Descent sets of cyclic permutations

Sergi Elizalde

Dartmouth College

Séminaire du LaCIM, UQAM

イロン イヨン イヨン イヨン

Main result Non-bijective proof Final remarks

Permutations

Patterns realized by a map Shifts Example

Notation

 $[n] = \{1, 2, \ldots, n\}, \quad \pi \in \mathcal{S}_n$

◆□ → ◆□ → ◆ □ → ◆ □ → ●

Main result Non-bijective proof Final remarks Permutations

Patterns realized by a map Shifts Example

Notation

$$[n] = \{1, 2, \dots, n\}, \quad \pi \in S_n$$

$$\pi = \underbrace{2517364}_{\text{one line notation}} = \underbrace{(1, 2, 5, 3)(4, 7)(6)}_{\text{cycle notation}} = \underbrace{(5, 3, 1, 2)(6)(7, 4)}_{\text{cycle notation}}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Main result Non-bijective proof Final remarks Permutations

Patterns realized by a map Shifts Example

Notation

$$[n] = \{1, 2, \dots, n\}, \quad \pi \in S_n$$

$$\pi = \underbrace{2517364}_{\text{one line notation}} = \underbrace{(1, 2, 5, 3)(4, 7)(6)}_{\text{cycle notation}} = \underbrace{(5, 3, 1, 2)(6)(7, 4)}_{\text{cycle notation}}$$

$$\mathcal{C}_n \subset S_n \quad \text{cyclic permutations} \qquad |\mathcal{C}_n| = (n - 1)!$$

$$\mathcal{C}_3 = \{(1, 2, 3), (1, 3, 2)\} = \{231, 312\}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Main result Non-bijective proof Final remarks Permutations

Patterns realized by a map Shifts Example

Notation

$$[n] = \{1, 2, \dots, n\}, \quad \pi \in S_n$$

$$\pi = \underbrace{2517364}_{\text{one line notation}} = \underbrace{(1, 2, 5, 3)(4, 7)(6)}_{\text{cycle notation}} = \underbrace{(5, 3, 1, 2)(6)(7, 4)}_{\text{cycle notation}}$$

$$\mathcal{C}_n \subset S_n \quad \text{cyclic permutations} \qquad |\mathcal{C}_n| = (n - 1)!$$

$$\mathcal{C}_3 = \{(1, 2, 3), (1, 3, 2)\} = \{231, 312\}$$

The *descent set* of $\pi \in S_n$ is

$$D(\pi) = \{i : 1 \le i \le n - 1, \ \pi(i) > \pi(i + 1)\}.$$

 $D(25 \cdot 17 \cdot 36 \cdot 4) = \{2, 4, 6\}$

イロト イヨト イヨト イヨト

Main result Non-bijective proof Final remarks Permutations Patterns realized by a ma Shifts Example

Notation

$$[n] = \{1, 2, \dots, n\}, \quad \pi \in S_n$$

$$\pi = \underbrace{2517364}_{\text{one line notation}} = \underbrace{(1, 2, 5, 3)(4, 7)(6)}_{\text{cycle notation}} = \underbrace{(5, 3, 1, 2)(6)(7, 4)}_{\text{cycle notation}}$$

$$\mathcal{C}_n \subset S_n \quad \text{cyclic permutations} \qquad |\mathcal{C}_n| = (n-1)!$$

$$\mathcal{C}_3 = \{(1, 2, 3), (1, 3, 2)\} = \{231, 312\}$$
The descent set of $\pi \in S_n$ is

$$D(\pi) = \{i : 1 \le i \le n-1, \ \pi(i) > \pi(i+1)\}.$$

 $D(25 \cdot 17 \cdot 36 \cdot 4) = \{2, 4, 6\}$

i is a weak excedance of π if $\pi(i) \ge i$.

イロン イヨン イヨン イヨン

Permutations Patterns realized by a map Shifts Example

Allowed patterns of a map

Let X be a linearly ordered set, $f : X \to X$. For each $x \in X$ and $n \ge 1$, consider the sequence

$$x, f(x), f^{2}(x), \ldots, f^{n-1}(x).$$

・ロン ・回と ・ヨン・

Permutations Patterns realized by a map Shifts Example

Allowed patterns of a map

Let X be a linearly ordered set, $f : X \to X$. For each $x \in X$ and $n \ge 1$, consider the sequence

$$x, f(x), f^{2}(x), \ldots, f^{n-1}(x).$$

If there are no repetitions, the relative order of the entries determines a permutation, called an *allowed pattern* of f.

イロト イポト イヨト イヨト

Permutations Patterns realized by a map Shifts Example

Allowed patterns of a map

Let X be a linearly ordered set, $f : X \to X$. For each $x \in X$ and $n \ge 1$, consider the sequence

$$x, f(x), f^{2}(x), \ldots, f^{n-1}(x).$$

If there are no repetitions, the relative order of the entries determines a permutation, called an *allowed pattern* of *f*.

Example

$$egin{array}{rcl} f:&[0,1]&
ightarrow&[0,1]\ &x&\mapsto&4x(1-x). \end{array}$$

For x = 0.8 and n = 4, the sequence

 $0.8,\ 0.64,\ 0.9216,\ 0.2890$

determines the permutation 3241.

イロト イポト イヨト イヨト

Permutations Patterns realized by a map Shifts Example

Forbidden patterns of a map

Permutations that cannot be obtained in this way for any $x \in X$ are called *forbidden patterns* of f.

イロン イヨン イヨン イヨン

Permutations Patterns realized by a map Shifts Example

Forbidden patterns of a map

Permutations that cannot be obtained in this way for any $x \in X$ are called *forbidden patterns* of f.

Theorem (Bandt-Keller-Pompe '02)

Every piecewise monotone map has forbidden patterns.

(日) (同) (日) (日)

Permutations Patterns realized by a map Shifts Example

Forbidden patterns of a map

Permutations that cannot be obtained in this way for any $x \in X$ are called *forbidden patterns* of f.

Theorem (Bandt-Keller-Pompe '02)

Every piecewise monotone map has forbidden patterns.

This can be used to distinguish deterministic from random sequences.

(ロ) (四) (三) (三)

Permutations Patterns realized by a map Shifts Example

Forbidden patterns of a map

Permutations that cannot be obtained in this way for any $x \in X$ are called *forbidden patterns* of f.

Theorem (Bandt-Keller-Pompe '02)

Every piecewise monotone map has forbidden patterns.

This can be used to distinguish deterministic from random sequences.

We'd like to understand the set of forbidden patterns of a given f.

イロト イポト イヨト イヨト

Origin of the problem and background Main result

Main result Non-bijective proof Final remarks Permutations Patterns realized by a map Shifts Example

Example

For the map

$$egin{array}{rcl} f:&[0,1]&
ightarrow&[0,1]\ &x&\mapsto&4x(1-x), \end{array}$$

Origin of the problem and background Main result

Non-bijective proof Final remarks Permutations Patterns realized by a map Shifts Example

Example

For the map

$$egin{array}{rcl} f:&[0,1]&
ightarrow&[0,1]\ &x&\mapsto&4x(1-x), \end{array}$$

these patterns are forbidden: 321, 1423, 2134, 2143, 3142, 4231, ...

イロン 不同と 不同と 不同と

Origin of the problem and background Main result

Non-bijective proof Final remarks Permutations Patterns realized by a map Example

Example

For the map

$$egin{array}{rcl} f:&[0,1]&
ightarrow&[0,1]\ &x&\mapsto&4x(1-x), \end{array}$$

these patterns are forbidden: 321, 1423, 2134, 2143, 3142, 4231, ...

Theorem (E.-Liu): f has infinitely many "basic" forbidden patterns. ・ロ・ ・ 日・ ・ 日・ ・ 日・

Permutations Patterns realized by a map Shifts Example

Shift maps

For $N \ge 2$, let $\mathcal{W}_N = \{0, 1, \dots, N-1\}^{\mathbb{N}}$ be the set of infinite words on N letters, equipped with the lexicographic order.

・ロト ・回ト ・ヨト ・ヨト

Permutations Patterns realized by a map Shifts Example

Shift maps

For $N \ge 2$, let $\mathcal{W}_N = \{0, 1, \dots, N-1\}^{\mathbb{N}}$ be the set of infinite words on N letters, equipped with the lexicographic order.

Define the *shift* on *N* letters:

◆□ → ◆圖 → ◆臣 → ◆臣 → ○

2

Permutations Patterns realized by a map Shifts Example

Shift maps

For $N \ge 2$, let $\mathcal{W}_N = \{0, 1, \dots, N-1\}^{\mathbb{N}}$ be the set of infinite words on N letters, equipped with the lexicographic order.

Define the *shift* on *N* letters:

$$\Sigma_{N}: \qquad \mathcal{W}_{N} \qquad \longrightarrow \qquad \mathcal{W}_{N} \\ w_{1}w_{2}w_{3}\ldots \qquad \mapsto \qquad w_{2}w_{3}w_{4}\ldots$$

 Σ_N has the same allowed/forbidden patterns as the sawtooth map

$$\begin{array}{rrrr} [0,1] & \to & [0,1] \\ x & \mapsto & \mathit{N}x \mod 1 \end{array}$$

Permutations Patterns realized by a map Shifts Example

Example

The permutation 4217536 is realized (i.e., allowed) by Σ_3 , because if $w = 2102212210 \dots \in W_3$, then

4 2 1

7

5 3 6

$$w = 2102212210...$$

$$\Sigma_{3}(w) = 102212210...$$

$$\Sigma_{3}^{2}(w) = 02212210...$$

$$\Sigma_{3}^{3}(w) = 2212210...$$

$$\Sigma_{3}^{4}(w) = 212210...$$

$$\Sigma_{3}^{5}(w) = 12210...$$

$$\Sigma_{3}^{6}(w) = 2210...$$

lexicographic order of the shifted words

(ロ) (四) (三) (三)

Permutations Patterns realized by a map Shifts Example

Some facts about shifts

Theorem (Amigó-E.-Kennel)

 Σ_N has no forbidden patterns of length $n \le N + 1$, but it has forbidden patterns of each length $n \ge N + 2$.

イロト イヨト イヨト イヨト

Permutations Patterns realized by a map Shifts Example

Some facts about shifts

Theorem (Amigó-E.-Kennel)

 Σ_N has no forbidden patterns of length $n \leq N + 1$, but it has forbidden patterns of each length $n \geq N + 2$.

Proposition (E.)

 Σ_N has exactly 6 forbidden patterns of length N + 2.

イロト イポト イヨト イヨト

Permutations Patterns realized by a map Shifts Example

Some facts about shifts

Theorem (Amigó-E.-Kennel)

 Σ_N has no forbidden patterns of length $n \leq N + 1$, but it has forbidden patterns of each length $n \geq N + 2$.

Proposition (E.)

 Σ_N has exactly 6 forbidden patterns of length N + 2.

Example

The shortest forbidden patterns of Σ_4 are

615243, 324156, 342516, 162534, 453621, 435261.

(日) (同) (日) (日)

Permutations Patterns realized by a map Shifts Example

The smallest # of letters needed to realize a pattern

For $\pi \in \mathcal{S}_n$, let

 $N(\pi) = \min\{N : \pi \text{ is realized by } \Sigma_N\}.$

・ロン ・回 と ・ ヨ と ・ ヨ と

Permutations Patterns realized by a map Shifts Example

The smallest # of letters needed to realize a pattern

For $\pi \in \mathcal{S}_n$, let

 $N(\pi) = \min\{N : \pi \text{ is realized by } \Sigma_N\}.$

Given $\pi = \pi_1 \pi_2 \cdots \pi_n$, here is how to compute $N(\pi)$:

- Let $\hat{\pi}$ be the cycle $(\pi_1, \pi_2, \dots, \pi_n)$ with the entry π_1 replaced with a \star .
- Let des $(\hat{\pi})$ be the number of descents in $\hat{\pi}$ skipping the \star .

・ロト ・回ト ・ヨト ・ヨト

Permutations Patterns realized by a map Shifts Example

The smallest # of letters needed to realize a pattern

For $\pi \in \mathcal{S}_n$, let

 $N(\pi) = \min\{N : \pi \text{ is realized by } \Sigma_N\}.$

Given $\pi = \pi_1 \pi_2 \cdots \pi_n$, here is how to compute $N(\pi)$:

- Let $\hat{\pi}$ be the cycle $(\pi_1, \pi_2, \dots, \pi_n)$ with the entry π_1 replaced with a \star .
- Let des $(\hat{\pi})$ be the number of descents in $\hat{\pi}$ skipping the \star .

Example

 $\pi = 892364157 \rightsquigarrow (8,9,2,3,6,4,1,5,7) \rightsquigarrow 536174892 \rightsquigarrow 536174 \star 92 = \hat{\pi}$

 $des(536174 \pm 92) = 4$

(ロ) (同) (E) (E) (E)

Origin of the problem and background	Permutations
Main result	Patterns realized by a map
Non-bijective proof	Shifts
Final remarks	Example

Theorem (E.)

$$N(\pi) = 1 + \operatorname{des}(\hat{\pi}) + \epsilon(\hat{\pi}),$$

where

$$\epsilon(\hat{\pi}) = \begin{cases} 1 & \text{if } \hat{\pi} = \star 1 \dots \text{ or } \hat{\pi} = \dots n \star, \\ 0 & \text{otherwise.} \end{cases}$$

(ロ) (四) (注) (注) (注) (注)

Origin of the problem and background	Permutations
Main result	Patterns realized by a map
Non-bijective proof	Shifts
Final remarks	Example

Theorem (E.)

$$N(\pi) = 1 + \operatorname{des}(\hat{\pi}) + \epsilon(\hat{\pi}),$$

where

$$\epsilon(\hat{\pi}) = \begin{cases} 1 & \text{if } \hat{\pi} = \star 1 \dots \text{ or } \hat{\pi} = \dots n \star, \\ 0 & \text{otherwise.} \end{cases}$$

Example

$$N(892364157) = 1 + 4 + 0 = 5,$$

$$N(1423) = N(2134) = N(2314) = N(3241) = N(3421) = N(4132) = 3,$$

$$N(\pi) = 2 \text{ for all other } \pi \in \mathcal{S}_4.$$

(ロ) (四) (注) (注) (注) (注)

Origin of the problem and background	Permutations
Main result	Patterns realized by a map
Non-bijective proof	Shifts
Final remarks	Example

Theorem (E.)

$$N(\pi) = 1 + \operatorname{des}(\hat{\pi}) + \epsilon(\hat{\pi}),$$

where

$$\epsilon(\hat{\pi}) = \begin{cases} 1 & \text{if } \hat{\pi} = \star 1 \dots \text{ or } \hat{\pi} = \dots n \star, \\ 0 & \text{otherwise.} \end{cases}$$

Example

$$N(892364157) = 1 + 4 + 0 = 5,$$

$$N(1423) = N(2134) = N(2314) = N(3241) = N(3421) = N(4132) = 3,$$

$$N(\pi) = 2 \text{ for all other } \pi \in \mathcal{S}_4.$$

The distribution of the statistic $N(\pi)$ is related to the distribution of the number of descents in cyclic permutations.

Main result Non-bijective proof Final remarks Permutations Patterns realized by a map Shifts Example

Descent sets of 5-cycles

\mathcal{C}_5	
$(1, 2, 3, 4, 5) = 2345 \cdot 1$	
(2, 1, 3, 4, 5) = 3.145.2	
$(3, 2, 1, 4, 5) = 4 \cdot 125 \cdot 3$	
$(4, 3, 2, 1, 5) = 5 \cdot 1234$	
$(1, 3, 2, 4, 5) = 34 \cdot 25 \cdot 1$	
$(1, 4, 3, 2, 5) = 45 \cdot 23 \cdot 1$	
$(3, 1, 2, 4, 5) = 24 \cdot 15 \cdot 3$	
(3, 1, 4, 2, 5) = 45.123	
$(4, 3, 1, 2, 5) = 25 \cdot 134$	
$(1, 2, 4, 3, 5) = 245 \cdot 3 \cdot 1$	
$(2, 4, 1, 3, 5) = 345 \cdot 12$	
$(4, 1, 2, 3, 5) = 235 \cdot 14$	

\mathcal{C}_5	
$(2,3,1,4,5) = 4 \cdot 3 \cdot 15 \cdot 2$	
$(2,4,3,1,5) = 5 \cdot 4 \cdot 13 \cdot 2$	
$(4, 2, 3, 1, 5) = 5 \cdot 3 \cdot 124$	
$(1, 4, 2, 3, 5) = 4 \cdot 35 \cdot 2 \cdot 1$	
$(2, 1, 4, 3, 5) = 4 \cdot 15 \cdot 3 \cdot 2$	
$(2,3,4,1,5) = 5 \cdot 34 \cdot 12$	
$(3, 4, 2, 1, 5) = 5 \cdot 14 \cdot 23$	
$(4, 2, 1, 3, 5) = 3 \cdot 15 \cdot 24$	
$(1, 3, 4, 2, 5) = 35 \cdot 4 \cdot 2 \cdot 1$	
$(3, 4, 1, 2, 5) = 25 \cdot 4 \cdot 13$	
$(4, 1, 3, 2, 5) = 35 \cdot 2 \cdot 14$	
$(3, 2, 4, 1, 5) = 5 \cdot 4 \cdot 2 \cdot 13$	

イロン イヨン イヨン イヨン

Main result Non-bijective proof Final remarks Permutations Patterns realized by a map Shifts Example

Descent sets of 5-cycles

2	2
\mathcal{C}_5	\mathcal{S}_4
$(1, 2, 3, 4, 5) = 2345 \cdot 1$	1234
(2,1,3,4,5) = 3.145.2	2.134
$(3, 2, 1, 4, 5) = 4 \cdot 125 \cdot 3$	3.124
$(4, 3, 2, 1, 5) = 5 \cdot 1234$	4.123
$(1, 3, 2, 4, 5) = 34 \cdot 25 \cdot 1$	13.24
$(1, 4, 3, 2, 5) = 45 \cdot 23 \cdot 1$	14.23
$(3, 1, 2, 4, 5) = 24 \cdot 15 \cdot 3$	23.14
$(3, 1, 4, 2, 5) = 45 \cdot 123$	34.12
$(4, 3, 1, 2, 5) = 25 \cdot 134$	24.13
$(1, 2, 4, 3, 5) = 245 \cdot 3 \cdot 1$	124.3
$(2, 4, 1, 3, 5) = 345 \cdot 12$	134.2
$(4, 1, 2, 3, 5) = 235 \cdot 14$	234.1

\mathcal{C}_5	\mathcal{S}_4
$(2,3,1,4,5) = 4 \cdot 3 \cdot 15 \cdot 2$	3.2.14
$(2,4,3,1,5) = 5 \cdot 4 \cdot 13 \cdot 2$	4.2.13
$(4, 2, 3, 1, 5) = 5 \cdot 3 \cdot 124$	4.3.12
$(1, 4, 2, 3, 5) = 4 \cdot 35 \cdot 2 \cdot 1$	3.24.1
$(2, 1, 4, 3, 5) = 4 \cdot 15 \cdot 3 \cdot 2$	2.14.3
$(2,3,4,1,5) = 5 \cdot 34 \cdot 12$	4.23.1
$(3, 4, 2, 1, 5) = 5 \cdot 14 \cdot 23$	4.13.2
(4, 2, 1, 3, 5) = 3.15.24	3.14.2
$(1,3,4,2,5) = 35 \cdot 4 \cdot 2 \cdot 1$	14.3.2
$(3, 4, 1, 2, 5) = 25 \cdot 4 \cdot 13$	24.3.1
$(4, 1, 3, 2, 5) = 35 \cdot 2 \cdot 14$	34.2.1
$(3, 2, 4, 1, 5) = 5 \cdot 4 \cdot 2 \cdot 13$	4.3.2.1

イロン 不同と 不同と 不同と

The bijection The inverse

Main theorem

Theorem

For every n there is a bijection $\varphi : C_{n+1} \to S_n$ such that if $\pi \in C_{n+1}$ and $\sigma = \varphi(\pi)$, then

$$D(\pi) \cap [n-1] = D(\sigma).$$

・ロン ・回と ・ヨン・

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$; first step

Given $\pi \in C_{n+1}$, write it in cycle form with n+1 at the end:

 $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21) \in \mathcal{C}_{21}$

(ロ) (同) (E) (E) (E)

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$; first step

Given $\pi \in C_{n+1}$, write it in cycle form with n+1 at the end:

 $\pi = (\underline{11}, 4, \underline{10}, 1, 7, \underline{16}, 9, 3, 5, \underline{12}, \underline{20}, 2, 6, \underline{14}, \underline{18}, 8, \underline{13}, \underline{19}, \underline{15}, \underline{17}, \underline{21}) \in \mathcal{C}_{21}$

Delete n + 1 and split at the "left-to-right maxima":

 $\sigma = (\underline{11}, 4, 10, 1, 7)(\underline{16}, 9, 3, 5, 12)(\underline{20}, 2, 6, 14, 18, 8, 13, 19, 15, 17) \in \mathcal{S}_{20}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$; first step

Given $\pi \in C_{n+1}$, write it in cycle form with n+1 at the end:

 $\pi = (\underline{11}, 4, \underline{10}, 1, 7, \underline{16}, 9, 3, 5, \underline{12}, \underline{20}, 2, 6, \underline{14}, \underline{18}, 8, \underline{13}, \underline{19}, \underline{15}, \underline{17}, \underline{21}) \in \mathcal{C}_{21}$

Delete n + 1 and split at the "left-to-right maxima":

 $\sigma = (\underline{11}, 4, 10, 1, 7)(\underline{16}, 9, 3, 5, 12)(\underline{20}, 2, 6, 14, 18, 8, 13, 19, 15, 17) \in \mathcal{S}_{20}.$

This map $\pi \mapsto \sigma$ is a bijection

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$; first step

Given $\pi \in C_{n+1}$, write it in cycle form with n+1 at the end:

 $\pi = (\underline{11}, 4, \underline{10}, 1, 7, \underline{16}, 9, 3, 5, \underline{12}, \underline{20}, 2, 6, \underline{14}, \underline{18}, 8, \underline{13}, \underline{19}, \underline{15}, \underline{17}, \underline{21}) \in \mathcal{C}_{21}$

Delete n + 1 and split at the "left-to-right maxima":

 $\sigma = (\underline{11}, 4, 10, 1, 7)(\underline{16}, 9, 3, 5, 12)(\underline{20}, 2, 6, 14, 18, 8, 13, 19, 15, 17) \in \mathcal{S}_{20}.$

This map $\pi \mapsto \sigma$ is a bijection, but unfortunately it does not always preserve the descent set:

$$\pi(7) = 16 > \pi(8) = 13$$
 but $\sigma(7) = 11 < \sigma(8) = 13$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$; first step

Given $\pi \in C_{n+1}$, write it in cycle form with n+1 at the end:

 $\pi = (\underline{11}, 4, \underline{10}, 1, 7, \underline{16}, 9, 3, 5, \underline{12}, \underline{20}, 2, 6, \underline{14}, \underline{18}, 8, \underline{13}, \underline{19}, \underline{15}, \underline{17}, \underline{21}) \in \mathcal{C}_{21}$

Delete n + 1 and split at the "left-to-right maxima":

 $\sigma = (\underline{11}, 4, 10, 1, 7)(\underline{16}, 9, 3, 5, 12)(\underline{20}, 2, 6, 14, 18, 8, 13, 19, 15, 17) \in \mathcal{S}_{20}.$

This map $\pi \mapsto \sigma$ is a bijection, but unfortunately it does not always preserve the descent set:

$$\pi(7) = 16 > \pi(8) = 13$$
 but $\sigma(7) = 11 < \sigma(8) = 13$.

We say that the pair $\{7, 8\}$ is *bad*. We will fix the bad pairs.

ヘロン 人間と 人間と 人間と

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$; fixing bad pairs

$\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$ $\sigma = (11, 4, 10, 1, 7)(16, 9, 3, 5, 12)(20, 2, 6, 14, 18, 8, 13, 19, 15, 17)$

・ロン ・雪 と ・ ヨ と ・ ヨ と

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$; fixing bad pairs

For each but the last cycle of σ , from left to right:

 $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$ $\sigma = (11, 4, 10, 1, 7)(16, 9, 3, 5, 12)(20, 2, 6, 14, 18, 8, 13, 19, 15, 17)$

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$; fixing bad pairs

For each but the last cycle of σ , from left to right:

z := rightmost entry of the cycle.

 $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$ $\sigma = (11, 4, 10, 1, 7)(16, 9, 3, 5, 12)(20, 2, 6, 14, 18, 8, 13, 19, 15, 17)$ z := 7.

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$; fixing bad pairs

For each but the last cycle of σ , from left to right:

z := rightmost entry of the cycle.
 If {z, z-1} or {z, z+1} are bad, let ε = ±1 be such that {z, z+ε} is bad and σ(z+ε) is largest.

$$\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$$

$$\sigma = (11, 4, 10, 1, 7)(16, 9, 3, 5, 12)(20, 2, \underline{6}, 14, 18, 8, 13, 19, 15, 17)$$

$$\{7, 6\} \text{ and } \{7, 8\} \text{ are bad; and } \sigma(6) = 14 > 13 = \sigma(8) \Rightarrow \varepsilon := -1.$$

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$; fixing bad pairs

For each but the last cycle of σ , from left to right:

- z := rightmost entry of the cycle.
 If {z, z-1} or {z, z+1} are bad, let ε = ±1 be such that {z, z+ε} is bad and σ(z+ε) is largest.
- Repeat for as long as {z, z+ε} is bad:
 1. Switch z and z+ε (in the cycle form of σ).

 $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$ $\sigma = (11, 4, 10, 1, 7)(16, 9, 3, 5, 12)(20, 2, 6, 14, 18, 8, 13, 19, 15, 17)$

z := 7. $\varepsilon := -1.$ Switch 7 and 6. $\langle \Box \rangle \langle \overline{\sigma} \rangle \langle \overline{z} \rangle \langle \overline{z} \rangle \langle \overline{z} \rangle$

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$; fixing bad pairs

For each but the last cycle of σ , from left to right:

- z := rightmost entry of the cycle.
 If {z, z-1} or {z, z+1} are bad, let ε = ±1 be such that {z, z+ε} is bad and σ(z+ε) is largest.
- Repeat for as long as {z, z+ε} is bad:
 1. Switch z and z+ε (in the cycle form of σ).

 $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$ $\sigma = (11, 4, 10, 1, 6)(16, 9, 3, 5, 12)(20, 2, 7, 14, 18, 8, 13, 19, 15, 17)$

z := 7. $\varepsilon := -1.$ Switch 7 and 6. $\langle \Box \rangle \langle \overline{\sigma} \rangle \langle \overline{z} \rangle \langle \overline{z} \rangle \langle \overline{z} \rangle$

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$; fixing bad pairs

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z + \varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them.

$$\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$$

 $\sigma = (11, 4, 10, 1, 6)(16, 9, 3, 5, 12)(20, 2, 7, 14, 18, 8, 13, 19, 15, 17)$

z := 7. Switch 7 and 6. Switch 1 and 2.

 $\varepsilon := -1.$

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$; fixing bad pairs

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z + \varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them.

$$\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$$

 $\sigma = (11, 4, 10, 2, 6)(16, 9, 3, 5, 12)(20, 1, 7, 14, 18, 8, 13, 19, 15, 17)$

z := 7. Switch 7 and 6. Switch 1 and 2.

$$\varepsilon := -1.$$

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$; fixing bad pairs

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z + \varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.

$$\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$$

 $\sigma = (11, 4, \underline{10}, 2, 6)(16, 9, 3, 5, 12)(\underline{20}, 1, 7, 14, 18, 8, 13, 19, 15, 17)$

z := 7. Switch 7 and 6. Switch 1 and 2.

 $\varepsilon := -1.$

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$; fixing bad pairs

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z + \varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.
- $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$
- $\sigma = (11, 4, 10, 2, 6)(16, 9, 3, 5, 12)(20, 1, 7, 14, 18, 8, 13, 19, 15, 17)$
- *z* := 6.

$$\varepsilon := -1.$$

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$; fixing bad pairs

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z + \varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.
- $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$
- $\sigma = (11, 4, 10, 2, 6)(16, 9, 3, 5, 12)(20, 1, 7, 14, 18, 8, 13, 19, 15, 17)$
- z := 6. {6, 5} is bad.

 $\varepsilon := -1.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$; fixing bad pairs

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z + \varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.
- $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$
- $\sigma = (11, 4, 10, 2, 6)(16, 9, 3, 5, 12)(20, 1, 7, 14, 18, 8, 13, 19, 15, 17)$
- z := 6.

Switch 6 and 5.

$$\varepsilon := -1.$$

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$; fixing bad pairs

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z + \varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.
- $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$
- $\sigma = (11, 4, 10, 2, 5)(16, 9, 3, 6, 12)(20, 1, 7, 14, 18, 8, 13, 19, 15, 17)$
- z := 6.

Switch 6 and 5.

$$\varepsilon := -1.$$

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$; fixing bad pairs

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z + \varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.

 $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$

 $\sigma = (11, 4, 10, 2, 5)(16, 9, 3, 6, 12)(20, 1, 7, 14, 18, 8, 13, 19, 15, 17)$

z := 6.

Switch 6 and 5. Switch 2 and 3.

 $\varepsilon := -1.$

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$; fixing bad pairs

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z + \varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.

 $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$

- $\sigma = (11, 4, 10, 3, 5)(16, 9, 2, 6, 12)(20, 1, 7, 14, 18, 8, 13, 19, 15, 17)$
- *z* := 6.

Switch 6 and 5. Switch 2 and 3.

 $\varepsilon := -1.$

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$; fixing bad pairs

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:

z := 6.

- 1. Switch z and $z + \varepsilon$ (in the cycle form of σ).
- 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
- 3. z := new rightmost entry of the cycle.

 $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$

 $\sigma = (11, 4, 10, 3, 5)(16, 9, 2, 6, 12)(20, 1, 7, 14, 18, 8, 13, 19, 15, 17)$

 $\varepsilon := -1$

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$; fixing bad pairs

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:

z := 6.

- 1. Switch z and $z + \varepsilon$ (in the cycle form of σ).
- 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
- 3. z := new rightmost entry of the cycle.

 $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$

 $\sigma = (11, \underline{4}, 9, 3, 5)(\underline{16}, \underline{10}, 2, 6, 12)(20, 1, 7, 14, 18, 8, 13, 19, 15, 17)$

 $\varepsilon := -1$

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$; fixing bad pairs

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z + \varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.
- $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$
- $\sigma = (11, 4, 9, 3, 5)(16, 10, 2, 6, 12)(20, 1, 7, 14, 18, 8, 13, 19, 15, 17)$
- *z* := 5.

$$\varepsilon := -1.$$

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$; fixing bad pairs

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z + \varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.
- $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$
- $\sigma = (11, 4, 9, 3, 5)(16, 10, 2, 6, 12)(20, 1, 7, 14, 18, 8, 13, 19, 15, 17)$
- z := 5. {5,4} is OK, so we move on to the second cycle.

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$; fixing bad pairs

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle.If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z + \varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.
- $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$
- $\sigma = (11, 4, 9, 3, 5)(16, 10, 2, 6, 12)(20, 1, 7, 14, 18, 8, 13, 19, 15, 17)$
- z := 12.

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$; fixing bad pairs

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z + \varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.
- $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$
- $\sigma = (11, 4, 9, 3, 5)(16, 10, 2, 6, 12)(20, 1, 7, 14, 18, 8, 13, 19, 15, 17)$
- z := 12. {12, 11} is OK but {12, 13} is bad $\Rightarrow \varepsilon := 1$.

・ロト ・聞 ト ・ ヨト ・ ヨト … ヨ

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$; fixing bad pairs

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z + \varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.
- $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$
- $\sigma = (11, 4, 9, 3, 5)(16, 10, 2, 6, \frac{12}{20})(20, 1, 7, 14, 18, 8, 13, 19, 15, 17)$

z := 12.

Switch 12 and 13.

$$\varepsilon := 1.$$

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$; fixing bad pairs

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z + \varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.
- $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$
- $\sigma = (11, 4, 9, 3, 5)(16, 10, 2, 6, 13)(20, 1, 7, 14, 18, 8, 12, 19, 15, 17)$

z := 12.

Switch 12 and 13.

$$\varepsilon := 1.$$

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$; fixing bad pairs

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.

 $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$

 $\sigma = (11, 4, 9, 3, 5)(16, 10, 2, \underline{6}, 13)(20, 1, 7, 14, 18, \underline{8}, 12, 19, 15, 17)$

z := 12. Switch 12 and 13. $\varepsilon := 1.$

イロン イ部ン イヨン イヨン 三日

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$; fixing bad pairs

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.

 $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$

- $\sigma = (11, 4, 9, 3, 5)(16, 10, 2, 6, 13)(20, 1, 7, 14, 18, 8, 12, 19, 15, 17)$
- z := 13.

$$\varepsilon := 1.$$

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$; fixing bad pairs

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.
- $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$
- $\sigma = (11, 4, 9, 3, 5)(16, 10, 2, 6, 13)(20, 1, 7, 14, 18, 8, 12, 19, 15, 17)$
- z := 13. {13, 14} is bad.

 $\varepsilon := 1.$

イロン イ部ン イヨン イヨン 三日

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$; fixing bad pairs

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z + \varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.
- $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$
- $\sigma = (11, 4, 9, 3, 5)(16, 10, 2, 6, 13)(20, 1, 7, 14, 18, 8, 12, 19, 15, 17)$

z := 13.

Switch 13 and 14.

$$\varepsilon := 1.$$

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$; fixing bad pairs

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z + \varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.
- $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$
- $\sigma = (11, 4, 9, 3, 5)(16, 10, 2, 6, 14)(20, 1, 7, 13, 18, 8, 12, 19, 15, 17)$

z := 13.

Switch 13 and 14.

$$\varepsilon := 1.$$

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$; fixing bad pairs

For each but the last cycle of σ , from left to right:

- z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.

 $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$

= (11, 4, 9, 3, 5)(16, 10, 2, 6, 14)(20, 1, 7, 13, 18, 8, 12, 19, 15, 17) σ

z := 13.Switch 13 and 14. Switch 6 and 7. ・ロン ・回と ・ヨン ・ヨン

 $\varepsilon := 1.$

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$; fixing bad pairs

For each but the last cycle of σ , from left to right:

- z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.

 $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$

= (11, 4, 9, 3, 5)(16, 10, 2, 7, 14)(20, 1, 6, 13, 18, 8, 12, 19, 15, 17) σ

z := 13.Switch 13 and 14. Switch 6 and 7. ・ロン ・回と ・ヨン ・ヨン

 $\varepsilon := 1.$

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$; fixing bad pairs

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.

 $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$

 $\sigma = (11, 4, 9, 3, 5)(16, 10, 2, 7, 14)(20, 1, 6, 13, 18, 8, 12, 19, 15, 17)$

z := 13. $\varepsilon := 1$. Switch 13 and 14. Switch 6 and 7. Switch 2 and 1.

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$; fixing bad pairs

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.

 $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$

 $\sigma = (11, 4, 9, 3, 5)(16, \underline{10}, 1, 7, 14)(\underline{20}, 2, 6, 13, 18, 8, 12, 19, 15, 17)$

z := 13. $\varepsilon := 1$. Switch 13 and 14. Switch 6 and 7. Switch 2 and 1.

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$; fixing bad pairs

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.

 $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$

- $\sigma = (11, 4, 9, 3, 5)(16, 10, 1, 7, 14)(20, 2, 6, 13, 18, 8, 12, 19, 15, 17)$
- z := 14.

 $\varepsilon := 1.$

イロン イ部ン イヨン イヨン 三日

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$; fixing bad pairs

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.
- $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$
- $\sigma = (11, 4, 9, 3, 5)(16, 10, 1, 7, 14)(20, 2, 6, 13, 18, 8, 12, 19, 15, 17)$
- z := 14. {14, 15} is bad.

 $\varepsilon := 1.$

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$; fixing bad pairs

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z + \varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.
- $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$
- $\sigma = (11, 4, 9, 3, 5)(16, 10, 1, 7, 14)(20, 2, 6, 13, 18, 8, 12, 19, 15, 17)$
- z := 14.

Switch 14 and 15.

$$\varepsilon := 1.$$

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$; fixing bad pairs

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z + \varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.

 $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$

 $\sigma = (11, 4, 9, 3, 5)(16, 10, 1, 7, 15)(20, 2, 6, 13, 18, 8, 12, 19, 14, 17)$

z := 14.

Switch 14 and 15.

$$\varepsilon := 1.$$

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$; fixing bad pairs

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.

 $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$

 $\sigma = (11, 4, 9, 3, 5)(16, 10, 1, \underline{7}, 15)(20, 2, 6, 13, 18, 8, 12, \underline{19}, 14, 17)$

z := 14.

Switch 14 and 15.

 $\varepsilon := 1.$

(ロ) (同) (E) (E) (E)

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$; fixing bad pairs

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.

 $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$

- $\sigma = (11, 4, 9, 3, 5)(16, 10, 1, 7, 15)(20, 2, 6, 13, 18, 8, 12, 19, 14, 17)$
- *z* := 15.

 $\varepsilon := 1.$

<ロ> (四) (四) (三) (三) (三)

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$; fixing bad pairs

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.
- $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$
- $\sigma = (11, 4, 9, 3, 5)(16, 10, 1, 7, 15)(20, 2, 6, 13, 18, 8, 12, 19, 14, 17)$
- z := 15. {15, 16} is OK, so we are done.

(ロ) (同) (E) (E) (E)

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$; fixing bad pairs

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.

 $\begin{aligned} \pi &= (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21) \\ \varphi(\pi) &= (11, 4, 9, 3, 5)(16, 10, 1, 7, 15)(20, 2, 6, 13, 18, 8, 12, 19, 14, 17) \\ \text{Define } \varphi(\pi) &= \sigma. \end{aligned}$

The bijection The inverse

The descent sets are preserved

$$\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$$

$$\varphi(\pi) = (11, 4, 9, 3, 5)(16, 10, 1, 7, 15)(20, 2, 6, 13, 18, 8, 12, 19, 14, 17)$$

In one-line notation,

 $\pi = 7 \cdot 6 \cdot 5 \ 10 \ 12 \ 14 \ 16 \cdot 13 \cdot 3 \cdot 1 \ 4 \ 20 \cdot 19 \cdot 18 \cdot 16 \cdot 9 \ 21 \cdot 8 \ 15 \cdot 2 \ 11$ $\varphi(\pi) = 7 \cdot 6 \cdot 5 \ 9 \ 11 \ 13 \ 15 \cdot 12 \cdot 3 \cdot 1 \ 4 \ 19 \cdot 18 \cdot 17 \cdot 16 \cdot 10 \ 20 \cdot 8 \ 14 \cdot 2$

イロン イヨン イヨン イヨン

2

The bijection The inverse

The descent sets are preserved

$$\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$$

$$\varphi(\pi) = (11, 4, 9, 3, 5)(16, 10, 1, 7, 15)(20, 2, 6, 13, 18, 8, 12, 19, 14, 17)$$

In one-line notation,

 $\pi = 7 \cdot 6 \cdot 5 \ 10 \ 12 \ 14 \ 16 \cdot 13 \cdot 3 \cdot 1 \ 4 \ 20 \cdot 19 \cdot 18 \cdot 16 \cdot 9 \ 21 \cdot 8 \ 15 \cdot 2 \ 11$ $\varphi(\pi) = 7 \cdot 6 \cdot 5 \ 9 \ 11 \ 13 \ 15 \cdot 12 \cdot 3 \cdot 1 \ 4 \ 19 \cdot 18 \cdot 17 \cdot 16 \cdot 10 \ 20 \cdot 8 \ 14 \cdot 2$

In fact, the set of weak excedances is preserved by φ as well.

イロン イヨン イヨン イヨン

The bijection The inverse

The inverse map $\varphi^{-1}: \mathcal{S}_n \to \mathcal{C}_{n+1}$

Given $\sigma \in S_n$, write it in cycle form with the largest element of each cycle first, ordering the cycles by increasing first element:

 $\sigma = (11, 4, 9, 3, 5)(16, 10, 1, 7, 15)(20, 2, 6, 13, 18, 8, 12, 19, 14, 17) \in \mathcal{S}_{20}.$

イロト イヨト イヨト イヨト

The bijection The inverse

The inverse map $\varphi^{-1}: \mathcal{S}_n \to \mathcal{C}_{n+1}$

Given $\sigma \in S_n$, write it in cycle form with the largest element of each cycle first, ordering the cycles by increasing first element:

 $\sigma = (11, 4, 9, 3, 5)(16, 10, 1, 7, 15)(20, 2, 6, 13, 18, 8, 12, 19, 14, 17) \in \mathcal{S}_{20}.$

Remove parentheses and append n + 1:

 $\pi = (11, 4, 9, 3, 5, 16, 10, 1, 7, 15, 20, 2, 6, 13, 18, 8, 12, 19, 14, 17, 21) \in \mathcal{C}_{21}.$

イロト イヨト イヨト イヨト

The bijection The inverse

The inverse map $\varphi^{-1}: \mathcal{S}_n \to \mathcal{C}_{n+1}$

Given $\sigma \in S_n$, write it in cycle form with the largest element of each cycle first, ordering the cycles by increasing first element:

 $\sigma = (11, 4, 9, 3, 5)(16, 10, 1, 7, 15)(20, 2, 6, 13, 18, 8, 12, 19, 14, 17) \in \mathcal{S}_{20}.$

Remove parentheses and append n + 1:

 $\pi = (11, 4, 9, 3, 5 \ , \ 16, 10, 1, 7, 15 \ , \ 20, 2, 6, 13, 18, 8, 12, 19, 14, 17 \ , \ 21) \in \mathcal{C}_{21}.$

A pair $\{i, i+1\}$ is bad if $\pi(i) > \pi(i+1)$ but $\sigma(i) < \sigma(i+1)$, or viceversa.

To find $\varphi^{-1}(\pi)$, we fix bad pairs in a similar way as before, now going from right to left. This undoes the switches performed by φ .

Necklaces

 $A = \{x_1, x_2, \dots\}_{<}$ linearly ordered alphabet.

A *necklace* of length ℓ is a circular arrangement of ℓ beads labeled with elements of A, up to cyclic rotation.

・ロン ・回 と ・ ヨ と ・ ヨ と

Necklaces

 $A = \{x_1, x_2, \dots\}_{<}$ linearly ordered alphabet.

A *necklace* of length ℓ is a circular arrangement of ℓ beads labeled with elements of A, up to cyclic rotation.

Given a multiset of necklaces,

 its cycle structure is the partition whose parts are the lengths of the necklaces;

<ロ> (日) (日) (日) (日) (日)

Necklaces

 $A = \{x_1, x_2, \dots\}_{<}$ linearly ordered alphabet.

A *necklace* of length ℓ is a circular arrangement of ℓ beads labeled with elements of A, up to cyclic rotation.

Given a multiset of necklaces,

- its cycle structure is the partition whose parts are the lengths of the necklaces;
- ▶ its evaluation is the monomial x₁^{e₁}x₂^{e₂</sub>... where e_i is the number of beads with label x_i.}

・ロト ・四ト ・ヨト ・ヨト

Permutations and necklaces

Theorem (Gessel, Reutenauer '93) Let $I = \{i_1, i_2, ..., i_k\}_{\leq} \subseteq [n-1], \ \lambda \vdash n.$ Then $|\{\pi \in S_n \text{ with cycle structure } \lambda \text{ and } D(\pi) \subseteq I\}| = |\{\text{multisets of necklaces with cycle structure } \lambda \text{ and evaluation } x_1^{i_1} x_2^{i_2 - i_1} \dots x_k^{i_k - i_{k-1}} x_{k+1}^{n - i_k}\}|.$

▲帰▶ ▲屋▶ ▲屋▶

Permutations and necklaces

Theorem (Gessel, Reutenauer '93)
Let
$$I = \{i_1, i_2, ..., i_k\}_{\leq} \subseteq [n-1], \ \lambda \vdash n.$$
 Then
 $|\{\pi \in S_n \text{ with cycle structure } \lambda \text{ and } D(\pi) \subseteq I\}| = |\{\text{multisets of necklaces with cycle structure } \lambda \\ \text{ and evaluation } x_1^{i_1} x_2^{i_2 - i_1} \dots x_k^{i_k - i_{k-1}} x_{k+1}^{n - i_k}\}|.$

This can be used to obtain a non-bijective proof of our result

$$|\{\pi \in \mathcal{C}_{n+1} : D(\pi) \cap [n-1] = I\}| = |\{\sigma \in \mathcal{S}_n : D(\sigma) = I\}|.$$

イロト イヨト イヨト イヨト

æ

Non-bijective proof

$\text{Goal}: |\{\pi \in \mathcal{C}_{n+1} : D(\pi) \cap [n-1] = I\}| = |\{\sigma \in \mathcal{S}_n : D(\sigma) = I\}|.$

・ロト ・回ト ・ヨト ・ヨト

2

Non-bijective proof

Goal:
$$|\{\pi \in \mathcal{C}_{n+1} : D(\pi) \cap [n-1] = I\}| = |\{\sigma \in \mathcal{S}_n : D(\sigma) = I\}|.$$

Let $I = \{i_1, i_2, \dots, i_k\}_{<}, I' = I \cup \{n\}$. By the previous theorem, $|\{\pi \in C_{n+1} \text{ with } D(\pi) \subseteq I'\}| = |\{\text{necklaces with evaluation } x_1^{i_1} x_2^{i_2 - i_1} \dots x_k^{i_k - i_{k-1}} x_{k+1}^{n - i_k} x_{k+2}\}|.$

イロン イヨン イヨン イヨン

Non-bijective proof

Goal:
$$|\{\pi \in \mathcal{C}_{n+1} : D(\pi) \cap [n-1] = I\}| = |\{\sigma \in \mathcal{S}_n : D(\sigma) = I\}|.$$

Let $I = \{i_1, i_2, \dots, i_k\}_{<}, I' = I \cup \{n\}$. By the previous theorem, $|\{\pi \in C_{n+1} \text{ with } D(\pi) \cap [n-1] \subseteq I\}| =$ $|\{\text{necklaces with evaluation } x_1^{i_1} x_2^{i_2 - i_1} \dots x_k^{i_k - i_{k-1}} x_{k+1}^{n - i_k} x_{k+2}\}|.$

イロト イヨト イヨト イヨト

Non-bijective proof

Goal:
$$|\{\pi \in \mathcal{C}_{n+1} : D(\pi) \cap [n-1] = I\}| = |\{\sigma \in \mathcal{S}_n : D(\sigma) = I\}|.$$

Let $I = \{i_1, i_2, \dots, i_k\}_{<}$, $I' = I \cup \{n\}$. By the previous theorem, $|\{\pi \in C_{n+1} \text{ with } D(\pi) \cap [n-1] \subseteq I\}| =$ $|\{\text{necklaces with evaluation } x_1^{i_1} x_2^{i_2-i_1} \dots x_k^{i_k-i_{k-1}} x_{k+1}^{n-i_k} x_{k+2}\}|.$

Choosing first the bead labeled x_{k+2} , the # of such necklaces is

$$\binom{n}{i_1, i_2 - i_1, \ldots, i_k - i_{k-1}, n - i_k},$$

・ 母 と ・ ヨ と ・ ヨ と

Non-bijective proof

Goal:
$$|\{\pi \in \mathcal{C}_{n+1} : D(\pi) \cap [n-1] = I\}| = |\{\sigma \in \mathcal{S}_n : D(\sigma) = I\}|.$$

Let $I = \{i_1, i_2, \dots, i_k\}_{<}$, $I' = I \cup \{n\}$. By the previous theorem, $|\{\pi \in C_{n+1} \text{ with } D(\pi) \cap [n-1] \subseteq I\}| =$ $|\{\text{necklaces with evaluation } x_1^{i_1} x_2^{i_2-i_1} \dots x_k^{i_k-i_{k-1}} x_{k+1}^{n-i_k} x_{k+2}\}|.$

Choosing first the bead labeled x_{k+2} , the # of such necklaces is

$$\binom{n}{i_1, i_2 - i_1, \dots, i_k - i_{k-1}, n - i_k},$$

which is precisely $|\{\sigma \in S_n : D(\sigma) \subseteq I\}|.$

Non-bijective proof

Goal:
$$|\{\pi \in \mathcal{C}_{n+1} : D(\pi) \cap [n-1] = I\}| = |\{\sigma \in \mathcal{S}_n : D(\sigma) = I\}|.$$

Let $I = \{i_1, i_2, \dots, i_k\}_{<}$, $I' = I \cup \{n\}$. By the previous theorem, $|\{\pi \in \mathcal{C}_{n+1} \text{ with } D(\pi) \cap [n-1] \subseteq I\}| =$ $|\{\text{necklaces with evaluation } x_1^{i_1} x_2^{i_2-i_1} \dots x_k^{i_k-i_{k-1}} x_{k+1}^{n-i_k} x_{k+2}\}|.$

Choosing first the bead labeled x_{k+2} , the # of such necklaces is

$$\binom{n}{i_1, i_2 - i_1, \ldots, i_k - i_{k-1}, n - i_k},$$

which is precisely $|\{\sigma \in S_n : D(\sigma) \subseteq I\}|$. We have shown that

$$|\{\pi \in \mathcal{C}_{n+1} : D(\pi) \cap [n-1] \subseteq I\}| = |\{\sigma \in \mathcal{S}_n : D(\sigma) \subseteq I\}|.$$

for all $I \subseteq [n-1]$.

ヘロン 人間と 人間と 人間と

Non-bijective proof

Goal:
$$|\{\pi \in \mathcal{C}_{n+1} : D(\pi) \cap [n-1] = I\}| = |\{\sigma \in \mathcal{S}_n : D(\sigma) = I\}|.$$

Let
$$I = \{i_1, i_2, \dots, i_k\}_{<}, I' = I \cup \{n\}$$
. By the previous theorem,
 $|\{\pi \in \mathcal{C}_{n+1} \text{ with } D(\pi) \cap [n-1] \subseteq I\}| =$
 $|\{\text{necklaces with evaluation } x_2^{i_1} x_2^{i_2-i_1} \dots x_k^{i_k-i_{k-1}} x_{k+1}^{n-i_k} x_{k+2}\}|.$

Choosing first the bead labeled x_{k+2} , the # of such necklaces is

$$\binom{n}{i_1, i_2 - i_1, \ldots, i_k - i_{k-1}, n - i_k},$$

which is precisely $|\{\sigma \in S_n : D(\sigma) \subseteq I\}|$. We have shown that

$$|\{\pi \in \mathcal{C}_{n+1} : D(\pi) \cap [n-1] \subseteq I\}| = |\{\sigma \in \mathcal{S}_n : D(\sigma) \subseteq I\}|.$$

for all $I \subseteq [n-1]$. Now apply inclusion-exclusion.

An equivalent statement

Let T_n be the set of *n*-cycles in one-line notation in which one entry has been replaced with 0.

 $\mathcal{T}_3 = \{031, 201, 230, 012, 302, 310\}.$

- 4 回 2 - 4 □ 2 - 4 □

An equivalent statement

Let T_n be the set of *n*-cycles in one-line notation in which one entry has been replaced with 0.

 $\mathcal{T}_3 = \{031, 201, 230, 012, 302, 310\}.$

Clearly, $|\mathcal{T}_n| = n!$. Descents are defined in the usual way.

・ロト ・回ト ・ヨト ・ヨト

An equivalent statement

Let T_n be the set of *n*-cycles in one-line notation in which one entry has been replaced with 0.

 $\mathcal{T}_3 = \{031, 201, 230, 012, 302, 310\}.$

Clearly, $|T_n| = n!$. Descents are defined in the usual way.

Corollary

For every n there is a bijection between T_n and S_n preserving the descent set.

Example:

イロン イヨン イヨン イヨン

A bijection preserving the cycle structure

Problem (Eriksen, Freij, Wästlund)

For any $I, J \subseteq [n-1]$ with the same associated partition, give a bijection between derangements of [n] whose descent set is contained in I and derangements of [n] whose descent set is contained in J.

▲ □ ► ▲ □ ►

A bijection preserving the cycle structure

Problem (Eriksen, Freij, Wästlund)

For any $I, J \subseteq [n - 1]$ with the same associated partition, give a bijection between derangements of [n] whose descent set is contained in I and derangements of [n] whose descent set is contained in J.

We can solve a generalization of this problem using the work of Gessel and Reutenauer:

Proposition

For any $I, J \subseteq [n-1]$ with the same associated partition, there exists a bijection $\{\pi \in S_n : D(\pi) \subseteq I\} \rightarrow \{\sigma \in S_n : D(\sigma) \subseteq J\}$ preserving the cycle structure.

ヘロン 人間と 人間と 人間と

THANK YOU

Sergi Elizalde Descent sets of cyclic permutations

・ロン ・雪 と ・ ヨ と ・ ヨ と

æ