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Missegregation

During mitosis, cancer cells undergo chromosome missegregation
events, causing one of the two daughter cells to inherit more copies
of a chromosome than the other.
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Advantages of genomic instability

It has been observed that
I more copies of oncogenic chromosomes (with proliferative

genes) increase the cell’s chances of surviving, while
I more copies of tumor supressive chromosomes (with

anti-profiferative genes) increase its chances of dying.

A recent genomic analysis by Davoli et al. assigned scores to
individual chromosomes based on the presence of such genes.

Since the karyotype of a cell affects its fitness level, genomic
instability allows for Darwinian selection to occur.
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History

The first stochastic model of missegregation was developed by
Gusev, Kagansky and Dooley in 2000.

Their model is quite straightforward but it has a few disadvantages:

I Simulations are very slow.
I It can’t be analyzed mathematically to find long-term behavior.
I It doesn’t account for chromosome scores, and its predictions

are unrealistic.

We will build a Markov chain model that addresses these 3 issues.
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Assumptions of our model

I Each copy of a chromosome has probability p of
missegregating at a given cell division, independent from other
copies. Typically, p ⇡ 0.0025.

I If the number of copies of any chromosome reaches 0 or goes
above N (typically N = 8), the cell dies.

I Starting from a single founder cell, all the cells in the colony
divide simultaneously at each generation.

I The karyotype of a cell is the vector (n
1

, n
2

, . . . , n
23

) where nk
is the number of copies of chromosome k . An alive cell has
1  nk  N for all k .
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Simulations vs. Markov chain

We can implement this model and run a forward simulation.
However, simulations are slow because we keep track of the
karyotypes of all the cells.

Instead, we will build a Markov chain that describes the average
distribution of karyotypes. Main advantages:

I Computations are much faster, since they amount to taking
powers of matrices.

I We can analyze the Markov chain mathematically to predict
long-term behavior.
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Additional simplifications

I Since missegregations of different chromosomes are
independent, we focus on one type of chromosome at a time.

Our Markov chain has states 0, 1, 2, . . . ,N, where state i

corresponds to cells with i copies of the chromosome, with an
absorbing state 0 corresponding to dead cells.

The probability of a given karyoptype (n
1

, . . . , n
23

) is obtained
by multiplying the probability that the Markov chain
corresponding to chromosome k is in state nk for 1  k  23.

I We disregard the highly unlikely event that multiple copies of
the same chromosome in a cell missegregate simultaneously.
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The Markov chain for the basic model
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The transition matrix

Each chromosome copy produces 0, 1 or 2 copies in a random
daughter cell, with probability p/2, 1 � p and p/2, respectively.

For a cell with i copies, the probability that a random daughter has
j copies is given by the coefficient of x

j in
⇣

p

2
+ (1 � p)x +

p

2
x

2

⌘i
⇡ ip

2
x

i�1 + (1 � ip)x i +
ip

2
x

i+1,

ignoring quadratic terms in p.

This gives the transition matrix:

Mij =

8
><

>:

1 � ip if i = j ,

ip/2 if |i � j | = 1,
0 if |i � j | � 2,

for 1  i , j  N.
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The transition matrix

For example, for N = 8, we get
2

6666666666664

1 0 0 0 0 0 0 0 0

p/2 1 � p p/2 0 0 0 0 0 0

0 p 1 � 2p p 0 0 0 0 0

0 0 3p/2 1 � 3p 3p/2 0 0 0 0

0 0 0 2p 1 � 4p 2p 0 0 0

0 0 0 0 5p/2 1 � 5p 5p/2 0 0

0 0 0 0 0 3p 1 � 6p 3p 0

0 0 0 0 0 0 7p/2 1 � 7p 7p/2
4p 0 0 0 0 0 0 4p 1 � 8p

3

7777777777775

.

Let M be the matrix obtained by removing the row and column corresponding

to the dead state.
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Properties of the transition matrix

I (Mg )i ,j is the proportion of cells that have j copies after g

generations, starting with a founder cell with i copies.

I Let sg (i) = sum of the entries of the ith row of Mg . Then

2g
23Y

k=1

sg (nk)

is the expected number of alive cells after g generations when
the founder cell has nk copies of chromosome k for each k .

I For a vector v describing the initial distribution of the number
of copies, the vector vMg , normalized so its entries sum to
one, is the distribution among alive cells of the number of
copies after g generations.
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Deviance from modal chromosome copy number

Forward Matlab simulation:
(founder cell has n

chrom

= 4 copies)

! 2!

!
Figure'2.'Basic'characteristics'of'numerical'chromosomal'instability'in'clonal'populations.'

(A)!Percentage!of!cells!that!deviate!from!modal!chromosome!numbers!as!a!function!of!chromosome!

missegregation!probabilities!(pmisseg).!Bar!represent!mean!±!s.e.m.!(B)!Predicted!(red)!and!

experimental!(blue,!U2OS!cells)!percentage!of!cells!that!deviate!from!the!modal!chromosome!

number!after!25!generations.!In!the!predicted!cohort,!an!example!from!one!iteration!is!shown.!*,!>!

mean+2SD!(C)!Percentage!of!cells!that!deviate!from!modal!chromosome!number!for!any!given!

chromosome!as!a!function!of!the!first!cell!division!at!which!this!chromosome!underwent!a!

missegregation!event!for!the!first!time.!Solid!red!line!shows!mean,!dotted!lines!denote!95%!C.I.!

Datapoints!represent!individual!chromosomes!from!1.05x109!cells!generated!from!1000!clonal!

populations.!(D)!Percentage!of!cells!that!deviate!from!modal!chromosome!number!as!a!function!of!

number!of!cell!divisions.!Lines!denote!individual!chromosomes!in!a!single!clone.!(E)!Percentage!of!

cells!that!deviate!from!modal!chromosome!number!as!a!function!of!the!number!of!cell!divisions!for!

two!different!chromosome!missegregation!probabilities.!Lines!represent!averages!of!all!

chromosomes!in!3!separate!replicates.!Thickness!of!the!line!represents!95%!C.I.!

Markov chain
model: p = 0.0025
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Markov chain
model:

! 9!

!

Figure!S1.!Determinants!of!population!deviance!from!modal!chromosome!copy!number!

(A)!Population!deviance!from!modal!chromosome!copy!number!over!time!for!two!chromosome!

missegregation!rates!(pmisseg)!as!predicted!using!Markov!Chain!method.!Founder!clones!had!nchrom!=!

4.!(B)!Population!deviance!from!modal!chromosome!copy!number!over!time!for!founder!clones!

with!different!chromosome!copy!numbers!(nchrom)!as!predicted!using!Markov!chain!method!

expanding!at!pmisseg!=!0.0025.!!

!

!

! !

p = 0.0025
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Forward Matlab simulation:
(p = 0.0025)

! 5!

!

!

!
Figure'4.!Clonal'sampling'of'the'aneuploid'fitness'landscape'!

(A)!Average!cell!score!of!50!randomly!derived!near<diploid!or!near<tetraploid!clonal!populations!

over!1000!generations.!(B)!The!surviving!fraction!as!a!function!of!distance!traveled!on!the!

aneuploid!fitness!landscape!(Δcell!score)!for!populations!derived!form!near<diploid!and!near<

tetraploid!founder!clones.!Dashed!lines!depict!the!95%!CI!of!the!curve!fit.!(C)!Total!chromosome!

numbers/cell!for!6!randomly!chosen!near<diploid!or!near<tetraploid!clonal!populations!over!5000!

generations.!(D)!Modal!chromosome!numbers!as!a!function!of!chromosome<specific!scores!

(ChromTSG2OG).!Data!points!represent!mean!±!SD!for!50!clonal!populations.!(E<F)!Modal!chromosome!

number!for!each!of!the!23!human!chromosomes!for!populations!derived!form!near<diploid!(E)!and!

near<tetraploid!(F)!founder!cells!propagating!for!1000!generations!at!pmisseg!=!2.5x10<3.!Data!points!

represent!mean!±!SD!for!50!clonal!populations.!(G)!Intra<clonal!deviation!from!modal!chromosome!

copy!number!as!function!of!chromosome<specific!scores!(ChromTSG2OG).!Data!points!represent!mean!

Markov chain model:

We observe convergence to a near-triploid state.
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Distribution of the number of copies over time

The following figures are for the Markov chain model with N = 8
and a diploid founder cell. Each curve represents a number of
copies: 1, 2, 3, 4, 5, 6, 7, 8.

p = 0.001 p = 0.01
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Now take p = 0.0025 and run 2000 generations, with a tetraploid
founder cell. Each curve represents a given number of copies:
1 , 2, 3, 4, 5, 6, 7, 8 , 9, 10, 11, 12, 13, 14, 15, 16.

N = 8 N = 16
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The limiting behavior

We are interested in the limiting distribution of the number of
chromosome copies (among alive cells) when the number of
generations g tends to infinity.

Since our Markov chain has an absorbing state, its stationary
distribution only shows that #alive cells

2

g

! 0 as g ! 1.

However, we can use a result from probability theory to restrict to
non-absorbing states (equivalently, alive cells):

Theorem

Let ⇢ be the largest eigenvalue of M. The limiting distribution

conditional on the non-absorbing states is given by the vector v
satisfying vM = ⇢v and

PN
i=1

vi = 1.
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The limiting behavior

In particular, this limiting distribution does not depend on the
number of copies of the founder cell.

Surprisingly, we can prove that it does not depend on the
missegregation rate either:

Theorem

The limiting distribution of the above basic model conditional on

the non-absorbing states is independent of p.
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The limiting distribution

Limiting distributions for N = 8, 9, 10, 11, 12, 13, 14, 15, 16.

The modal chromosomal number is always 1, but this will change
once we incorporate chromosome scores.
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Chromosome scores and survival probability

Following experiments by Davoli et al., we assign a score sk to each
chromosome k . The total score of a cell with karyotype
(n

1

, . . . , n
23

) is:
S =

23X

k=1

sknk ,

and its survival probability at a given generation is

Qsurv = e

c+dS

for some parameters c and d > 0.

Again, we can implement this model and run simulations.

Instead, we will incorporate the chromosome scores into the Markov
chain, and use it to run fast computations and determine limiting
behavior.
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Decomposing the survival probability

Qsurv = e

c+dS = e

c+d
P

k

s
k

n
k =

23Y

k=1

e

c/23+d s
k

n
k| {z }

q
k

(n
k

)

.

Let
qk(i) = e

c/23+ds
k

i = Cµi

denote the contribution to the survival probability from
chromosome k , where C = e

c/23 and µ = e

ds
k .

Oncogenic , sk > 0 , µ > 1.
Tumor-suppressive , sk < 0 , µ < 1.

This equation allows us to break up the model into 23 independent
Markov chains, one for each type of chromosome.
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The Markov chain for chromosome k

dead

1 2 3 4 5 6 7 8

(1�p)qk (1) (1�2p)qk (2) (1�3p)qk (3) (1�4p)qk (4) (1�5p)qk (5) (1�6p)qk (6) (1�7p)qk (7) (1�8p)qk (8)

1�qk (2)
1�qk (3)

1�qk (4) 1�qk (5)
1�qk (6)

1�qk (7)

pqk (1)
2 pqk (2)

3pqk (3)
2 2pqk (4)

5pqk (5)
2 3pqk (6)

7pqk (7)
2

pqk (2) 3pqk (3)
2

2pqk (4) 5pqk (5)
2

3pqk (6) 7pqk (7)
2

4pqk (8)

pqk (1)
2 + 1�qk (1) 4pqk (8) + 1�qk (8)

1

A cell with i copies of the chromosome has probability 1 � qk(i) of
dying, and probability qk(i) of surviving and dividing as in the basic
model.
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The transition matrix

The transition matrix A(k) restricted to alive cells is:

A

(k)
ij =

8
><

>:

(1 � ip) qk(i) if i = j ,

ip qk(i)/2 if |i � j | = 1,
0 if |i � j | � 2,

for 1  i , j  N.

Letting s

(k)
g (i) = sum of the entries of the ith row of (A(k))g ,

2g
23Y

k=1

s

(k)
g (nk)

is the expected number of alive cells after g generations when the
founder cell has nk copies of chromosome k for each k .
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Distribution of the number of copies over time

In human
chromosomes,
µ 2 [0.9994, 1.0012].

Fix p = 0.0025 and a
founder cell with 2
copies. Run for 2000
generations.

Each curve represents a
number of copies:
1, 2, 3, 4, 5, 6, 7, 8.

µ = 0.9994 µ = 1

µ = 1.0006 µ = 1.0012

Sergi Elizalde Markov chain for chromosomal instability in tumor evolution



Introduction

The basic model

The model with chromosome scores

Drug resistance

The Markov chain

Mathematical analysis and numerical results

Distribution of the number of copies over time

In human
chromosomes,
µ 2 [0.9994, 1.0012].

Fix p = 0.001 and a
founder cell with 2
copies. Run for 2000
generations.

Each curve represents a
number of copies:
1, 2, 3, 4, 5, 6, 7, 8.

µ = 0.9994 µ = 1

µ = 1.0006 µ = 1.0012

Sergi Elizalde Markov chain for chromosomal instability in tumor evolution



Introduction

The basic model

The model with chromosome scores

Drug resistance

The Markov chain

Mathematical analysis and numerical results

The limiting behavior

As before, if ⇢ is the largest eigenvalue of A(k), the limiting
distribution conditional on the non-absorbing states is given by the
vector v satisfying vA(k) = ⇢v and

PN
i=1

vi = 1.

Again, this limiting distribution does not depend on the number of
copies of the founder cell.

However, unlike for the model without scores, it now depends on p

and on µ (equivalently, on the chromosome score).
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The limiting distribution

Liming distributions for µ = 0.9994, 0.9996, 0.9998, 1.0000,
1.0002, 1.0004, 1.0006, 1.0008, 1.0010, 1.0012.

p = 0.001

For higher chromosome scores,
the limiting distribution favors
higher copy numbers.

For positive chromosome scores
(µ > 1), the modal number of
copies soon becomes higher than
one, making this more realistic
than the model without scores.
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The limiting distribution

Liming distributions for µ = 0.9994, 0.9996, 0.9998, 1.0000,
1.0002, 1.0004, 1.0006, 1.0008, 1.0010, 1.0012.

p = 0.0025 p = 0.01

Sergi Elizalde Markov chain for chromosomal instability in tumor evolution



Introduction

The basic model

The model with chromosome scores

Drug resistance

The Markov chain

Mathematical analysis and numerical results

The limiting distribution

Liming distributions for µ in the refined range 1.0002, 1.00025,
1.0003, 1.00035, 1.0004, 1.00045, 1.005, 1.0055, 1.0006.

p = 0.0025
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The limiting distribution

Limiting distributions for the experimentally found values of µ
corresponding to the 23 human chromosomes, and p = 0.0025:

Average

The average number of chromosomes per cell in the limit is 72.7,
which is an average of 3.16 copies of each chromosome type.
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Fraction of alive cells after 1000 generations

Using the experimentally found values for the chromosome scores
and starting with a tetraploid founder cell.

Forward Matlab simulation:

! 3!

!
Figure'3.!Influence'of'chromosome'missegregation'rates'on'clonal'fitness!

(A<C)!The!surviving!fraction!(fsurviving)!(panel!A),!cell!score!(panel!B),!and!the!Shannon!diversity!

index!(H)!(panel!C)!of!clonal!populations!dividing!with!different!rates!of!chromosome!

missegregation!(pmisseg).!Grey!lines!represent!pmisseg!values!that!fall!in!between!colored!lines;!only!a!

few!pmisseg!values!were!colored!and!labeled!for!clarity.!(D)!fsurviving!and!H!at!the!1000th!generation!as!a!

function!of!pmisseg.!Data!points!represent!mean!±!SD,!total!of!90!iterations.!(E<F)!Clonal!fitness!

(integrated!by!measuring!the!area!under!the!curve!for!1000!generations,!panel!E)!and!the!adaptive!

capacity!(F)!of!diploid!and!tetraploid!cell!clones!as!a!function!of!pmisseg,!data!points!represent!mean!±!

Markov chain model:

The number of alive cells is maximized for a narrow range of the
missegregation rate, around p ⇡ 10�3.
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Changing the survival probability

We can change the survival probability Qsurv by multiplying it by a
factor F . This is useful to model:

I when the tumor outgrows its blood supply;

I adding treatments to tumors (this makes the survival
probability lower only for certain cells).

If we multiply Qsurv by F for all cells in our current model with
p = 0.0025, the size of the tumor increases if F > 0.51 and it
decreases if F < 0.50.
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Targeted therapy and mutations

Targeted therapy targets genes located in a particular chromosome,
decreasing the survival probability.

However, at a given rate m ⇡ 10�9 each target gene is mutated,
becoming no longer responsive to treatment. Mutated genes are
inherited.

The survival probability of the cell depends on the number of
mutated and normal copies of the treated chromosome.
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Modeling mutations

We modify the Markov chain as follows:

States are indexed by pairs (i
1

, i
2

) with 1  i

1

+ i

2

 N,
representing cells having i

1

normal copies of the chromosome and i

2

mutated copies. E.g., for N = 8, there are 44 non-absorbing states.

In a cell division, each normal copy of the chromosome has
probability m ⇡ 10�9 of mutating (and becoming resistant). Each
mutated copy has probability r ⇡ 10�9/4 of reversing into a normal
copy (amenable to treatment).

Again, we disregard highly unlikely events such as mutating and
missegregating in the same cell division.
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The modified Markov chain

Arrows leaving a typical node (i
1

, i
2

): (let i = i

1

+ i

2

)

dead

i1, i2

i1 + 1, i2

i1 � 1, i2 i1, i2 + 1

i1, i2 � 1

i1 � 1, i2 + 1i1 + 1, i2 � 1

1 � ip � i1m

2 � i2m

2
i1p

2

i1p

2
i2p

2

i2p

2

i1m

2
i2r

2

1 � q

s

(i)

Missegregations and mutations

, survival probability
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i1 � 1, i2 + 1i1 + 1, i2 � 1

(1 � ip � i1m

2 � i2m

2 )q
s

(i)
i1p

2 q

s

(i)

i1p

2 q

s

(i) i2p

2 q

s

(i)

i2p

2 q

s

(i)

i1m

2 q

s

(i)i2r

2 q

s

(i)

1 � q

s

(i)

Missegregations and mutations, survival probability
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Modeling drug resistance

First, we let the tumor grow with the usual parameters
(p,Qsurv,m, r), until it reaches 109 cells and it becomes detectable
with a CT scan.

Then we apply a drug that targets a given chromosome.

This can be modeled in two ways:

1. Binary resistance: cells with at least one mutated copy of the
treated chromosome are resistant.

2. The level of resistance depends on the ratio of copies of
normal vs. mutated target genes.
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Case 1: Binary resistance

For cells of type (i
1

, 0), multiply the survival probability by a factor
F , which depends on the strength of the treatment.

Cells of type (i
1

, i
2

) with i

2

> 0 behave like before.

Treatment applied to chromosome 1, tetraploid founder cell:

F = 0.50 F = 0.45
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Case 2: Graded resistance

For cells of type (i
1

, i
2

), multiply the survival probability by
i

1

F + i

2

i

1

+ i

2

.

This factor is F for cells of type (i
1

, 0) and 1 for cells of type (0, i
2

).

Compare binary resistance and graded resistance:

F = 0.50 F = 0.45
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2
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2
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Thank you
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