Permutations and β -shifts

Sergi Elizalde

Dartmouth College

October 6, 2010

・ロト ・回 ト ・ヨト ・ヨト

Motivation Definitions Maps have forbidden patterns

Deterministic or random?

Two sequences of numbers in [0, 1]:

.6416, .9198, .2951, .8320, .5590, .9861, .0550, .2078, .6584, .8996, .3612, .9230, .2844, .8141, .6054,...

.9129, .5257, .4475, .9815, .4134, .9930, .1576, .8825, .3391, .0659, .1195, .5742, .1507, .5534, .0828,...

Which one is random? Which one is deterministic?

<ロ> <同> <同> < 同> < 同> < 同><<

Motivation Definitions Maps have forbidden patterns

Deterministic or random?

Two sequences of numbers in [0, 1]:

.6416, .9198, .2951, .8320, .5590, .9861, .0550, .2078, .6584, .8996, .3612, .9230, .2844, .8141, .6054,...

.9129, .5257, .4475, .9815, .4134, .9930, .1576, .8825, .3391, .0659, .1195, .5742, .1507, .5534, .0828, \ldots

Which one is random? Which one is deterministic?

The first one is deterministic: taking f(x) = 4x(1 - x), we have

```
f(.6146) = .9198,
f(.9198) = .2951,
f(.2951) = .8320,
```

. . .

イロン イヨン イヨン イヨン

Motivation Definitions Maps have forbidden patterns

Allowed patterns of a map

Let X be a linearly ordered set, $f : X \to X$. For each $x \in X$ and $n \ge 1$, consider the sequence

$$x, f(x), f^{2}(x), \ldots, f^{n-1}(x).$$

イロト イヨト イヨト イヨト

Motivation Definitions Maps have forbidden patterns

Allowed patterns of a map

Let X be a linearly ordered set, $f : X \to X$. For each $x \in X$ and $n \ge 1$, consider the sequence

$$x, f(x), f^{2}(x), \ldots, f^{n-1}(x).$$

If there are no repetitions, the relative order of the entries determines a permutation, called an allowed pattern of *f*.

Shifts β -shifts Computation of $B(\pi)$ Motivation Definitions Maps have forbidden patterns

Example

$$egin{array}{rcl} f:&[0,1]&
ightarrow&[0,1]\ &x&\mapsto&4x(1-x). \end{array}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○

 β -shifts Computation of $B(\pi)$

Motivation Definitions Maps have forbidden patterns

Example

$$egin{array}{rcl} f:&[0,1]& o&[0,1]\ &x&\mapsto&4x(1-x). \end{array}$$

For x = 0.8 and n = 4, the sequence 0.8,

 β -shifts Computation of $B(\pi)$

Motivation Definitions Maps have forbidden patterns

Example

$$egin{array}{rcl} f:&[0,1]& o&[0,1]\ &x&\mapsto&4x(1-x). \end{array}$$

For x = 0.8 and n = 4, the sequence 0.8, 0.64,

 β -shifts

Motivation Definitions Maps have forbidden patter

Example

$$egin{array}{rcl} f:&[0,1]& o&[0,1]\ &x&\mapsto&4x(1-x). \end{array}$$

For x = 0.8 and n = 4, the sequence 0.8, 0.64, 0.9216,

 β -shifts Computation of $B(\pi)$

Motivation Definitions Maps have forbidden patterns

Example

$$egin{array}{rcl} f:&[0,1]& o&[0,1]\ &x&\mapsto&4x(1-x). \end{array}$$

For x = 0.8 and n = 4, the sequence 0.8, 0.64, 0.9216, 0.2890

イロン 不同と 不同と 不同と

 β -shifts Computation of $B(\pi)$

Motivation Definitions Maps have forbidden patterns

Example

$$egin{array}{rcl} f:&[0,1]&
ightarrow&[0,1]\ &x&\mapsto&4x(1-x). \end{array}$$

For x = 0.8 and n = 4, the sequence 0.8, 0.64, 0.9216, 0.2890 determines the permutation 3241, so it is an allowed pattern.

Motivation Definitions Maps have forbidden patterns

Allowed and forbidden patterns

Allow(f) = set of allowed patterns of f.

・ロン ・回と ・ヨン・

Motivation Definitions Maps have forbidden patterns

Allowed and forbidden patterns

Allow(f) = set of allowed patterns of f.

Allow(f) is closed under consecutive pattern containment. E.g., if $4156273 \in \text{Allow}(f)$, then $2314 \in \text{Allow}(f)$.

イロト イポト イヨト イヨト

Motivation Definitions Maps have forbidden patterns

Allowed and forbidden patterns

Allow(f) = set of allowed patterns of f.

Allow(f) is closed under consecutive pattern containment. E.g., if $4156273 \in \text{Allow}(f)$, then $2314 \in \text{Allow}(f)$.

The other permutations are called forbidden patterns of f.

・ロト ・ 同ト ・ ヨト ・ ヨト

Motivation Definitions Maps have forbidden patterns

Example: f(x) = 4x(1-x)

Taking different $x \in [0, 1]$, the patterns 123, 132, 231, 213, 312 are realized. However, 321 is a forbidden pattern of f.

イロト イヨト イヨト イヨト

Motivation Definitions Maps have forbidden patterns

Example: f(x) = 4x(1-x)

Taking different $x \in [0, 1]$, the patterns 123, 132, 231, 213, 312 are realized. However, 321 is a forbidden pattern of f.

Also forbidden: 1432, 2431, 3214,... anything containing 321

Motivation Definitions Maps have forbidden patterns

Example:
$$f(x) = 4x(1-x)$$

Taking different $x \in [0, 1]$, the patterns 123, 132, 231, 213, 312 are realized. However, 321 is a forbidden pattern of f.

Motivation Definitions Maps have forbidden patterns

Example:
$$f(x) = 4x(1-x)$$

Taking different $x \in [0, 1]$, the patterns 123, 132, 231, 213, 312 are realized. However, 321 is a forbidden pattern of f.

Also forbidden: 1432, 2431, 3214, ..., 1423, 2134, 2143, 3142, 4231, ... anything containing 321 basic: not containing smaller forbidden patterns

Theorem (E.-Liu): f has infinitely many basic forbidden patterns.

Motivation Definitions Maps have forbidden patterns

Forbidden patterns

Let $I \subset \mathbb{R}$ be a closed interval.

Theorem (Bandt-Keller-Pompe '02)

Every piecewise monotone map $f : I \rightarrow I$ has forbidden patterns.

イロト イポト イヨト イヨト

Motivation Definitions Maps have forbidden patterns

Forbidden patterns

Let $I \subset \mathbb{R}$ be a closed interval.

Theorem (Bandt-Keller-Pompe '02)

Every piecewise monotone map $f : I \rightarrow I$ has forbidden patterns.

Piecewise monotone: there is a finite partition of I into intervals such that f is continuous and strictly monotone on each interval.

・ロト ・ 同ト ・ ヨト ・ ヨト

Motivation Definitions Maps have forbidden patterns

Forbidden patterns

Let $I \subset \mathbb{R}$ be a closed interval.

Theorem (Bandt-Keller-Pompe '02)

Every piecewise monotone map $f : I \rightarrow I$ has forbidden patterns.

Piecewise monotone: there is a finite partition of I into intervals such that f is continuous and strictly monotone on each interval.

Understanding the set of forbidden patterns of a given f is a difficult problem in general.

・ロト ・ 同ト ・ ヨト ・ ヨト

Motivation Definitions Maps have forbidden patterns

Deterministic vs. random sequences

Back to the original sequence:

.6416, .9198, .2951, .8320, .5590, .9861, .0550, .2078, .6584, .8996, .3612, .9230, .2844, .8141, .6054, \ldots

We see that the pattern 321 is missing from it.

Motivation Definitions Maps have forbidden patterns

Deterministic vs. random sequences

Back to the original sequence:

.6416, .9198, .2951, .8320, .5590, .9861, .0550, .2078, .6584, .8996, .3612, .9230, .2844, .8141, .6054, \ldots

We see that the pattern 321 is missing from it.

This suggests that the sequence is of the form $x_{i+1} = f(x_i)$ for some f.

(日) (部) (E) (E)

Motivation Definitions Maps have forbidden patterns

Deterministic vs. random sequences

Back to the original sequence:

.6416, .9198, .2951, .8320, .5590, .9861, .0550, .2078, .6584, .8996, .3612, .9230, .2844, .8141, .6054, \ldots

We see that the pattern 321 is missing from it.

This suggests that the sequence is of the form $x_{i+1} = f(x_i)$ for some f.

If it was a random sequence, any pattern would eventually appear.

・ロト ・ 同ト ・ ヨト ・ ヨト

Definitions Forbidden patterns of shifts $N(\pi)$

Shift maps

For $N \ge 2$, let $\mathcal{W}_N = \{0, 1, \dots, N-1\}^{\mathbb{N}}$ be the set of infinite words on N letters, equipped with the lexicographic order.

・ロン ・回と ・ヨン・

Definitions Forbidden patterns of shifts $N(\pi)$

Shift maps

For $N \ge 2$, let $\mathcal{W}_N = \{0, 1, \dots, N-1\}^{\mathbb{N}}$ be the set of infinite words on N letters, equipped with the lexicographic order.

Define the *shift* on *N* letters:

イロト イヨト イヨト イヨト

2

Definitions Forbidden patterns of shifts $N(\pi)$

Shift maps

For $N \ge 2$, let $\mathcal{W}_N = \{0, 1, \dots, N-1\}^{\mathbb{N}}$ be the set of infinite words on N letters, equipped with the lexicographic order.

Define the *shift* on *N* letters:

Thinking of words as expansions in base N of numbers in [0, 1), Σ_N is "equivalent" to the *sawtooth map*

Definitions Forbidden patterns of shifts $N(\pi)$

Example

The permutation 4217536 is realized (i.e., allowed) by Σ_3 , because taking $w = 2102212210... \in W_3$, we have

$$w = 2102212210... 4$$

$$\Sigma_{3}(w) = 102212210... 2$$

$$\Sigma_{3}^{2}(w) = 02212210... 1$$

$$\Sigma_{3}^{3}(w) = 2212210... 7$$

$$\Sigma_{3}^{4}(w) = 212210... 5$$

$$\Sigma_{3}^{5}(w) = 12210... 3$$

$$\Sigma_{3}^{6}(w) = 2210... 6$$

lexicographic order of the shifted words

< 🗇 > < 🖃 >

Definitions Forbidden patterns of shifts $N(\pi)$

Example

The permutation 4217536 is realized (i.e., allowed) by Σ_3 , because taking $w = 2102212210... \in W_3$, we have

$$w = 2102212210... 4$$

$$\Sigma_{3}(w) = 102212210... 2$$

$$\Sigma_{3}^{2}(w) = 02212210... 1$$

$$\Sigma_{3}^{3}(w) = 2212210... 7$$

$$\Sigma_{3}^{4}(w) = 212210... 5$$

$$\Sigma_{3}^{5}(w) = 12210... 3$$

$$\Sigma_{3}^{6}(w) = 2210... 6$$

lexicographic order of the shifted words

< 🗇 > < 🖃 >

We say that w induces 4217536.

Definitions Forbidden patterns of shifts $N(\pi)$

Forbidden patterns of shifts

Theorem (Amigó-E.-Kennel)

 Σ_N has no forbidden patterns of length $n \leq N + 1$, but it has forbidden patterns of each length $n \geq N + 2$.

Definitions Forbidden patterns of shifts $N(\pi)$

Forbidden patterns of shifts

Theorem (Amigó-E.-Kennel)

 Σ_N has no forbidden patterns of length $n \leq N + 1$, but it has forbidden patterns of each length $n \geq N + 2$.

Proposition (E.)

 Σ_N has exactly 6 forbidden patterns of length N + 2.

Definitions Forbidden patterns of shifts $N(\pi)$

Forbidden patterns of shifts

Theorem (Amigó-E.-Kennel)

 Σ_N has no forbidden patterns of length $n \leq N + 1$, but it has forbidden patterns of each length $n \geq N + 2$.

Proposition (E.) Σ_N has exactly 6 forbidden patterns of length N + 2.

Example

The shortest forbidden patterns of Σ_4 are

615243, 324156, 342516, 162534, 453621, 435261.

Definitions Forbidden patterns of shifts $N(\pi)$

The smallest # of letters needed to realize a pattern

For $\pi \in S_n$, let $N(\pi) = \min\{N : \pi \in \operatorname{Allow}(\Sigma_N)\}.$

Sergi Elizalde Permutations and β -shifts

・ロン ・回 と ・ ヨ と ・ ヨ と

Definitions Forbidden patterns of shifts $N(\pi)$

The smallest # of letters needed to realize a pattern

For $\pi \in S_n$, let $N(\pi) = \min\{N : \pi \in \operatorname{Allow}(\Sigma_N)\}.$

Theorem (E.):
$$N(\pi) = 1 + \operatorname{des}(\hat{\pi}) + \underbrace{\epsilon(\hat{\pi})}_{0 \text{ or } 1}.$$

・ロン ・回 と ・ ヨ と ・ ヨ と

Definitions Forbidden patterns of shifts $N(\pi)$

The smallest # of letters needed to realize a pattern

For $\pi \in S_n$, let $N(\pi) = \min\{N : \pi \in \operatorname{Allow}(\Sigma_N)\}.$

Theorem (E.):
$$N(\pi) = 1 + \operatorname{des}(\hat{\pi}) + \underbrace{\epsilon(\hat{\pi})}_{0 \text{ or } 1}.$$

An example of what $\hat{\pi}$ is:

 $\pi = 892364157 \rightsquigarrow (8,9,2,3,6,4,1,5,7) \rightsquigarrow 536174892 \rightsquigarrow 536174 \star 92 = \hat{\pi}$

イロト イヨト イヨト イヨト

Definitions Forbidden patterns of shifts $N(\pi)$

The smallest # of letters needed to realize a pattern

For $\pi \in S_n$, let $N(\pi) = \min\{N : \pi \in \operatorname{Allow}(\Sigma_N)\}.$

Theorem (E.):
$$N(\pi) = 1 + \operatorname{des}(\hat{\pi}) + \underbrace{\epsilon(\hat{\pi})}_{0 \text{ or } 1}.$$

An example of what $\hat{\pi}$ is:

 $\pi = 892364157 \rightsquigarrow (8,9,2,3,6,4,1,5,7) \rightsquigarrow 536174892 \rightsquigarrow 536174 \star 92 = \hat{\pi}$

 $des(\hat{\pi}) = des(536174 \star 92) = 4$

イロト イヨト イヨト イヨト
Definitions Forbidden patterns of shifts $N(\pi)$

The smallest # of letters needed to realize a pattern

For $\pi \in S_n$, let $N(\pi) = \min\{N : \pi \in \operatorname{Allow}(\Sigma_N)\}.$

Theorem (E.):
$$N(\pi) = 1 + \operatorname{des}(\hat{\pi}) + \underbrace{\epsilon(\hat{\pi})}_{0 \text{ or } 1}.$$

An example of what $\hat{\pi}$ is:

 $\pi = 892364157 \rightsquigarrow (8,9,2,3,6,4,1,5,7) \rightsquigarrow 536174892 \rightsquigarrow 536174 \star 92 = \hat{\pi}$

 $des(\hat{\pi}) = des(536174 \star 92) = 4$ N(892364157) = 1 + 4 + 0 = 5

Definitions Forbidden patterns of shifts $N(\pi)$

The smallest # of letters needed to realize a pattern

For $\pi \in S_n$, let $N(\pi) = \min\{N : \pi \in \operatorname{Allow}(\Sigma_N)\}.$

Theorem (E.):
$$N(\pi) = 1 + \operatorname{des}(\hat{\pi}) + \underbrace{\epsilon(\hat{\pi})}_{0 \text{ or } 1}.$$

An example of what $\hat{\pi}$ is:

 $\pi = 892364157 \rightsquigarrow (8,9,2,3,6,4,1,5,7) \rightsquigarrow 536174892 \rightsquigarrow 536174 \star 92 = \hat{\pi}$

$$des(\hat{\pi}) = des(536174 \pm 92) = 4$$
$$N(892364157) = 1 + 4 + 0 = 5$$

We have a (complicated) formula for the number of permutations in S_n that are realized by Σ_N , for given n and N.

Definitions Shift-complexity

β -shifts

- Natural generalization of shifts.
- Widely studied in the literature from the perspective of measure theory, automata theory, and number theory.

イロト イヨト イヨト イヨト

Definitions Shift-complexity

β -shifts

- Natural generalization of shifts.
- Widely studied in the literature from the perspective of measure theory, automata theory, and number theory.

For a real number $\beta > 1$, let M_{β} be the β -sawtooth map

$$egin{array}{rcl} M_eta &:& [0,1) &
ightarrow & [0,1) \ & x &\mapsto & \{eta x\} \end{array}$$

A (B) < (B) < (B) < (B) </p>

Definitions Shift-complexity

β -shifts

- Natural generalization of shifts.
- Widely studied in the literature from the perspective of measure theory, automata theory, and number theory.

For a real number $\beta > 1$, let M_{β} be the β -sawtooth map

$$egin{array}{rcl} egin{array}{rcl} M_eta &:& [0,1) &
ightarrow & [0,1) \ & x & \mapsto & \{eta x\} \end{array}$$

向下 イヨト イヨト

We would like to define the β -shift as

$$\sum_{\beta} : W(\beta) \longrightarrow W(\beta) w_1 w_2 w_3 \dots \mapsto w_2 w_3 w_4 \dots$$

for some set $W(\beta)$.

Definitions Shift-complexity

The domain of Σ_{β}

$$\begin{array}{cccc} \Sigma_{\beta} : & W(\beta) & \longrightarrow & W(\beta) \\ & w_1 w_2 w_3 \dots & \mapsto & w_2 w_3 w_4 \dots \end{array}$$

Sergi Elizalde Permutations and β -shifts

< 口 > < 同 > < 臣 > < 臣 > -

Definitions Shift-complexity

The domain of Σ_{β}

$$\begin{array}{cccc} \Sigma_{\beta} : & W(\beta) & \longrightarrow & W(\beta) \\ & & w_1 w_2 w_3 \dots & \mapsto & w_2 w_3 w_4 \dots \end{array}$$

For M_{β} and Σ_{β} to be "equivalent", $W(\beta)$ should be the set of words given by expansions in base β of numbers $x \in [0, 1)$:

. . .

Definitions Shift-complexity

The domain of Σ_{β}

$$\begin{array}{cccc} \Sigma_{\beta} : & W(\beta) & \longrightarrow & W(\beta) \\ & w_1 w_2 w_3 \dots & \mapsto & w_2 w_3 w_4 \dots \end{array}$$

For M_{β} and Σ_{β} to be "equivalent", $W(\beta)$ should be the set of words given by expansions in base β of numbers $x \in [0, 1)$:

$$x=\frac{w_1}{\beta}+\frac{w_2}{\beta^2}+\cdots,$$

with

$$\begin{array}{lll} w_1 &=& \lfloor \beta x \rfloor, \\ w_2 &=& \lfloor \beta \{ \beta x \} \rfloor, \\ w_3 &=& \lfloor \beta \{ \beta \{ \beta x \} \} \rfloor, \end{array}$$

・ロン ・回と ・ヨン・

Definitions Shift-complexity

The domain of Σ_{β}

$$\begin{array}{cccc} \Sigma_{\beta} : & \mathcal{W}(\beta) & \longrightarrow & \mathcal{W}(\beta) \\ & & w_1 w_2 w_3 \dots & \mapsto & w_2 w_3 w_4 \dots \end{array}$$

Theorem (Parry '60) *Let*

$$\beta = a_0 + \frac{a_1}{\beta} + \frac{a_2}{\beta^2} + \cdots$$

be the β -expansion of β . Then (up to small technicalities)

 $W(\beta) = \{w_1 w_2 w_3 \dots : w_k w_{k+1} w_{k+2} \dots <_{lex} a_0 a_1 a_2 \dots \text{ for all } k \ge 1\}.$

(ロ) (同) (E) (E) (E)

Definitions Shift-complexity

The domain of Σ_{β}

$$\begin{split} \Sigma_{\beta} : & W(\beta) & \longrightarrow & W(\beta) \\ & w_1 w_2 w_3 \dots & \mapsto & w_2 w_3 w_4 \dots \end{split}$$

 $W(\beta) = \{w_1 w_2 w_3 \dots : w_k w_{k+1} w_{k+2} \dots <_{lex} a_0 a_1 a_2 \dots \text{ for all } k \ge 1\}.$

Definitions Shift-complexity

The domain of Σ_{β}

$$\begin{split} \Sigma_{\beta} : & W(\beta) & \longrightarrow & W(\beta) \\ & w_1 w_2 w_3 \dots & \mapsto & w_2 w_3 w_4 \dots \end{split}$$

 $W(\beta) = \{w_1w_2w_3\ldots : w_kw_{k+1}w_{k+2}\ldots <_{\mathit{lex}} a_0a_1a_2\ldots \text{ for all } k \ge 1\}.$

Example

► For
$$\beta = N \in \mathbb{Z}$$
, $a_0 a_1 a_2 \ldots = N00 \ldots = N0^{\infty}$,
 $W(N) = W_N = \{0, 1, \ldots, N-1\}^{\mathbb{N}}$.

◆□ → ◆□ → ◆ □ → ◆ □ → ●

Definitions Shift-complexity

The domain of Σ_{β}

$$\sum_{\beta} : W(\beta) \longrightarrow W(\beta) w_1 w_2 w_3 \dots \longmapsto w_2 w_3 w_4 \dots$$

 $W(\beta) = \{w_1w_2w_3\ldots : w_kw_{k+1}w_{k+2}\ldots <_{lex} a_0a_1a_2\ldots \text{ for all } k \ge 1\}.$

Example

► For
$$\beta = N \in \mathbb{Z}$$
, $a_0 a_1 a_2 \ldots = N00 \ldots = N0^{\infty}$,
 $W(N) = \mathcal{W}_N = \{0, 1, \ldots, N-1\}^{\mathbb{N}}$.

► For
$$\beta = 1 + \sqrt{2}$$
, $a_0 a_1 a_2 \dots = 210^{\infty}$,
 $W(\beta) =$ words over $\{0, 1, 2\}$ where every 2 is followed by a 0.

◆□ → ◆□ → ◆ □ → ◆ □ → ●

Definitions Shift-complexity

The shift-complexity of a permutation

- It can be shown that if $1<\beta\leq\beta'$, then
 - $W(\beta) \subseteq W(\beta')$,
 - ► Allow(Σ_{β}) \subseteq Allow($\Sigma_{\beta'}$).

イロト イヨト イヨト イヨト

Definitions Shift-complexity

The shift-complexity of a permutation

It can be shown that if $1<\beta\leq\beta'$, then

- $W(\beta) \subseteq W(\beta')$,
- Allow $(\Sigma_{\beta}) \subseteq \operatorname{Allow}(\Sigma_{\beta'}).$

Definition (*shift-complexity*)

For any permutation π , let

$$B(\pi) = \inf\{\beta : \pi \in \operatorname{Allow}(\Sigma_{\beta})\}.$$

Definitions Shift-complexity

The shift-complexity of a permutation

It can be shown that if $1<\beta\leq\beta'$, then

- $W(\beta) \subseteq W(\beta')$,
- Allow $(\Sigma_{\beta}) \subseteq \operatorname{Allow}(\Sigma_{\beta'}).$

Definition (*shift-complexity*)

For any permutation π , let

$$B(\pi) = \inf\{\beta : \pi \in \operatorname{Allow}(\Sigma_{\beta})\}.$$

We have that $N(\pi) = \lfloor B(\pi) \rfloor + 1$.

Our goal is to be able to determine $B(\pi)$ for an arbitrary π .

Examples Main theorem Tables

Another characterization of $B(\pi)$: statistics on words

For an infinite word $w = w_1 w_2 \ldots \neq 0^\infty$, let

• $\hat{b}(w) =$ unique solution with $\beta \geq 1$ of

$$\frac{w_1}{\beta} + \frac{w_2}{\beta^2} + \dots + \frac{w_n}{\beta^n} + \dots = 1,$$

Examples Main theorem Tables

Another characterization of $B(\pi)$: statistics on words

For an infinite word $w = w_1 w_2 \ldots \neq 0^\infty$, let

• $\hat{b}(w) =$ unique solution with $\beta \geq 1$ of

$$\frac{w_1}{\beta} + \frac{w_2}{\beta^2} + \dots + \frac{w_n}{\beta^n} + \dots = 1,$$

$$\flat \ b(w) = \sup_{k \ge 1} \hat{b}(w_k w_{k+1} \dots).$$

Examples Main theorem Tables

Another characterization of $B(\pi)$: statistics on words

For an infinite word $w = w_1 w_2 \ldots \neq 0^\infty$, let

• $\hat{b}(w) =$ unique solution with $\beta \geq 1$ of

$$\frac{w_1}{\beta} + \frac{w_2}{\beta^2} + \dots + \frac{w_n}{\beta^n} + \dots = 1,$$

$$\blacktriangleright b(w) = \sup_{k\geq 1} \hat{b}(w_k w_{k+1} \dots).$$

Proposition (E.)

 $B(\pi) = \inf\{b(w) : w \text{ induces } \pi\}.$

Examples Main theorem Tables

Another characterization of $B(\pi)$: statistics on words

For an infinite word $w = w_1 w_2 \ldots \neq 0^\infty$, let

• $\hat{b}(w) =$ unique solution with $\beta \geq 1$ of

$$\frac{w_1}{\beta} + \frac{w_2}{\beta^2} + \dots + \frac{w_n}{\beta^n} + \dots = 1,$$

$$\blacktriangleright b(w) = \sup_{k\geq 1} \hat{b}(w_k w_{k+1} \dots).$$

Proposition (E.)

 $B(\pi) = \inf\{b(w) : w \text{ induces } \pi\}.$

To compute $B(\pi)$, we'll find a word w inducing π such that b(w) is as small as possible.

Examples Main theorem Tables

Example

Goal: find a word w inducing π such that b(w) is small.

Examples Main theorem Tables

Example

Goal: find a word w inducing π such that b(w) is small.

・ロン ・回と ・ヨン ・ヨン

Examples Main theorem Tables

Example

Goal: find a word w inducing π such that b(w) is small.

・ロン ・回と ・ヨン ・ヨン

Examples Main theorem Tables

Example

Goal: find a word w inducing π such that b(w) is small.

・ロン ・回と ・ヨン ・ヨン

Examples Main theorem Tables

Example

Goal: find a word w inducing π such that b(w) is small.

・ロン ・回と ・ヨン ・ヨン

Examples Main theorem Tables

Example

Goal: find a word w inducing π such that b(w) is small.

・ロン ・回と ・ヨン ・ヨン

Examples Main theorem Tables

Example

Goal: find a word w inducing π such that b(w) is small.

・ロン ・回と ・ヨン ・ヨン

Examples Main theorem Tables

Example

Goal: find a word w inducing π such that b(w) is small.

・ロン ・回と ・ヨン ・ヨン

Examples Main theorem Tables

Example

Goal: find a word w inducing π such that b(w) is small.

・ロン ・回と ・ヨン ・ヨン

Examples Main theorem Tables

Example

Goal: find a word w inducing π such that b(w) is small.

・ロン ・回と ・ヨン ・ヨン

Examples Main theorem Tables

Example

Goal: find a word w inducing π such that b(w) is small.

 $\pi = 7 \quad 3 \quad 5 \quad 4 \quad 9 \quad 1 \quad 8 \quad 2 \quad 6 \\ w = 4 \quad 2 \quad 3 \quad 2 \quad 6 \quad 0 \quad 5 \quad 1 \quad ?$

・ロン ・回と ・ヨン ・ヨン

Examples Main theorem Tables

Example

Goal: find a word w inducing π such that b(w) is small.

Proposition

The entries $w_1 w_2 \dots w_{n-1}$ are forced (if minimizing # letters)

・ロト ・回ト ・ヨト ・ヨト

Examples Main theorem Tables

Example

Goal: find a word w inducing π such that b(w) is small.

 $\pi = 7 \quad 3 \quad 5 \quad 4 \quad 9 \quad 1 \quad 8 \quad 2 \quad 6 \\ w = 4 \quad 2 \quad 3 \quad 2 \quad 6 \quad 0 \quad 5 \quad 1 \quad ?$

Proposition

The entries $w_1w_2...w_{n-1}$ are forced (if minimizing # letters), and they can be completed into a word w that induces π .

Examples Main theorem Tables

Example

Goal: find a word w inducing π such that b(w) is small.

Proposition

The entries $w_1w_2 \dots w_{n-1}$ are forced (if minimizing # letters), and they can be completed into a word w that induces π .

Now we choose the entries $w_n w_{n+1} \dots$ in order to minimize b(w).

Examples Main theorem Tables

Example

Goal: find a word w inducing π such that b(w) is small.

Proposition

The entries $w_1w_2 \dots w_{n-1}$ are forced (if minimizing # letters), and they can be completed into a word w that induces π .

Now we choose the entries $w_n w_{n+1} \dots$ in order to minimize b(w).

Examples Main theorem Tables

Example

Goal: find a word w inducing π such that b(w) is small.

Proposition

The entries $w_1w_2 \dots w_{n-1}$ are forced (if minimizing # letters), and they can be completed into a word w that induces π .

Now we choose the entries $w_n w_{n+1} \dots$ in order to minimize b(w).

In this example, $B(\pi) = b(42326051330^{\infty}) = \hat{b}(6051330^{\infty}).$

(ロ) (同) (E) (E) (E)

Examples Main theorem Tables

Another example

Sergi Elizalde Permutations and β -shifts

・ロト ・回 ト ・ヨト ・ヨト
Examples Main theorem Tables

Another example

Sergi Elizalde Permutations and β -shifts

・ロト ・回 ト ・ヨト ・ヨト

Examples Main theorem Tables

Another example

・ロト ・回 ト ・ヨト ・ヨト

Examples Main theorem Tables

Another example

Sergi Elizalde Permutations and β -shifts

・ロト ・回 ト ・ヨト ・ヨト

Examples Main theorem Tables

Another example

Sergi Elizalde Permutations and β -shifts

Examples Main theorem Tables

Another example

・ロト ・回 ト ・ヨト ・ヨト

Examples Main theorem Tables

Another example

◆□ → ◆□ → ◆ □ → ◆ □ → ●

Examples Main theorem Tables

Another example

◆□▶ ◆□▶ ◆目▶ ◆目▶

Examples Main theorem Tables

Another example

Examples Main theorem Tables

Another example

Examples Main theorem Tables

Another example

Sergi Elizalde Permutations and β -shifts

イロン イヨン イヨン イヨン

Э

Examples Main theorem Tables

Another example

Sergi Elizalde Permutations and β -shifts

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Examples Main theorem Tables

Another example

In this example, letting $w^{(m)} = 2310(1202)^m 20^\infty$, we have

$$B(\pi) = \lim_{m \to \infty} b(w^{(m)}).$$

・ロン ・回 と ・ ヨ と ・ ヨ と

Examples Main theorem Tables

Computation of $B(\pi)$ in general

Given a finite word $u_1u_2\ldots u_r$, let

$$p_{u_1u_2\ldots u_r}(\beta)=\beta^r-u_1\beta^{r-1}-u_2\beta^{r-2}-\cdots-u_r.$$

イロト イヨト イヨト イヨト

Examples Main theorem Tables

Computation of $B(\pi)$ in general

Given a finite word $u_1u_2\ldots u_r$, let

$$p_{u_1u_2\ldots u_r}(\beta) = \beta^r - u_1\beta^{r-1} - u_2\beta^{r-2} - \cdots - u_r.$$

Theorem (E.) For $\pi \in S_n$, let $c = \pi(n)$, $\ell = \pi^{-1}(n)$, $k = \pi^{-1}(c-1)$, and let $w_1w_2 \dots w_{n-1}$ be the forced entries for w. Let

$$P_{\pi}(\beta) = \begin{cases} p_{w_{\ell}w_{\ell+1}...w_{n-1}}(\beta) & \text{if } c = 1, \\ p_{w_{\ell}w_{\ell+1}...w_{n-1}}w_{k}w_{k+1}...w_{\ell-1}}(\beta) - 1 & \text{if } c \neq 1, \ \ell > k, \\ p_{w_{\ell}w_{\ell+1}...w_{n-1}}(\beta) - p_{w_{\ell}w_{\ell+1}...w_{k-1}}(\beta) & \text{if } c \neq 1, \ \ell < k. \end{cases}$$

Then $B(\pi)$ is the unique real root with $\beta \geq 1$ of $P_{\pi}(\beta)$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Examples Main theorem Tables

Examples

For π = 735491826, the forced entries are w₁... w₈ = 42326051.

Here, $B(735491826) \approx 6.139428921$ is the root with $\beta \geq 1$ of

$$P_{\pi}(\beta) = p_{605133}(\beta) - 1 = \beta^6 - 6\beta^5 - 5\beta^3 - \beta^2 - 3\beta - 3.$$

イロト イヨト イヨト イヨト

Examples Main theorem Tables

Examples

For π = 735491826, the forced entries are w₁... w₈ = 42326051.

Here, $B(735491826) \approx 6.139428921$ is the root with $\beta \geq 1$ of

$$P_{\pi}(\beta) = p_{605133}(\beta) - 1 = \beta^6 - 6\beta^5 - 5\beta^3 - \beta^2 - 3\beta - 3.$$

For π = 893146275, the forced entries are w₁... w₈ = 23101202.

Here, $B(893146275) \approx 3.343618091$ is the root with $\beta \geq 1$ of

$$P_{\pi}(\beta) = p_{3101202}(\beta) - p_{310}(\beta) = \beta^7 - 3\beta^6 - \beta^5 - 2\beta^3 + \beta^2 + \beta - 2.$$

イロト イヨト イヨト イヨト

Examples Main theorem Tables

The shift-complexity of permutations of length ≤ 4

$\pi \in \mathcal{S}_2$	$\pi\in\mathcal{S}_3$	$\pi\in\mathcal{S}_4$	$B(\pi)$	$B(\pi)$ is a root of
12, 21	123, 231, 312	1234, 2341, 3412, 4123	1	$\beta - 1$
		1342, 2413, 3124, 4231	1.465571232	$\beta^{3} - \beta^{2} - 1$
	132, 213, 321	1243, 1324, 2431, 3142, 4312	$\frac{1+\sqrt{5}}{2} \approx 1.618033989$	$\beta^2 - \beta - 1$
		4213	1.801937736	$\beta^3 - \beta^2 - 2\beta + 1$
		1432, 2143, 3214, 4321	1.839286755	$\beta^3 - \beta^2 - \beta - 1$
		2134, 3241	2	$\beta - 2$
		4132	2.246979604	$\beta^{3} - 2\beta^{2} - \beta + 1$
		2314, 3421	$1 + \sqrt{2} \approx 2.414213562$	$\beta^2 - 2\beta - 1$
		1423	$\frac{3+\sqrt{5}}{2} \approx 2.618033989$	$\beta^2 - 3\beta + 1$

イロン 不同と 不同と 不同と

Permutations realized by a map Shifts β -shifts Computation of $B(\pi)$ Examples Main theorem Tables

The shift-complexity of permutations of length 5 (pg. 1)

$\pi\in\mathcal{S}_5$	$B(\pi)$	$B(\pi)$ is a root of
12345, 23451, 34512, 45123, 51234	1	$\beta - 1$
13452, 24513, 35124, 41235, 52341	1.380277569	$\beta^4 - \beta^3 - 1$
12453, 13524, 24135, 35241, 41352, 53412	1.465571232	$\beta^3 - \beta^2 - 1$
52413	1.558979878	$\beta^4 - \beta^3 - 2\beta + 1$
12354, 12435, 14253, 23541, 31425, 35412, 41253, 42531, 54123	$rac{1+\sqrt{5}}{2}pprox 1.6180$	$\beta^2 - \beta - 1$
53124	1.722083806	$\beta^4 - \beta^3 - \beta^2 - \beta + 1$
13542, 25413, 31254, 43125, 54231	1.754877666	$\beta^3 - 2\beta^2 + \beta - 1$
25314, 53142	1.801937736	$\beta^3 - \beta^2 - 2\beta + 1$
12543, 13254, 14325, 25431, 31542, 42153, 54312	1.839286755	$\beta^3 - \beta^2 - \beta - 1$
54213	1.905166168	$\beta^4 - \beta^3 - 2\beta^2 + 1$
53214	1.921289610	$\beta^4 - \beta^3 - \beta^2 - 2\beta + 1$
15432, 21543, 32154, 43215, 54321	1.927561975	$eta^4-eta^3-eta^2-eta-1$
13245, 21345, 24351, 31245, 32145, 32451, 42351, 43251, 43512	2	eta-2
51342	2.117688633	$\beta^4 - 2\beta^3 - \beta + 1$
51243	$\frac{1+\sqrt{5+4\sqrt{2}}}{2} \approx 2.1322$	$\beta^4-2\beta^3-\beta^2+2\beta-1$
34125, 42513, 45231	2.205569430	$\beta^3 - 2\beta^2 - 1$
35142, 45132, 51324	2.246979604	$\beta^{3} - 2\beta^{2} - \beta + 1$
14352, 25143, 32514, 41325, 52431	2.277452390	$eta^4-2eta^3-eta-1$
51432	2.296630263	$\beta^4 - 2\beta^3 - 2\beta + 1$
25134	2.324717957 < 🗆	$ A\beta^3 \vdash 3\beta^2 + 2\beta \ge 1 $

200

Sergi Elizalde

Permutations and β -shifts

The shift-complexity of permutations of length 5 (pg. 2)

$\pi\in\mathcal{S}_5$	$B(\pi)$	$B(\pi)$ is a root of
23514, 31452	2.359304086	$\beta^3 - 2\beta^2 - 2$
13425, 23415, 24531, 34152, 34521, 43152, 45312	$1+\sqrt{2}\approx 2.4142$	$\beta^2 - 2\beta - 1$
45213	2.481194304	$\beta^3 - 2\beta^2 - 2\beta + 2$
52143	2.496698205	$\beta^4 - 2\beta^3 - \beta^2 - \beta + 1$
52134	2.505068414	$\beta^4 - 3\beta^3 + \beta^2 + \beta - 1$
14532, 21453, 35214, 42135, 53241	2.521379707	$\beta^3 - 3\beta^2 + 2\beta - 2$
34215, 41532, 45321	2.546818277	$\beta^3 - 2\beta^2 - \beta - 1$
12534,14523,15234,21534,41523	$\frac{3+\sqrt{5}}{2} \approx 2.6180$	$\beta^{2} - 3\beta + 1$
14235, 25341	2.658967082	$\beta^3 - 2\beta^2 - \beta - 2$
52314	2.691739510	$\beta^4 - 2\beta^3 - 2\beta^2 + 1$
15342, 24153, 31524, 42315, 53421	2.696797189	$\beta^4 - 2\beta^3 - \beta^2 - 2\beta - 1$
21354, 21435, 32541	$1 + \sqrt{3} \approx 2.7320$	$\beta^2 - 2\beta - 2$
54132	2.774622899	$\beta^4 - 2\beta^3 - 3\beta^2 + 2\beta + 1$
23154, 24315, 35421	2.831177207	$\beta^3 - 2\beta^2 - 2\beta - 1$
15423	2.879385242	$\beta^{3} - 3\beta^{2} + 1$
15324	2.912229178	$\beta^{3} - 2\beta^{2} - 3\beta + 1$
23145, 34251	3	$\beta - 3$
51423	3.234022893	$\beta^4-4\beta^3+3\beta^2-2\beta+1$
32415, 43521	$\frac{3+\sqrt{13}}{2}\approx 3.3028$	$\beta^2 - 3\beta - 1$
15243	3.490863615	$\beta^3 - 3\beta^2 - 2\beta + 1$

Sergi Elizalde

<日本

-< ≣ >

 $() \land ()$

Examples Main theorem Tables

The highest shift-complexity

For each n, the permutation

$$\rho = 1 n 2 (n-1) 3 (n-2) \dots$$

has the highest shift-complexity in S_n .

||◆同 || ◆ 三 > | ◆ 三 >

Examples Main theorem Tables

The highest shift-complexity

For each n, the permutation

$$\rho = 1 n 2 (n-1) 3 (n-2) \dots$$

has the highest shift-complexity in S_n .

B(
ho) is the solution with eta>1 of

$$eta=n-2+rac{1}{eta}+rac{1}{eta+1}-rac{1}{eta^{n-2-\delta}(eta+1)}.$$
 $(\delta=n \mod 2)$

As *n* grows,

$$B(\rho) = n - 2 + \frac{2}{n} + O(\frac{1}{n^2}).$$

 $\begin{array}{c|c} \mbox{Permutations realized by a map} & \mbox{Examples} \\ & Shifts & Main theorem \\ & \beta-shifts & Tables \end{array}$

Thank you