatorname{des}(\hat{\pi})+\underbrace{\epsilon(\hat{\pi})}_{0 \text { or } 1}$.
An example of the construction $\pi \mapsto \hat{\pi}$:

$$
\begin{gathered}
\pi=892364157 \rightsquigarrow(8,9,2,3,6,4,1,5,7) \rightsquigarrow 536174892 \rightsquigarrow 53617492=\hat{\pi} \\
\operatorname{des}(\hat{\pi})=\operatorname{des}(53617492)=4 \\
N(892364157)=1+4+0=5
\end{gathered}
$$

The smallest \# of letters needed to realize π by a shift

For $\pi \in \mathcal{S}_{n}$, let $\quad N(\pi)=\min \left\{k: \pi \in \operatorname{Allow}\left(\Sigma_{k}\right)\right\}$.

Theorem (E.): $\quad N(\pi)=1+\operatorname{des}(\hat{\pi})+\underbrace{\epsilon(\hat{\pi})}_{0 \text { or } 1}$.
An example of the construction $\pi \mapsto \hat{\pi}$:

$$
\begin{gathered}
\pi=892364157 \rightsquigarrow(8,9,2,3,6,4,1,5,7) \rightsquigarrow 536174892 \rightsquigarrow 53617492=\hat{\pi} \\
\operatorname{des}(\hat{\pi})=\operatorname{des}(53617492)=4 \\
N(892364157)=1+4+0=5
\end{gathered}
$$

This characterizes permutations realized by Σ_{k}, and can be used to deduce a (complicated) formula for $\left|\operatorname{Allow}_{n}\left(\Sigma_{k}\right)\right|$, for given n and k.

Signed shifts

For fixed $\sigma=\sigma_{0} \sigma_{1} \ldots \sigma_{k-1} \in\{+,-\}^{k}$, the signed shift with signature σ is

$$
\begin{array}{rll}
\Sigma_{\sigma}: \mathcal{W}_{k} & \longrightarrow & \mathcal{W}_{k} \\
w_{1} w_{2} w_{3} \ldots & \mapsto
\end{array} \begin{cases}w_{2} w_{3} w_{4} \ldots & \text { if } \sigma_{w_{1}}=+, \\
\overline{w_{2}} \overline{w_{3}} \overline{w_{4}} \ldots & \text { if } \sigma_{w_{1}}=-,\end{cases}
$$

where $\bar{w}_{i}=k-1-w_{i}$.

Signed shifts

For fixed $\sigma=\sigma_{0} \sigma_{1} \ldots \sigma_{k-1} \in\{+,-\}^{k}$, the signed shift with signature σ is

$$
\begin{aligned}
\Sigma_{\sigma}: \mathcal{W}_{k} & \longrightarrow \\
w_{1} w_{2} w_{3} \ldots & \mapsto
\end{aligned} \begin{cases}w_{2} w_{3} w_{4} \ldots & \text { if } \sigma_{w_{1}}=+ \\
\bar{w}_{2} \bar{w}_{3} \bar{w}_{4} \ldots & \text { if } \sigma_{w_{1}}=-\end{cases}
$$

where $\bar{w}_{i}=k-1-w_{i}$.
Thinking of words as expansions in base k of numbers in $[0,1$), Σ_{σ} is "equivalent" to a piecewise linear map.

Signed shifts

Archer '13:

- Characterization of permutations realized by Σ_{σ}, for any σ (fixing and simplifying a result of Amigó).
- Upper and lower bounds on $\left|\operatorname{Allow}\left(\Sigma_{\sigma}\right)\right|$.

Periodic orbits

Let $\mathcal{P}_{n}\left(\Sigma_{\sigma}\right)$ be the set of permutations realized by the periodic orbits of Σ_{σ} of size n.

Theorem (Archer-E. '12)
Assuming $\sigma \neq-^{k}$ or $n \neq 2 \bmod 4$, $\pi \in \mathcal{P}_{n}\left(\Sigma_{\sigma}\right) \quad \Leftrightarrow \quad$ the cycle $\hat{\pi}$ can be drawn on the graph of Σ_{σ}.

Periodic orbits

Let $\mathcal{P}_{n}\left(\Sigma_{\sigma}\right)$ be the set of permutations realized by the periodic orbits of Σ_{σ} of size n.

Theorem (Archer-E. '12)
Assuming $\sigma \neq-^{k}$ or $n \neq 2 \bmod 4$, $\pi \in \mathcal{P}_{n}\left(\Sigma_{\sigma}\right) \quad \Leftrightarrow \quad$ the cycle $\hat{\pi}$ can be drawn on the graph of Σ_{σ}.

Examples: $\quad \pi \in \mathcal{P}_{n}\left(\Sigma_{+-}\right) \Leftrightarrow \hat{\pi}$ is unimodal. $\pi \in \mathcal{P}_{n}\left(\Sigma_{+k}\right) \Leftrightarrow \hat{\pi}$ has at most $k-1$ descents.
For $n \neq 2 \bmod 4, \pi \in \mathcal{P}_{n}\left(\Sigma_{-k}\right) \Leftrightarrow \hat{\pi}$ has at most $k-1$ ascents.

Periodic orbits

Let $\mathcal{P}_{n}\left(\Sigma_{\sigma}\right)$ be the set of permutations realized by the periodic orbits of Σ_{σ} of size n.

Theorem (Archer-E. '12)
Assuming $\sigma \neq-^{k}$ or $n \neq 2 \bmod 4$, $\pi \in \mathcal{P}_{n}\left(\Sigma_{\sigma}\right) \quad \Leftrightarrow \quad$ the cycle $\hat{\pi}$ can be drawn on the graph of Σ_{σ}.

Examples: $\quad \pi \in \mathcal{P}_{n}\left(\Sigma_{+-}\right) \Leftrightarrow \hat{\pi}$ is unimodal. $\pi \in \mathcal{P}_{n}\left(\Sigma_{+k}\right) \quad \Leftrightarrow \hat{\pi}$ has at most $k-1$ descents.
For $n \neq 2 \bmod 4, \pi \in \mathcal{P}_{n}\left(\Sigma_{-k}\right) \Leftrightarrow \hat{\pi}$ has at most $k-1$ ascents.
Corollary (Archer-E. '12)
Enumeration formulas for cyclic permutations avoiding some sets of patterns (in the classical sense).

Allowed and forbidden patterns of maps Example: shifts
A more general example: signed shifts

Thank you

