Descent sets of cyclic permutations

Sergi Elizalde
Dartmouth College

Séminaire du LaCIM, UQAM

Origin of the problem and background
Main result Non-bijective proof Final remarks

Notation

$$
[n]=\{1,2, \ldots, n\}, \quad \pi \in \mathcal{S}_{n}
$$

Notation

$$
\begin{aligned}
& {[n]=\{1,2, \ldots, n\}, \quad \pi \in \mathcal{S}_{n}} \\
& \pi=\underbrace{2517364}_{\text {one line notation }}=\underbrace{(1,2,5,3)(4,7)(6)}_{\text {cycle notation }}=\underbrace{(5,3,1,2)(6)(7,4)}_{\text {cycle notation }}
\end{aligned}
$$

Notation

$$
\begin{aligned}
& {[n]=\{1,2, \ldots, n\}, \quad \pi \in \mathcal{S}_{n}} \\
& \pi=\underbrace{2517364}_{\text {one line notation }}=\underbrace{(1,2,5,3)(4,7)(6)}_{\text {cycle notation }}=\underbrace{(5,3,1,2)(6)(7,4)}_{\text {cycle notation }}
\end{aligned}
$$

$\mathcal{C}_{n} \subset \mathcal{S}_{n} \quad$ cyclic permutations $\quad\left|\mathcal{C}_{n}\right|=(n-1)!$

$$
\mathcal{C}_{3}=\{(1,2,3),(1,3,2)\}=\{231,312\}
$$

Notation

$$
\begin{aligned}
& {[n]=\{1,2, \ldots, n\}, \quad \pi \in \mathcal{S}_{n}} \\
& \pi=\underbrace{2517364}_{\text {one line notation }}=\underbrace{(1,2,5,3)(4,7)(6)}_{\text {cycle notation }}=\underbrace{(5,3,1,2)(6)(7,4)}_{\text {cycle notation }}
\end{aligned}
$$

$\mathcal{C}_{n} \subset \mathcal{S}_{n} \quad$ cyclic permutations $\quad\left|\mathcal{C}_{n}\right|=(n-1)$!

$$
\mathcal{C}_{3}=\{(1,2,3),(1,3,2)\}=\{231,312\}
$$

The descent set of $\pi \in \mathcal{S}_{n}$ is

$$
\begin{gathered}
D(\pi)=\{i: 1 \leq i \leq n-1, \pi(i)>\pi(i+1)\} . \\
D(25 \cdot 17 \cdot 36 \cdot 4)=\{2,4,6\}
\end{gathered}
$$

Notation

$$
\begin{aligned}
& {[n]=\{1,2, \ldots, n\}, \quad \pi \in \mathcal{S}_{n}} \\
& \pi=\underbrace{2517364}_{\text {one line notation }}=\underbrace{(1,2,5,3)(4,7)(6)}_{\text {cycle notation }}=\underbrace{(5,3,1,2)(6)(7,4)}_{\text {cycle notation }}
\end{aligned}
$$

$\mathcal{C}_{n} \subset \mathcal{S}_{n} \quad$ cyclic permutations $\quad\left|\mathcal{C}_{n}\right|=(n-1)$!

$$
\mathcal{C}_{3}=\{(1,2,3),(1,3,2)\}=\{231,312\}
$$

The descent set of $\pi \in \mathcal{S}_{n}$ is

$$
\begin{gathered}
D(\pi)=\{i: 1 \leq i \leq n-1, \pi(i)>\pi(i+1)\} . \\
D(25 \cdot 17 \cdot 36 \cdot 4)=\{2,4,6\}
\end{gathered}
$$

i is a weak excedance of π if $\pi(i) \geq i$.

Origin of the problem and background
Main result

Allowed patterns of a map

Let X be a linearly ordered set, $f: X \rightarrow X$. For each $x \in X$ and $n \geq 1$, consider the sequence

$$
x, f(x), f^{2}(x), \ldots, f^{n-1}(x)
$$

Allowed patterns of a map

Let X be a linearly ordered set, $f: X \rightarrow X$. For each $x \in X$ and $n \geq 1$, consider the sequence

$$
x, f(x), f^{2}(x), \ldots, f^{n-1}(x)
$$

If there are no repetitions, the relative order of the entries determines a permutation, called an allowed pattern of f.

Allowed patterns of a map

Let X be a linearly ordered set, $f: X \rightarrow X$. For each $x \in X$ and $n \geq 1$, consider the sequence

$$
x, f(x), f^{2}(x), \ldots, f^{n-1}(x)
$$

If there are no repetitions, the relative order of the entries determines a permutation, called an allowed pattern of f.

Example

$$
\begin{aligned}
f:[0,1] & \rightarrow[0,1] \\
x & \mapsto 4 x(1-x) .
\end{aligned}
$$

For $x=0.8$ and $n=4$, the sequence

$$
0.8,0.64,0.9216,0.2890
$$

determines the permutation 3241.

Forbidden patterns of a map

Permutations that cannot be obtained in this way for any $x \in X$ are called forbidden patterns of f.

Forbidden patterns of a map

Permutations that cannot be obtained in this way for any $x \in X$ are called forbidden patterns of f.

Theorem (Bandt-Keller-Pompe '02)
Every piecewise monotone map has forbidden patterns.

Forbidden patterns of a map

Permutations that cannot be obtained in this way for any $x \in X$ are called forbidden patterns of f.

Theorem (Bandt-Keller-Pompe '02)
Every piecewise monotone map has forbidden patterns.

This can be used to distinguish deterministic from random sequences.

Forbidden patterns of a map

Permutations that cannot be obtained in this way for any $x \in X$ are called forbidden patterns of f.

Theorem (Bandt-Keller-Pompe '02)
Every piecewise monotone map has forbidden patterns.

This can be used to distinguish deterministic from random sequences.

We'd like to understand the set of forbidden patterns of a given f.

Example

For the map

$$
\begin{aligned}
f:[0,1] & \rightarrow[0,1] \\
x & \mapsto 4 x(1-x),
\end{aligned}
$$

Example

For the map

$$
\begin{aligned}
f:[0,1] & \rightarrow[0,1] \\
x & \mapsto 4 x(1-x),
\end{aligned}
$$

these patterns are forbidden: $321,1423,2134,2143,3142,4231, \ldots$

Example

For the map

$$
\begin{aligned}
f:[0,1] & \rightarrow[0,1] \\
x & \mapsto 4 x(1-x)
\end{aligned}
$$

these patterns are forbidden: $321,1423,2134,2143,3142,4231, \ldots$
Theorem (E.-Liu): f has infinitely many "basic" forbidden patterns.

Shift maps

For $N \geq 2$, let $\mathcal{W}_{N}=\{0,1, \ldots, N-1\}^{\mathbb{N}}$ be the set of infinite words on N letters, equipped with the lexicographic order.

Shift maps

For $N \geq 2$, let $\mathcal{W}_{N}=\{0,1, \ldots, N-1\}^{\mathbb{N}}$ be the set of infinite words on N letters, equipped with the lexicographic order.

Define the shift on N letters:

$$
\left.\begin{array}{ccc}
\Sigma_{N}: & \mathcal{W}_{N} & \longrightarrow
\end{array} \begin{array}{c}
\mathcal{W}_{N} \\
w_{1} w_{2} w_{3} \ldots
\end{array}\right) \longmapsto \quad w_{2} w_{3} w_{4} \ldots
$$

Shift maps

For $N \geq 2$, let $\mathcal{W}_{N}=\{0,1, \ldots, N-1\}^{\mathbb{N}}$ be the set of infinite words on N letters, equipped with the lexicographic order.

Define the shift on N letters:

$$
\begin{array}{cccc}
\Sigma_{N}: & \mathcal{W}_{N} & \longrightarrow & \mathcal{W}_{N} \\
w_{1} w_{2} w_{3} \ldots & \mapsto & w_{2} w_{3} w_{4} \ldots
\end{array}
$$

Σ_{N} has the same allowed/forbidden patterns as the sawtooth map

$$
\begin{array}{cll}
{[0,1]} & \rightarrow & {[0,1]} \\
x & \mapsto & N x \\
\bmod 1
\end{array}
$$

Example

The permutation 4217536 is realized (i.e., allowed) by Σ_{3}, because if $w=2102212210 \ldots \in \mathcal{W}_{3}$, then

$$
\left.\left.\begin{array}{r}
w=2102212210 \ldots \\
\Sigma_{3}(w)=102212210 \ldots \\
\Sigma_{3}^{2}(w)=02212210 \ldots \\
\Sigma_{3}^{3}(w)=2212210 \ldots \\
\Sigma_{3}^{4}(w)=212210 \ldots \\
\Sigma_{3}^{5}(w)=12210 \ldots \\
\Sigma_{3}^{6}(w)=2210 \ldots
\end{array}\right\} \begin{array}{l}
4 \\
7
\end{array}\right\} \begin{aligned}
& \\
& \text { lexicographic order } \\
& \text { of the shifted words }
\end{aligned}
$$

Some facts about shifts

Theorem (Amigó-E.-Kennel)
Σ_{N} has no forbidden patterns of length $n \leq N+1$, but it has forbidden patterns of each length $n \geq N+2$.

Some facts about shifts

Theorem (Amigó-E.-Kennel)
Σ_{N} has no forbidden patterns of length $n \leq N+1$, but it has forbidden patterns of each length $n \geq N+2$.

Proposition (E.)

Σ_{N} has exactly 6 forbidden patterns of length $N+2$.

Some facts about shifts

Theorem (Amigó-E.-Kennel)
Σ_{N} has no forbidden patterns of length $n \leq N+1$, but it has forbidden patterns of each length $n \geq N+2$.

Proposition (E.)

Σ_{N} has exactly 6 forbidden patterns of length $N+2$.

Example
The shortest forbidden patterns of Σ_{4} are

$$
615243,324156,342516,162534,453621,435261 .
$$

The smallest \# of letters needed to realize a pattern

For $\pi \in \mathcal{S}_{n}$, let

$$
N(\pi)=\min \left\{N: \pi \text { is realized by } \Sigma_{N}\right\}
$$

The smallest \# of letters needed to realize a pattern

For $\pi \in \mathcal{S}_{n}$, let

$$
N(\pi)=\min \left\{N: \pi \text { is realized by } \Sigma_{N}\right\}
$$

Given $\pi=\pi_{1} \pi_{2} \cdots \pi_{n}$, here is how to compute $N(\pi)$:

- Let $\hat{\pi}$ be the cycle $\left(\pi_{1}, \pi_{2}, \ldots, \pi_{n}\right)$ with the entry π_{1} replaced with a \star.
- Let $\operatorname{des}(\hat{\pi})$ be the number of descents in $\hat{\pi}$ skipping the \star.

The smallest \# of letters needed to realize a pattern

For $\pi \in \mathcal{S}_{n}$, let

$$
N(\pi)=\min \left\{N: \pi \text { is realized by } \Sigma_{N}\right\}
$$

Given $\pi=\pi_{1} \pi_{2} \cdots \pi_{n}$, here is how to compute $N(\pi)$:

- Let $\hat{\pi}$ be the cycle $\left(\pi_{1}, \pi_{2}, \ldots, \pi_{n}\right)$ with the entry π_{1} replaced with a \star.
- Let $\operatorname{des}(\hat{\pi})$ be the number of descents in $\hat{\pi}$ skipping the \star.

Example

$$
\pi=892364157 \rightsquigarrow(8,9,2,3,6,4,1,5,7) \rightsquigarrow 536174892 \rightsquigarrow 536174 \star 92=\hat{\pi}
$$

$$
\operatorname{des}(536174 \star 92)=4
$$

Theorem (E.)

$$
N(\pi)=1+\operatorname{des}(\hat{\pi})+\epsilon(\hat{\pi}),
$$

where

$$
\epsilon(\hat{\pi})= \begin{cases}1 & \text { if } \hat{\pi}=\star 1 \ldots \text { or } \hat{\pi}=\ldots n \star \\ 0 & \text { otherwise }\end{cases}
$$

Theorem (E.)

$$
N(\pi)=1+\operatorname{des}(\hat{\pi})+\epsilon(\hat{\pi})
$$

where

$$
\epsilon(\hat{\pi})= \begin{cases}1 & \text { if } \hat{\pi}=\star 1 \ldots \\ 0 & \text { otherwise }\end{cases}
$$

Example

$$
N(892364157)=1+4+0=5
$$

$$
N(1423)=N(2134)=N(2314)=N(3241)=N(3421)=N(4132)=3
$$

$$
N(\pi)=2 \text { for all other } \pi \in \mathcal{S}_{4}
$$

Theorem (E.)

$$
N(\pi)=1+\operatorname{des}(\hat{\pi})+\epsilon(\hat{\pi})
$$

where

$$
\epsilon(\hat{\pi})= \begin{cases}1 & \text { if } \hat{\pi}=\star 1 \ldots \text { or } \hat{\pi}=\ldots n \star \\ 0 & \text { otherwise }\end{cases}
$$

Example

$$
N(892364157)=1+4+0=5
$$

$$
N(1423)=N(2134)=N(2314)=N(3241)=N(3421)=N(4132)=3
$$

$$
N(\pi)=2 \text { for all other } \pi \in \mathcal{S}_{4}
$$

The distribution of the statistic $N(\pi)$ is related to the distribution of the number of descents in cyclic permutations.

Descent sets of 5-cycles

\mathcal{C}_{5}	
$(1,2,3,4,5)=2345 \cdot 1$	
$(2,1,3,4,5)=3 \cdot 145 \cdot 2$	
$(3,2,1,4,5)=4 \cdot 125 \cdot 3$	
$(4,3,2,1,5)=5 \cdot 1234$	
$(1,3,2,4,5)=34 \cdot 25 \cdot 1$	
$(1,4,3,2,5)=45 \cdot 23 \cdot 1$	
$(3,1,2,4,5)=24 \cdot 15 \cdot 3$	
$(3,1,4,2,5)=45 \cdot 123$	
$(4,3,1,2,5)=25 \cdot 134$	
$(1,2,4,3,5)=245 \cdot 3 \cdot 1$	
$(2,4,1,3,5)=345 \cdot 12$	
$(4,1,2,3,5)=235 \cdot 14$	

\mathcal{C}_{5}	
$(2,3,1,4,5)=4 \cdot 3 \cdot 15 \cdot 2$	
$(2,4,3,1,5)=5 \cdot 4 \cdot 13 \cdot 2$	
$(4,2,3,1,5)=5 \cdot 3 \cdot 124$	
$(1,4,2,3,5)=4 \cdot 35 \cdot 2 \cdot 1$	
$(2,1,4,3,5)=4 \cdot 15 \cdot 3 \cdot 2$	
$(2,3,4,1,5)=5 \cdot 34 \cdot 12$	
$(3,4,2,1,5)=5 \cdot 14 \cdot 23$	
$(4,2,1,3,5)=3 \cdot 15 \cdot 24$	
$(1,3,4,2,5)=35 \cdot 4 \cdot 2 \cdot 1$	
$(3,4,1,2,5)=25 \cdot 4 \cdot 13$	
$(4,1,3,2,5)=35 \cdot 2 \cdot 14$	
$(3,2,4,1,5)=5 \cdot 4 \cdot 2 \cdot 13$	

Descent sets of 5-cycles

\mathcal{C}_{5}	\mathcal{S}_{4}
$(1,2,3,4,5)=2345 \cdot 1$	1234
$(2,1,3,4,5)=3 \cdot 145 \cdot 2$	$2 \cdot 134$
$(3,2,1,4,5)=4 \cdot 125 \cdot 3$	$3 \cdot 124$
$(4,3,2,1,5)=5 \cdot 1234$	$4 \cdot 123$
$(1,3,2,4,5)=34 \cdot 25 \cdot 1$	$13 \cdot 24$
$(1,4,3,2,5)=45 \cdot 23 \cdot 1$	$14 \cdot 23$
$(3,1,2,4,5)=24 \cdot 15 \cdot 3$	$23 \cdot 14$
$(3,1,4,2,5)=45 \cdot 123$	$34 \cdot 12$
$(4,3,1,2,5)=25 \cdot 134$	$24 \cdot 13$
$(1,2,4,3,5)=245 \cdot 3 \cdot 1$	$124 \cdot 3$
$(2,4,1,3,5)=345 \cdot 12$	$134 \cdot 2$
$(4,1,2,3,5)=235 \cdot 14$	$234 \cdot 1$

\mathcal{C}_{5}	\mathcal{S}_{4}
$(2,3,1,4,5)=4 \cdot 3 \cdot 15 \cdot 2$	$3 \cdot 2 \cdot 14$
$(2,4,3,1,5)=5 \cdot 4 \cdot 13 \cdot 2$	$4 \cdot 2 \cdot 13$
$(4,2,3,1,5)=5 \cdot 3 \cdot 124$	$4 \cdot 3 \cdot 12$
$(1,4,2,3,5)=4 \cdot 35 \cdot 2 \cdot 1$	$3 \cdot 24 \cdot 1$
$(2,1,4,3,5)=4 \cdot 15 \cdot 3 \cdot 2$	$2 \cdot 14 \cdot 3$
$(2,3,4,1,5)=5 \cdot 34 \cdot 12$	$4 \cdot 23 \cdot 1$
$(3,4,2,1,5)=5 \cdot 14 \cdot 23$	$4 \cdot 13 \cdot 2$
$(4,2,1,3,5)=3 \cdot 15 \cdot 24$	$3 \cdot 14 \cdot 2$
$(1,3,4,2,5)=35 \cdot 4 \cdot 2 \cdot 1$	$14 \cdot 3 \cdot 2$
$(3,4,1,2,5)=25 \cdot 4 \cdot 13$	$24 \cdot 3 \cdot 1$
$(4,1,3,2,5)=35 \cdot 2 \cdot 14$	$34 \cdot 2 \cdot 1$
$(3,2,4,1,5)=5 \cdot 4 \cdot 2 \cdot 13$	$4 \cdot 3 \cdot 2 \cdot 1$

Main theorem

Theorem

For every n there is a bijection $\varphi: \mathcal{C}_{n+1} \rightarrow \mathcal{S}_{n}$ such that if $\pi \in \mathcal{C}_{n+1}$ and $\sigma=\varphi(\pi)$, then

$$
D(\pi) \cap[n-1]=D(\sigma) .
$$

The bijection $\varphi: \mathcal{C}_{n+1} \rightarrow \mathcal{S}_{n}$; first step

Given $\pi \in \mathcal{C}_{n+1}$, write it in cycle form with $n+1$ at the end:
$\pi=(11,4,10,1,7,16,9,3,5,12,20,2,6,14,18,8,13,19,15,17,21) \in \mathcal{C}_{21}$

The bijection $\varphi: \mathcal{C}_{n+1} \rightarrow \mathcal{S}_{n}$; first step

Given $\pi \in \mathcal{C}_{n+1}$, write it in cycle form with $n+1$ at the end:
$\pi=(\underline{11}, 4,10,1,7, \underline{16}, 9,3,5,12, \underline{20}, 2,6,14,18,8,13,19,15,17, \underline{21}) \in \mathcal{C}_{21}$
Delete $n+1$ and split at the "left-to-right maxima":
$\sigma=(\underline{11}, 4,10,1,7)(\underline{16}, 9,3,5,12)(\underline{20}, 2,6,14,18,8,13,19,15,17) \in \mathcal{S}_{20}$.

The bijection $\varphi: \mathcal{C}_{n+1} \rightarrow \mathcal{S}_{n}$; first step

Given $\pi \in \mathcal{C}_{n+1}$, write it in cycle form with $n+1$ at the end:
$\pi=(\underline{11}, 4,10,1,7, \underline{16}, 9,3,5,12, \underline{20}, 2,6,14,18,8,13,19,15,17, \underline{21}) \in \mathcal{C}_{21}$
Delete $n+1$ and split at the "left-to-right maxima":
$\sigma=(\underline{11}, 4,10,1,7)(\underline{16}, 9,3,5,12)(\underline{20}, 2,6,14,18,8,13,19,15,17) \in \mathcal{S}_{20}$.
This map $\pi \mapsto \sigma$ is a bijection

The bijection $\varphi: \mathcal{C}_{n+1} \rightarrow \mathcal{S}_{n}$; first step

Given $\pi \in \mathcal{C}_{n+1}$, write it in cycle form with $n+1$ at the end:
$\pi=(\underline{11}, 4,10,1,7, \underline{16}, 9,3,5,12, \underline{20}, 2,6,14,18,8,13,19,15,17, \underline{21}) \in \mathcal{C}_{21}$
Delete $n+1$ and split at the "left-to-right maxima":
$\sigma=(\underline{11}, 4,10,1,7)(\underline{16}, 9,3,5,12)(\underline{20}, 2,6,14,18,8,13,19,15,17) \in \mathcal{S}_{20}$.
This map $\pi \mapsto \sigma$ is a bijection, but unfortunately it does not always preserve the descent set:

$$
\pi(7)=16>\pi(8)=13 \quad \text { but } \quad \sigma(7)=11<\sigma(8)=13 .
$$

The bijection $\varphi: \mathcal{C}_{n+1} \rightarrow \mathcal{S}_{n}$; first step

Given $\pi \in \mathcal{C}_{n+1}$, write it in cycle form with $n+1$ at the end:
$\pi=(\underline{11}, 4,10,1,7, \underline{16}, 9,3,5,12, \underline{20}, 2,6,14,18,8,13,19,15,17, \underline{21}) \in \mathcal{C}_{21}$
Delete $n+1$ and split at the "left-to-right maxima":
$\sigma=(\underline{11}, 4,10,1,7)(\underline{16}, 9,3,5,12)(\underline{20}, 2,6,14,18,8,13,19,15,17) \in \mathcal{S}_{20}$.
This map $\pi \mapsto \sigma$ is a bijection, but unfortunately it does not always preserve the descent set:

$$
\pi(7)=16>\pi(8)=13 \quad \text { but } \quad \sigma(7)=11<\sigma(8)=13 .
$$

We say that the pair $\{7,8\}$ is bad. We will fix the bad pairs.

The bijection $\varphi: \mathcal{C}_{n+1} \rightarrow \mathcal{S}_{n}$; fixing bad pairs

$$
\begin{aligned}
\pi & =(11,4,10,1,7,16,9,3,5,12,20,2,6,14,18,8,13,19,15,17,21) \\
\sigma & =(11,4,10,1,7)(16,9,3,5,12)(20,2,6,14,18,8,13,19,15,17)
\end{aligned}
$$

The bijection $\varphi: \mathcal{C}_{n+1} \rightarrow \mathcal{S}_{n}$; fixing bad pairs

For each but the last cycle of σ, from left to right:

$$
\begin{aligned}
\pi & =(11,4,10,1,7,16,9,3,5,12,20,2,6,14,18,8,13,19,15,17,21) \\
\sigma & =(11,4,10,1,7)(16,9,3,5,12)(20,2,6,14,18,8,13,19,15,17)
\end{aligned}
$$

The bijection $\varphi: \mathcal{C}_{n+1} \rightarrow \mathcal{S}_{n}$; fixing bad pairs

For each but the last cycle of σ, from left to right:

- $z:=$ rightmost entry of the cycle.

$$
\begin{aligned}
& \pi=(11,4,10,1,7,16,9,3,5,12,20,2,6,14,18,8,13,19,15,17,21) \\
& \sigma=(11,4,10,1,7)(16,9,3,5,12)(20,2,6,14,18,8,13,19,15,17) \\
& z:=7 .
\end{aligned}
$$

The bijection $\varphi: \mathcal{C}_{n+1} \rightarrow \mathcal{S}_{n}$; fixing bad pairs

For each but the last cycle of σ, from left to right:

- $z:=$ rightmost entry of the cycle.

If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon= \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
$\pi=(11,4,10,1,7,16,9,3,5,12,20,2,6,14,18,8,13,19,15,17,21)$
$\sigma=(11,4,10,1,7)(16,9,3,5,12)(20,2, \underline{6}, 14,18,8,13,19,15,17)$
$\{7,6\}$ and $\{7,8\}$ are bad; and $\sigma(6)=14>13=\sigma(8) \Rightarrow \varepsilon:=-1$.

The bijection $\varphi: \mathcal{C}_{n+1} \rightarrow \mathcal{S}_{n}$; fixing bad pairs

For each but the last cycle of σ, from left to right:

- $z:=$ rightmost entry of the cycle.

If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon= \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.

- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:

1. Switch z and $z+\varepsilon$ (in the cycle form of σ).

$$
\begin{aligned}
& \pi=(11,4,10,1,7,16,9,3,5,12,20,2,6,14,18,8,13,19,15,17,21) \\
& \sigma=(11,4,10,1,7)(16,9,3,5,12)(20,2,6,14,18,8,13,19,15,17) \\
& z:=7 . \\
& \varepsilon:=-1 .
\end{aligned}
$$

Switch 7 and 6.

The bijection $\varphi: \mathcal{C}_{n+1} \rightarrow \mathcal{S}_{n}$; fixing bad pairs

For each but the last cycle of σ, from left to right:

- $z:=$ rightmost entry of the cycle.

If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon= \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.

- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:

1. Switch z and $z+\varepsilon$ (in the cycle form of σ).

$$
\begin{aligned}
& \pi=(11,4,10,1,7,16,9,3,5,12,20,2,6,14,18,8,13,19,15,17,21) \\
& \sigma=(11,4,10,1,6)(16,9,3,5,12)(20,2,7,14,18,8,13,19,15,17) \\
& z:=7 . \quad \varepsilon:=-1 .
\end{aligned}
$$

Switch 7 and 6.

The bijection $\varphi: \mathcal{C}_{n+1} \rightarrow \mathcal{S}_{n}$; fixing bad pairs

For each but the last cycle of σ, from left to right:

- $z:=$ rightmost entry of the cycle.

If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon= \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.

- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:

1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
2. If the elements preceding the last switched entries have consecutive values, switch them.

$$
\begin{aligned}
& \pi=(11,4,10,1,7,16,9,3,5,12,20,2,6,14,18,8,13,19,15,17,21) \\
& \sigma=(11,4,10,1,6)(16,9,3,5,12)(20,2,7,14,18,8,13,19,15,17) \\
& z:=7 . \\
& \varepsilon:=-1 .
\end{aligned}
$$

Switch 7 and 6 . Switch 1 and 2.

The bijection $\varphi: \mathcal{C}_{n+1} \rightarrow \mathcal{S}_{n}$; fixing bad pairs

For each but the last cycle of σ, from left to right:

- $z:=$ rightmost entry of the cycle.

If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon= \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.

- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:

1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
2. If the elements preceding the last switched entries have consecutive values, switch them.

$$
\begin{aligned}
& \pi=(11,4,10,1,7,16,9,3,5,12,20,2,6,14,18,8,13,19,15,17,21) \\
& \sigma=(11,4,10,2,6)(16,9,3,5,12)(20,1,7,14,18,8,13,19,15,17) \\
& z:=7 .
\end{aligned}
$$

Switch 7 and 6 . Switch 1 and 2.

The bijection $\varphi: \mathcal{C}_{n+1} \rightarrow \mathcal{S}_{n}$; fixing bad pairs

For each but the last cycle of σ, from left to right:

- $z:=$ rightmost entry of the cycle.

If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon= \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.

- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:

1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.

$$
\begin{aligned}
& \pi=(11,4,10,1,7,16,9,3,5,12,20,2,6,14,18,8,13,19,15,17,21) \\
& \sigma=(11,4, \underline{10}, 2,6)(16,9,3,5,12)(\underline{20}, 1,7,14,18,8,13,19,15,17) \\
& z:=7 . \\
& \varepsilon:=-1 .
\end{aligned}
$$

Switch 7 and 6 . Switch 1 and 2.

The bijection $\varphi: \mathcal{C}_{n+1} \rightarrow \mathcal{S}_{n}$; fixing bad pairs

For each but the last cycle of σ, from left to right:

- $z:=$ rightmost entry of the cycle.

If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon= \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.

- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:

1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
3. $z:=$ new rightmost entry of the cycle.
$\pi=(11,4,10,1,7,16,9,3,5,12,20,2,6,14,18,8,13,19,15,17,21)$
$\sigma=(11,4,10,2,6)(16,9,3,5,12)(20,1,7,14,18,8,13,19,15,17)$
$z:=6$.

$$
\varepsilon:=-1 .
$$

The bijection $\varphi: \mathcal{C}_{n+1} \rightarrow \mathcal{S}_{n}$; fixing bad pairs

For each but the last cycle of σ, from left to right:

- $z:=$ rightmost entry of the cycle.

If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon= \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.

- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:

1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
3. $z:=$ new rightmost entry of the cycle.
$\pi=(11,4,10,1,7,16,9,3,5,12,20,2,6,14,18,8,13,19,15,17,21)$
$\sigma=(11,4,10,2,6)(16,9,3,5,12)(20,1,7,14,18,8,13,19,15,17)$
$z:=6 . \quad\{6,5\}$ is bad. $\varepsilon:=-1$.

The bijection $\varphi: \mathcal{C}_{n+1} \rightarrow \mathcal{S}_{n}$; fixing bad pairs

For each but the last cycle of σ, from left to right:

- $z:=$ rightmost entry of the cycle.

If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon= \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.

- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:

1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
3. $z:=$ new rightmost entry of the cycle.

$$
\begin{aligned}
& \pi=(11,4,10,1,7,16,9,3,5,12,20,2,6,14,18,8,13,19,15,17,21) \\
& \sigma=(11,4,10,2,6)(16,9,3,5,12)(20,1,7,14,18,8,13,19,15,17) \\
& z:=6 . \\
& \varepsilon:=-1 .
\end{aligned}
$$

Switch 6 and 5.

The bijection $\varphi: \mathcal{C}_{n+1} \rightarrow \mathcal{S}_{n}$; fixing bad pairs

For each but the last cycle of σ, from left to right:

- $z:=$ rightmost entry of the cycle.

If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon= \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.

- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:

1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
3. $z:=$ new rightmost entry of the cycle.

$$
\begin{aligned}
& \pi=(11,4,10,1,7,16,9,3,5,12,20,2,6,14,18,8,13,19,15,17,21) \\
& \sigma=(11,4,10,2,5)(16,9,3,6,12)(20,1,7,14,18,8,13,19,15,17) \\
& z:=6 . \\
& \varepsilon:=-1 .
\end{aligned}
$$

Switch 6 and 5.

The bijection $\varphi: \mathcal{C}_{n+1} \rightarrow \mathcal{S}_{n}$; fixing bad pairs

For each but the last cycle of σ, from left to right:

- $z:=$ rightmost entry of the cycle.

If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon= \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.

- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:

1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
3. $z:=$ new rightmost entry of the cycle.
$\pi=(11,4,10,1,7,16,9,3,5,12,20,2,6,14,18,8,13,19,15,17,21)$
$\sigma=(11,4,10,2,5)(16,9,3,6,12)(20,1,7,14,18,8,13,19,15,17)$
$z:=6$.

$$
\varepsilon:=-1 .
$$

Switch 6 and 5 . Switch 2 and 3.

The bijection $\varphi: \mathcal{C}_{n+1} \rightarrow \mathcal{S}_{n}$; fixing bad pairs

For each but the last cycle of σ, from left to right:

- $z:=$ rightmost entry of the cycle.

If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon= \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.

- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:

1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
3. $z:=$ new rightmost entry of the cycle.
$\pi=(11,4,10,1,7,16,9,3,5,12,20,2,6,14,18,8,13,19,15,17,21)$
$\sigma=(11,4,10,3,5)(16,9,2,6,12)(20,1,7,14,18,8,13,19,15,17)$
$z:=6$.

$$
\varepsilon:=-1 .
$$

Switch 6 and 5 . Switch 2 and 3.

The bijection $\varphi: \mathcal{C}_{n+1} \rightarrow \mathcal{S}_{n}$; fixing bad pairs

For each but the last cycle of σ, from left to right:

- $z:=$ rightmost entry of the cycle.

If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon= \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.

- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:

1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
3. $z:=$ new rightmost entry of the cycle.
$\pi=(11,4,10,1,7,16,9,3,5,12,20,2,6,14,18,8,13,19,15,17,21)$
$\sigma=(11,4,10,3,5)(16,9,2,6,12)(20,1,7,14,18,8,13,19,15,17)$
$z:=6$.
$\varepsilon:=-1$.
Switch 6 and 5. Switch 2 and 3. Switch 10 and 9.

The bijection $\varphi: \mathcal{C}_{n+1} \rightarrow \mathcal{S}_{n}$; fixing bad pairs

For each but the last cycle of σ, from left to right:

- $z:=$ rightmost entry of the cycle.

If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon= \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.

- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:

1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
3. $z:=$ new rightmost entry of the cycle.
$\pi=(11,4,10,1,7,16,9,3,5,12,20,2,6,14,18,8,13,19,15,17,21)$
$\sigma=(11, \underline{4}, 9,3,5)(\underline{16}, 10,2,6,12)(20,1,7,14,18,8,13,19,15,17)$
$z:=6$.
$\varepsilon:=-1$.
Switch 6 and 5. Switch 2 and 3. Switch 10 and 9.

The bijection $\varphi: \mathcal{C}_{n+1} \rightarrow \mathcal{S}_{n}$; fixing bad pairs

For each but the last cycle of σ, from left to right:

- $z:=$ rightmost entry of the cycle.

If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon= \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.

- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:

1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
3. $z:=$ new rightmost entry of the cycle.
$\pi=(11,4,10,1,7,16,9,3,5,12,20,2,6,14,18,8,13,19,15,17,21)$
$\sigma=(11,4,9,3,5)(16,10,2,6,12)(20,1,7,14,18,8,13,19,15,17)$
$z:=5$.
$\varepsilon:=-1$.

The bijection $\varphi: \mathcal{C}_{n+1} \rightarrow \mathcal{S}_{n}$; fixing bad pairs

For each but the last cycle of σ, from left to right:

- $z:=$ rightmost entry of the cycle.

If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon= \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.

- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:

1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
3. $z:=$ new rightmost entry of the cycle.
$\pi=(11,4,10,1,7,16,9,3,5,12,20,2,6,14,18,8,13,19,15,17,21)$
$\sigma=(11,4,9,3,5)(16,10,2,6,12)(20,1,7,14,18,8,13,19,15,17)$
$z:=5 . \quad\{5,4\}$ is OK, so we move on to the second cycle.

The bijection $\varphi: \mathcal{C}_{n+1} \rightarrow \mathcal{S}_{n}$; fixing bad pairs

For each but the last cycle of σ, from left to right:

- $z:=$ rightmost entry of the cycle.

If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon= \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.

- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:

1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
3. $z:=$ new rightmost entry of the cycle.
$\pi=(11,4,10,1,7,16,9,3,5,12,20,2,6,14,18,8,13,19,15,17,21)$
$\sigma=(11,4,9,3,5)(16,10,2,6,12)(20,1,7,14,18,8,13,19,15,17)$
$z:=12$.

The bijection $\varphi: \mathcal{C}_{n+1} \rightarrow \mathcal{S}_{n}$; fixing bad pairs

For each but the last cycle of σ, from left to right:

- $z:=$ rightmost entry of the cycle.

If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon= \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.

- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:

1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
3. $z:=$ new rightmost entry of the cycle.
$\pi=(11,4,10,1,7,16,9,3,5,12,20,2,6,14,18,8,13,19,15,17,21)$
$\sigma=(11,4,9,3,5)(16,10,2,6,12)(20,1,7,14,18,8,13,19,15,17)$
$z:=12 . \quad\{12,11\}$ is OK but $\{12,13\}$ is bad $\quad \Rightarrow \varepsilon:=1$.

The bijection $\varphi: \mathcal{C}_{n+1} \rightarrow \mathcal{S}_{n}$; fixing bad pairs

For each but the last cycle of σ, from left to right:

- $z:=$ rightmost entry of the cycle.

If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon= \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.

- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:

1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
3. $z:=$ new rightmost entry of the cycle.
$\pi=(11,4,10,1,7,16,9,3,5,12,20,2,6,14,18,8,13,19,15,17,21)$
$\sigma=(11,4,9,3,5)(16,10,2,6,12)(20,1,7,14,18,8,13,19,15,17)$
$z:=12$. $\varepsilon:=1$.
Switch 12 and 13.

The bijection $\varphi: \mathcal{C}_{n+1} \rightarrow \mathcal{S}_{n}$; fixing bad pairs

For each but the last cycle of σ, from left to right:

- $z:=$ rightmost entry of the cycle.

If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon= \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.

- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:

1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
3. $z:=$ new rightmost entry of the cycle.
$\pi=(11,4,10,1,7,16,9,3,5,12,20,2,6,14,18,8,13,19,15,17,21)$
$\sigma=(11,4,9,3,5)(16,10,2,6,13)(20,1,7,14,18,8,12,19,15,17)$
$z:=12$. $\varepsilon:=1$.
Switch 12 and 13.

The bijection $\varphi: \mathcal{C}_{n+1} \rightarrow \mathcal{S}_{n}$; fixing bad pairs

For each but the last cycle of σ, from left to right:

- $z:=$ rightmost entry of the cycle.

If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon= \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.

- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:

1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
3. $z:=$ new rightmost entry of the cycle.
$\pi=(11,4,10,1,7,16,9,3,5,12,20,2,6,14,18,8,13,19,15,17,21)$
$\sigma=(11,4,9,3,5)(16,10,2, \underline{6}, 13)(20,1,7,14,18, \underline{8}, 12,19,15,17)$
$z:=12$. $\varepsilon:=1$.
Switch 12 and 13.

The bijection $\varphi: \mathcal{C}_{n+1} \rightarrow \mathcal{S}_{n}$; fixing bad pairs

For each but the last cycle of σ, from left to right:

- $z:=$ rightmost entry of the cycle.

If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon= \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.

- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:

1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
3. $z:=$ new rightmost entry of the cycle.
$\pi=(11,4,10,1,7,16,9,3,5,12,20,2,6,14,18,8,13,19,15,17,21)$
$\sigma=(11,4,9,3,5)(16,10,2,6,13)(20,1,7,14,18,8,12,19,15,17)$
$z:=13$. $\varepsilon:=1$.

The bijection $\varphi: \mathcal{C}_{n+1} \rightarrow \mathcal{S}_{n}$; fixing bad pairs

For each but the last cycle of σ, from left to right:

- $z:=$ rightmost entry of the cycle.

If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon= \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.

- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:

1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
3. $z:=$ new rightmost entry of the cycle.
$\pi=(11,4,10,1,7,16,9,3,5,12,20,2,6,14,18,8,13,19,15,17,21)$
$\sigma=(11,4,9,3,5)(16,10,2,6,13)(20,1,7,14,18,8,12,19,15,17)$
$z:=13 . \quad\{13,14\}$ is bad. $\quad \varepsilon:=1$.

The bijection $\varphi: \mathcal{C}_{n+1} \rightarrow \mathcal{S}_{n}$; fixing bad pairs

For each but the last cycle of σ, from left to right:

- $z:=$ rightmost entry of the cycle.

If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon= \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.

- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:

1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
3. $z:=$ new rightmost entry of the cycle.
$\pi=(11,4,10,1,7,16,9,3,5,12,20,2,6,14,18,8,13,19,15,17,21)$
$\sigma=(11,4,9,3,5)(16,10,2,6,13)(20,1,7,14,18,8,12,19,15,17)$
$z:=13$. $\varepsilon:=1$.
Switch 13 and 14.

The bijection $\varphi: \mathcal{C}_{n+1} \rightarrow \mathcal{S}_{n}$; fixing bad pairs

For each but the last cycle of σ, from left to right:

- $z:=$ rightmost entry of the cycle.

If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon= \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.

- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:

1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
3. $z:=$ new rightmost entry of the cycle.

$$
\begin{aligned}
& \pi=(11,4,10,1,7,16,9,3,5,12,20,2,6,14,18,8,13,19,15,17,21) \\
& \sigma=(11,4,9,3,5)(16,10,2,6,14)(20,1,7,13,18,8,12,19,15,17) \\
& z:=13 .
\end{aligned}
$$

Switch 13 and 14.

The bijection $\varphi: \mathcal{C}_{n+1} \rightarrow \mathcal{S}_{n}$; fixing bad pairs

For each but the last cycle of σ, from left to right:

- $z:=$ rightmost entry of the cycle.

If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon= \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.

- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:

1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
3. $z:=$ new rightmost entry of the cycle.
$\pi=(11,4,10,1,7,16,9,3,5,12,20,2,6,14,18,8,13,19,15,17,21)$
$\sigma=(11,4,9,3,5)(16,10,2,6,14)(20,1,7,13,18,8,12,19,15,17)$
$z:=13$. $\varepsilon:=1$.
Switch 13 and 14. Switch 6 and 7.

The bijection $\varphi: \mathcal{C}_{n+1} \rightarrow \mathcal{S}_{n}$; fixing bad pairs

For each but the last cycle of σ, from left to right:

- $z:=$ rightmost entry of the cycle.

If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon= \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.

- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:

1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
3. $z:=$ new rightmost entry of the cycle.
$\pi=(11,4,10,1,7,16,9,3,5,12,20,2,6,14,18,8,13,19,15,17,21)$
$\sigma=(11,4,9,3,5)(16,10,2,7,14)(20,1,6,13,18,8,12,19,15,17)$
$z:=13$. $\varepsilon:=1$.
Switch 13 and 14. Switch 6 and 7.

The bijection $\varphi: \mathcal{C}_{n+1} \rightarrow \mathcal{S}_{n}$; fixing bad pairs

For each but the last cycle of σ, from left to right:

- $z:=$ rightmost entry of the cycle.

If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon= \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.

- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:

1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
3. $z:=$ new rightmost entry of the cycle.
$\pi=(11,4,10,1,7,16,9,3,5,12,20,2,6,14,18,8,13,19,15,17,21)$
$\sigma=(11,4,9,3,5)(16,10,2,7,14)(20,1,6,13,18,8,12,19,15,17)$
$z:=13$. $\varepsilon:=1$.
Switch 13 and 14. Switch 6 and 7. Switch 2 and 1 .

The bijection $\varphi: \mathcal{C}_{n+1} \rightarrow \mathcal{S}_{n}$; fixing bad pairs

For each but the last cycle of σ, from left to right:

- $z:=$ rightmost entry of the cycle.

If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon= \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.

- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:

1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
3. $z:=$ new rightmost entry of the cycle.
$\pi=(11,4,10,1,7,16,9,3,5,12,20,2,6,14,18,8,13,19,15,17,21)$
$\sigma=(11,4,9,3,5)(16, \underline{10}, 1,7,14)(\underline{20}, 2,6,13,18,8,12,19,15,17)$
$z:=13$. $\varepsilon:=1$.
Switch 13 and 14. Switch 6 and 7. Switch 2 and 1 .

The bijection $\varphi: \mathcal{C}_{n+1} \rightarrow \mathcal{S}_{n}$; fixing bad pairs

For each but the last cycle of σ, from left to right:

- $z:=$ rightmost entry of the cycle.

If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon= \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.

- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:

1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
3. $z:=$ new rightmost entry of the cycle.
$\pi=(11,4,10,1,7,16,9,3,5,12,20,2,6,14,18,8,13,19,15,17,21)$
$\sigma=(11,4,9,3,5)(16,10,1,7,14)(20,2,6,13,18,8,12,19,15,17)$
$z:=14$.
$\varepsilon:=1$.

The bijection $\varphi: \mathcal{C}_{n+1} \rightarrow \mathcal{S}_{n}$; fixing bad pairs

For each but the last cycle of σ, from left to right:

- $z:=$ rightmost entry of the cycle.

If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon= \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.

- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:

1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
3. $z:=$ new rightmost entry of the cycle.
$\pi=(11,4,10,1,7,16,9,3,5,12,20,2,6,14,18,8,13,19,15,17,21)$
$\sigma=(11,4,9,3,5)(16,10,1,7,14)(20,2,6,13,18,8,12,19,15,17)$
$z:=14 . \quad\{14,15\}$ is bad. $\varepsilon:=1$.

The bijection $\varphi: \mathcal{C}_{n+1} \rightarrow \mathcal{S}_{n}$; fixing bad pairs

For each but the last cycle of σ, from left to right:

- $z:=$ rightmost entry of the cycle.

If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon= \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.

- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:

1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
3. $z:=$ new rightmost entry of the cycle.
$\pi=(11,4,10,1,7,16,9,3,5,12,20,2,6,14,18,8,13,19,15,17,21)$
$\sigma=(11,4,9,3,5)(16,10,1,7,14)(20,2,6,13,18,8,12,19,15,17)$
$z:=14$.
$\varepsilon:=1$.
Switch 14 and 15.

The bijection $\varphi: \mathcal{C}_{n+1} \rightarrow \mathcal{S}_{n}$; fixing bad pairs

For each but the last cycle of σ, from left to right:

- $z:=$ rightmost entry of the cycle.

If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon= \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.

- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:

1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
3. $z:=$ new rightmost entry of the cycle.
$\pi=(11,4,10,1,7,16,9,3,5,12,20,2,6,14,18,8,13,19,15,17,21)$
$\sigma=(11,4,9,3,5)(16,10,1,7,15)(20,2,6,13,18,8,12,19,14,17)$
$z:=14$.
$\varepsilon:=1$.
Switch 14 and 15.

The bijection $\varphi: \mathcal{C}_{n+1} \rightarrow \mathcal{S}_{n}$; fixing bad pairs

For each but the last cycle of σ, from left to right:

- $z:=$ rightmost entry of the cycle.

If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon= \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.

- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:

1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
3. $z:=$ new rightmost entry of the cycle.
$\pi=(11,4,10,1,7,16,9,3,5,12,20,2,6,14,18,8,13,19,15,17,21)$
$\sigma=(11,4,9,3,5)(16,10,1, \underline{7}, 15)(20,2,6,13,18,8,12, \underline{19}, 14,17)$
$z:=14$.
$\varepsilon:=1$.
Switch 14 and 15.

The bijection $\varphi: \mathcal{C}_{n+1} \rightarrow \mathcal{S}_{n}$; fixing bad pairs

For each but the last cycle of σ, from left to right:

- $z:=$ rightmost entry of the cycle.

If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon= \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.

- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:

1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
3. $z:=$ new rightmost entry of the cycle.
$\pi=(11,4,10,1,7,16,9,3,5,12,20,2,6,14,18,8,13,19,15,17,21)$
$\sigma=(11,4,9,3,5)(16,10,1,7,15)(20,2,6,13,18,8,12,19,14,17)$
$z:=15$.
$\varepsilon:=1$.

The bijection $\varphi: \mathcal{C}_{n+1} \rightarrow \mathcal{S}_{n}$; fixing bad pairs

For each but the last cycle of σ, from left to right:

- $z:=$ rightmost entry of the cycle.

If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon= \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.

- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:

1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
3. $z:=$ new rightmost entry of the cycle.
$\pi=(11,4,10,1,7,16,9,3,5,12,20,2,6,14,18,8,13,19,15,17,21)$
$\sigma=(11,4,9,3,5)(16,10,1,7,15)(20,2,6,13,18,8,12,19,14,17)$
$z:=15 . \quad\{15,16\}$ is OK , so we are done.

The bijection $\varphi: \mathcal{C}_{n+1} \rightarrow \mathcal{S}_{n}$; fixing bad pairs

For each but the last cycle of σ, from left to right:

- $z:=$ rightmost entry of the cycle.

If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon= \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.

- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:

1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
3. $z:=$ new rightmost entry of the cycle.

$$
\begin{aligned}
\pi & =(11,4,10,1,7,16,9,3,5,12,20,2,6,14,18,8,13,19,15,17,21) \\
\varphi(\pi) & =(11,4,9,3,5)(16,10,1,7,15)(20,2,6,13,18,8,12,19,14,17)
\end{aligned}
$$

Define $\varphi(\pi)=\sigma$.

The descent sets are preserved

$$
\begin{aligned}
\pi & =(11,4,10,1,7,16,9,3,5,12,20,2,6,14,18,8,13,19,15,17,21) \\
\varphi(\pi) & =(11,4,9,3,5)(16,10,1,7,15)(20,2,6,13,18,8,12,19,14,17)
\end{aligned}
$$

In one-line notation,

$$
\begin{aligned}
\pi & =7 \cdot 6 \cdot 510121416 \cdot 13 \cdot 3 \cdot 1420 \cdot 19 \cdot 18 \cdot 16 \cdot 921 \cdot 815 \cdot 211 \\
\varphi(\pi) & =7 \cdot 6 \cdot 59111315 \cdot 12 \cdot 3 \cdot 1419 \cdot 18 \cdot 17 \cdot 16 \cdot 1020 \cdot 814 \cdot 2
\end{aligned}
$$

The descent sets are preserved

$$
\begin{aligned}
\pi & =(11,4,10,1,7,16,9,3,5,12,20,2,6,14,18,8,13,19,15,17,21) \\
\varphi(\pi) & =(11,4,9,3,5)(16,10,1,7,15)(20,2,6,13,18,8,12,19,14,17)
\end{aligned}
$$

In one-line notation,

$$
\begin{aligned}
\pi & =7 \cdot 6 \cdot 510121416 \cdot 13 \cdot 3 \cdot 1420 \cdot 19 \cdot 18 \cdot 16 \cdot 921 \cdot 815 \cdot 211 \\
\varphi(\pi) & =7 \cdot 6 \cdot 59111315 \cdot 12 \cdot 3 \cdot 1419 \cdot 18 \cdot 17 \cdot 16 \cdot 1020 \cdot 814 \cdot 2
\end{aligned}
$$

In fact, the set of weak excedances is preserved by φ as well.

The inverse map $\varphi^{-1}: \mathcal{S}_{n} \rightarrow \mathcal{C}_{n+1}$

Given $\sigma \in \mathcal{S}_{n}$, write it in cycle form with the largest element of each cycle first, ordering the cycles by increasing first element:

$$
\sigma=(11,4,9,3,5)(16,10,1,7,15)(20,2,6,13,18,8,12,19,14,17) \in \mathcal{S}_{20}
$$

The inverse map $\varphi^{-1}: \mathcal{S}_{n} \rightarrow \mathcal{C}_{n+1}$

Given $\sigma \in \mathcal{S}_{n}$, write it in cycle form with the largest element of each cycle first, ordering the cycles by increasing first element:

$$
\sigma=(11,4,9,3,5)(16,10,1,7,15)(20,2,6,13,18,8,12,19,14,17) \in \mathcal{S}_{20} .
$$

Remove parentheses and append $n+1$:

$$
\pi=(11,4,9,3,5,16,10,1,7,15,20,2,6,13,18,8,12,19,14,17,21) \in \mathcal{C}_{21} .
$$

The inverse map $\varphi^{-1}: \mathcal{S}_{n} \rightarrow \mathcal{C}_{n+1}$

Given $\sigma \in \mathcal{S}_{n}$, write it in cycle form with the largest element of each cycle first, ordering the cycles by increasing first element:

$$
\sigma=(11,4,9,3,5)(16,10,1,7,15)(20,2,6,13,18,8,12,19,14,17) \in \mathcal{S}_{20} .
$$

Remove parentheses and append $n+1$:
$\pi=(11,4,9,3,5,16,10,1,7,15,20,2,6,13,18,8,12,19,14,17,21) \in \mathcal{C}_{21}$.

A pair $\{i, i+1\}$ is bad if $\pi(i)>\pi(i+1)$ but $\sigma(i)<\sigma(i+1)$, or viceversa.

To find $\varphi^{-1}(\pi)$, we fix bad pairs in a similar way as before, now going from right to left. This undoes the switches performed by φ.

Necklaces

$A=\left\{x_{1}, x_{2}, \ldots\right\}_{<}$linearly ordered alphabet.
A necklace of length ℓ is a circular arrangement of ℓ beads labeled with elements of A, up to cyclic rotation.

Necklaces

$A=\left\{x_{1}, x_{2}, \ldots\right\}_{<}$linearly ordered alphabet.
A necklace of length ℓ is a circular arrangement of ℓ beads labeled with elements of A, up to cyclic rotation.

Given a multiset of necklaces,

- its cycle structure is the partition whose parts are the lengths of the necklaces;

Necklaces

$A=\left\{x_{1}, x_{2}, \ldots\right\}_{<}$linearly ordered alphabet.
A necklace of length ℓ is a circular arrangement of ℓ beads labeled with elements of A, up to cyclic rotation.

Given a multiset of necklaces,

- its cycle structure is the partition whose parts are the lengths of the necklaces;
- its evaluation is the monomial $x_{1}^{e_{1}} x_{2}^{e_{2}} \ldots$ where e_{i} is the number of beads with label x_{i}.

Permutations and necklaces

Theorem (Gessel, Reutenauer '93)

Let $I=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}<\subseteq[n-1], \lambda \vdash n$. Then
$\mid\left\{\pi \in \mathcal{S}_{n}\right.$ with cycle structure λ and $\left.D(\pi) \subseteq I\right\} \mid=$
|\{multisets of necklaces with cycle structure λ and evaluation $\left.x_{1}^{i_{1}} x_{2}^{i_{2}-i_{1}} \ldots x_{k}^{i_{k}-i_{k-1}} x_{k+1}^{n-i_{k}}\right\} \mid$.

Permutations and necklaces

Theorem (Gessel, Reutenauer '93)

Let $I=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}<\subseteq[n-1], \lambda \vdash n$. Then
$\mid\left\{\pi \in \mathcal{S}_{n}\right.$ with cycle structure λ and $\left.D(\pi) \subseteq I\right\} \mid=$
$\mid\{$ multisets of necklaces with cycle structure λ and evaluation $\left.x_{1}^{i_{1}} x_{2}^{i_{2}-i_{1}} \ldots x_{k}^{i_{k}-i_{k-1}} x_{k+1}^{n-i_{k}}\right\} \mid$.

This can be used to obtain a non-bijective proof of our result

$$
\left|\left\{\pi \in \mathcal{C}_{n+1}: D(\pi) \cap[n-1]=I\right\}\right|=\left|\left\{\sigma \in \mathcal{S}_{n}: D(\sigma)=I\right\}\right| .
$$

Non-bijective proof

$$
\text { Goal : }\left|\left\{\pi \in \mathcal{C}_{n+1}: D(\pi) \cap[n-1]=I\right\}\right|=\left|\left\{\sigma \in \mathcal{S}_{n}: D(\sigma)=I\right\}\right| .
$$

Non-bijective proof

Goal : $\left|\left\{\pi \in \mathcal{C}_{n+1}: D(\pi) \cap[n-1]=I\right\}\right|=\left|\left\{\sigma \in \mathcal{S}_{n}: D(\sigma)=I\right\}\right|$.
Let $I=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}_{<}, I^{\prime}=I \cup\{n\}$. By the previous theorem, $\mid\left\{\pi \in \mathcal{C}_{n+1}\right.$ with $\left.D(\pi) \subseteq I^{\prime}\right\} \mid=$
|\{necklaces with evaluation $\left.x_{1}^{i_{1}} x_{2}^{i_{2}-i_{1}} \ldots x_{k}^{i_{k}-i_{k-1}} x_{k+1}^{n-i_{k}} x_{k+2}\right\} \mid$.

Non-bijective proof

Goal : $\left|\left\{\pi \in \mathcal{C}_{n+1}: D(\pi) \cap[n-1]=I\right\}\right|=\left|\left\{\sigma \in \mathcal{S}_{n}: D(\sigma)=I\right\}\right|$.
Let $I=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}_{<}, I^{\prime}=I \cup\{n\}$. By the previous theorem, $\mid\left\{\pi \in \mathcal{C}_{n+1}\right.$ with $\left.D(\pi) \cap[n-1] \subseteq I\right\} \mid=$
|\{necklaces with evaluation $\left.x_{1}^{i_{1}} x_{2}^{i_{2}-i_{1}} \ldots x_{k}^{i_{k}-i_{k-1}} x_{k+1}^{n-i_{k}} x_{k+2}\right\} \mid$.

Non-bijective proof

$$
\text { Goal : }\left|\left\{\pi \in \mathcal{C}_{n+1}: D(\pi) \cap[n-1]=I\right\}\right|=\left|\left\{\sigma \in \mathcal{S}_{n}: D(\sigma)=I\right\}\right| .
$$

Let $I=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}_{<}, I^{\prime}=I \cup\{n\}$. By the previous theorem, $\mid\left\{\pi \in \mathcal{C}_{n+1}\right.$ with $\left.D(\pi) \cap[n-1] \subseteq I\right\} \mid=$
|\{necklaces with evaluation $\left.x_{1}^{i_{1}} x_{2}^{i_{2}-i_{1}} \ldots x_{k}^{i_{k}-i_{k-1}} x_{k+1}^{n-i_{k}} x_{k+2}\right\} \mid$.
Choosing first the bead labeled x_{k+2}, the \# of such necklaces is

$$
\binom{n}{i_{1}, i_{2}-i_{1}, \ldots, i_{k}-i_{k-1}, n-i_{k}},
$$

Non-bijective proof

$$
\text { Goal : }\left|\left\{\pi \in \mathcal{C}_{n+1}: D(\pi) \cap[n-1]=I\right\}\right|=\left|\left\{\sigma \in \mathcal{S}_{n}: D(\sigma)=I\right\}\right| .
$$

Let $I=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}_{<}, I^{\prime}=I \cup\{n\}$. By the previous theorem, $\mid\left\{\pi \in \mathcal{C}_{n+1}\right.$ with $\left.D(\pi) \cap[n-1] \subseteq I\right\} \mid=$
|\{necklaces with evaluation $\left.x_{1}^{i_{1}} x_{2}^{i_{2}-i_{1}} \ldots x_{k}^{i_{k}-i_{k-1}} x_{k+1}^{n-i_{k}} x_{k+2}\right\} \mid$.
Choosing first the bead labeled x_{k+2}, the \# of such necklaces is

$$
\binom{n}{i_{1}, i_{2}-i_{1}, \ldots, i_{k}-i_{k-1}, n-i_{k}},
$$

which is precisely $\left|\left\{\sigma \in \mathcal{S}_{n}: D(\sigma) \subseteq I\right\}\right|$.

Non-bijective proof

Goal : $\left|\left\{\pi \in \mathcal{C}_{n+1}: D(\pi) \cap[n-1]=I\right\}\right|=\left|\left\{\sigma \in \mathcal{S}_{n}: D(\sigma)=I\right\}\right|$.
Let $I=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}_{<}, I^{\prime}=I \cup\{n\}$. By the previous theorem, $\mid\left\{\pi \in \mathcal{C}_{n+1}\right.$ with $\left.D(\pi) \cap[n-1] \subseteq I\right\} \mid=$
|\{necklaces with evaluation $\left.x_{1}^{i_{1}} x_{2}^{i_{2}-i_{1}} \ldots x_{k}^{i_{k}-i_{k-1}} x_{k+1}^{n-i_{k}} x_{k+2}\right\} \mid$.
Choosing first the bead labeled x_{k+2}, the \# of such necklaces is

$$
\binom{n}{i_{1}, i_{2}-i_{1}, \ldots, i_{k}-i_{k-1}, n-i_{k}},
$$

which is precisely $\left|\left\{\sigma \in \mathcal{S}_{n}: D(\sigma) \subseteq I\right\}\right|$. We have shown that

$$
\left|\left\{\pi \in \mathcal{C}_{n+1}: D(\pi) \cap[n-1] \subseteq I\right\}\right|=\left|\left\{\sigma \in \mathcal{S}_{n}: D(\sigma) \subseteq I\right\}\right| .
$$

for all $I \subseteq[n-1]$.

Non-bijective proof

Goal : $\left|\left\{\pi \in \mathcal{C}_{n+1}: D(\pi) \cap[n-1]=I\right\}\right|=\left|\left\{\sigma \in \mathcal{S}_{n}: D(\sigma)=I\right\}\right|$.
Let $I=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}_{<}, I^{\prime}=I \cup\{n\}$. By the previous theorem, $\mid\left\{\pi \in \mathcal{C}_{n+1}\right.$ with $\left.D(\pi) \cap[n-1] \subseteq I\right\} \mid=$
|\{necklaces with evaluation $\left.x_{1}^{i_{1}} x_{2}^{i_{2}-i_{1}} \ldots x_{k}^{i_{k}-i_{k-1}} x_{k+1}^{n-i_{k}} x_{k+2}\right\} \mid$.
Choosing first the bead labeled x_{k+2}, the \# of such necklaces is

$$
\binom{n}{i_{1}, i_{2}-i_{1}, \ldots, i_{k}-i_{k-1}, n-i_{k}},
$$

which is precisely $\left|\left\{\sigma \in \mathcal{S}_{n}: D(\sigma) \subseteq I\right\}\right|$. We have shown that

$$
\left|\left\{\pi \in \mathcal{C}_{n+1}: D(\pi) \cap[n-1] \subseteq I\right\}\right|=\left|\left\{\sigma \in \mathcal{S}_{n}: D(\sigma) \subseteq I\right\}\right| .
$$

for all $I \subseteq[n-1]$. Now apply inclusion-exclusion.

An equivalent statement

Let \mathcal{T}_{n} be the set of n-cycles in one-line notation in which one entry has been replaced with 0 .

$$
\mathcal{T}_{3}=\{031,201,230,012,302,310\}
$$

An equivalent statement

Let \mathcal{T}_{n} be the set of n-cycles in one-line notation in which one entry has been replaced with 0 .

$$
\mathcal{T}_{3}=\{031,201,230,012,302,310\}
$$

Clearly, $\left|\mathcal{T}_{n}\right|=n!$. Descents are defined in the usual way.

An equivalent statement

Let \mathcal{T}_{n} be the set of n-cycles in one-line notation in which one entry has been replaced with 0 .

$$
\mathcal{T}_{3}=\{031,201,230,012,302,310\}
$$

Clearly, $\left|\mathcal{T}_{n}\right|=n!$. Descents are defined in the usual way.

Corollary

For every n there is a bijection between \mathcal{T}_{n} and \mathcal{S}_{n} preserving the descent set.

Example:

$$
\begin{array}{c|l|l|l|l|l|l|}
\mathcal{S}_{3} & 123 & 13 \cdot 2 & 2 \cdot 13 & 23 \cdot 1 & 3 \cdot 12 & 3 \cdot 2 \cdot 1 \\
\hline \mathcal{T}_{3} & 012 & 03 \cdot 1 & 3 \cdot 02 & 23 \cdot 0 & 3 \cdot 02 & 3 \cdot 1 \cdot 0
\end{array}
$$

A bijection preserving the cycle structure

Problem (Eriksen, Freij, Wästlund)
For any $I, J \subseteq[n-1]$ with the same associated partition, give a bijection between derangements of [n] whose descent set is contained in I and derangements of [n] whose descent set is contained in J.

A bijection preserving the cycle structure

Problem (Eriksen, Freij, Wästlund)
For any $I, J \subseteq[n-1]$ with the same associated partition, give a bijection between derangements of [n] whose descent set is contained in I and derangements of [n] whose descent set is contained in J.

We can solve a generalization of this problem using the work of Gessel and Reutenauer:

Proposition

For any $I, J \subseteq[n-1]$ with the same associated partition, there exists a bijection $\left\{\pi \in \mathcal{S}_{n}: D(\pi) \subseteq I\right\} \rightarrow\left\{\sigma \in \mathcal{S}_{n}: D(\sigma) \subseteq J\right\}$ preserving the cycle structure.

THANK YOU

