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Permutations realized by a map Motivation

Definitions
Maps have forbidden patterns

Deterministic or random?

Two sequences of numbers in [0, 1]:

6416, .9198, .2951, .8320, .5590, .9861, .0550, .2078, .6584, .8996,
3612, .9230, .2844, .8141, .6054, ...

9129, 5257, .4475, .9815, .4134, .9930, .1576, .8825, .3391, .0659,
1195, 5742, .1507, .5534, .0828, ...

Which one is random? Which one is deterministic?
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Permutations realized by a map Motivation

Definitions
Maps have forbidden patterns

Deterministic or random?

Two sequences of numbers in [0, 1]:

.6416, .9198, .2951, .8320, .5590, .9861, .0550, .2078, .6584, .8996,
3612, .9230, .2844, .8141, .6054, ...

9129, 5257, .4475, .9815, .4134, .9930, .1576, .8825, .3391, .0659,
1195, 5742, .1507, .5534, .0828, ...

Which one is random? Which one is deterministic?

The first one is deterministic: taking f(x) = 4x(1 — x), we have

£(.6146) = 9198,
£(.9108) = 2951,
£(.2951) = .8320,
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Permutations realized by a map Motivation

Definitions
Maps have forbidden patterns

Allowed patterns of a map

Let X be a linearly ordered set, f : X — X. For each x € X and
n > 1, consider the sequence

x, f(x), fz(x), R f”fl(x).

Permutations and 3-shifts



Permutations realized by a map Motivation

Definitions
Maps have forbidden patterns

Allowed patterns of a map

Let X be a linearly ordered set, f : X — X. For each x € X and
n > 1, consider the sequence

x, f(x), fz(x), R f”fl(x).

If there are no repetitions, the relative order of the entries
determines a permutation, called an allowed pattern of f.
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Example

Permutations realized by a map

f: [0,1]

Maps have forbidden patterns

— [0,1]
— 4x(1 — x).
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Permutations realized by a map Motivation

Def ns
Maps have forbidden patterns

Example

f: [0,1] — [0,1]
x = 4x(1-x).

For x = 0.8 and n = 4, the sequence
0.8,
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Permutations realized by a map Motivation

Def ns
Maps have forbidden patterns

Example

f: [0,1] — [0,1]
x = 4x(1-x).

For x = 0.8 and n = 4, the sequence
0.8, 0.64,
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Permutations realized by a map

Maps have forbidden patterns

Example

f: [0,1] — [0,1]
x = 4x(1-x).

For x = 0.8 and n = 4, the sequence
0.8, 0.64, 0.9216,
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Permutations realized by a map Motivation

Definitions
Maps have forbidden patterns

Example

f: [0,1] — [0,1]
x = 4x(1-x).

For x = 0.8 and n = 4, the sequence
0.8, 0.64, 0.9216, 0.2890
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Permutations realized by a map Motivation

Definitions
Maps have forbidden patterns

Example

f: [0,1] — [0,1]
x = 4x(1-x).

For x = 0.8 and n = 4, the sequence
0.8, 0.64, 0.9216, 0.2890
determines the permutation 3241, so it is an allowed pattern.
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Permutations realized by a map Motivation

Definitions
Maps have forbidden patterns

Allowed and forbidden patterns

Allow(f) = set of allowed patterns of f.
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Permutations realized by a map Motivation

Definitions
Maps have forbidden patterns

Allowed and forbidden patterns

Allow(f) = set of allowed patterns of f.

Allow(f) is closed under consecutive pattern containment.

E.g., if 4156273 € Allow(f), then 2314 € Allow(f).
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Permutations realized by a map Motivation

Definitions
Maps have forbidden patterns

Allowed and forbidden patterns

Allow(f) = set of allowed patterns of f.

Allow(f) is closed under consecutive pattern containment.

E.g., if 4156273 € Allow(f), then 2314 € Allow(f).

The other permutations are called forbidden patterns of f.
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Permutations realized by a map Motivation

Definitions
Maps have forbidden patterns

Example: f(x) = 4x(1 — x)

Taking different x € [0, 1], the patterns 123,132,231,213,312 are
realized. However, 321 is a forbidden pattern of f.

f(x) f(£(x))
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Permutations realized by a map Motivation

Definitions
Maps have forbidden patterns

Example: f(x) = 4x(1 — x)

Taking different x € [0, 1], the patterns 123,132,231,213,312 are
realized. However, 321 is a forbidden pattern of f.

f(x) f(£(x))

123 132 231 213 31

Also forbidden: 1432,2431,3214, . ..

anything containing 321
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Permutations realized by a map Motivation

Definitions
Maps have forbidden patterns

Example: f(x) = 4x(1 — x)

Taking different x € [0, 1], the patterns 123,132,231,213,312 are
realized. However, 321 is a forbidden pattern of f.

f(x) f(£(x))

123 132 231 213 31

Also forbidden: 1432,2431,3214,...,1423,2134,2143,3142, 4231, . ..

anything containing 321  basic: not containing smaller forbidden patterns
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Permutations realized by a map Motivation

Definitions
Maps have forbidden patterns

Example: f(x) = 4x(1 — x)

Taking different x € [0, 1], the patterns 123,132,231,213,312 are
realized. However, 321 is a forbidden pattern of f.

f(x) f(£(x))

123 132 231 213 31

Also forbidden: 1432,2431,3214,...,1423,2134,2143,3142, 4231, . ..

anything containing 321  basic: not containing smaller forbidden patterns

Theorem (E.-Liu): f has infinitely many basic forbidden patterns.



Permutations realized by a map Motivation

Definitions
Maps have forbidden patterns

Forbidden patterns

Let | C R be a closed interval.

Theorem (Bandt-Keller-Pompe '02)
Every piecewise monotone map f : | — | has forbidden patterns.
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Permutations realized by a map Motivation

Definitions
Maps have forbidden patterns

Forbidden patterns

Let | C R be a closed interval.

Theorem (Bandt-Keller-Pompe '02)
Every piecewise monotone map f : | — | has forbidden patterns.

Piecewise monotone: there is a finite partition of / into intervals such that f is

continuous and strictly monotone on each interval.
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Permutations realized by a map Motivation

Definitions
Maps have forbidden patterns

Forbidden patterns

Let | C R be a closed interval.

Theorem (Bandt-Keller-Pompe '02)
Every piecewise monotone map f : | — | has forbidden patterns.

Piecewise monotone: there is a finite partition of / into intervals such that f is

continuous and strictly monotone on each interval.

Understanding the set of forbidden patterns of a given f is a
difficult problem in general.

Permutations and 3-shifts



Permutations realized by a map Motivation

Definitions
Maps have forbidden patterns

Deterministic vs. random sequences

Back to the original sequence:

6416, .9108, .2951, .8320, .5590, .9861, .0550, .2078, .6584, .8996, .3612,
19230, .2844, .8141, .6054, ...

We see that the pattern 321 is missing from it.
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Permutations realized by a map Motivation

Definitions
Maps have forbidden patterns

Deterministic vs. random sequences

Back to the original sequence:

6416, .9108, .2951, .8320, .5590, .9861, .0550, .2078, .6584, .8996, .3612,
19230, .2844, .8141, .6054, ...

We see that the pattern 321 is missing from it.

This suggests that the sequence is of the form x;;1 = f(x;) for
some f.
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Permutations realized by a map Motivation

Definitions
Maps have forbidden patterns

Deterministic vs. random sequences

Back to the original sequence:

.6416, .9198, .2951, .8320, .5590, .9861, .0550, .2078, .6584, .8996, .3612,
19230, .2844, .8141, .6054, ...
We see that the pattern 321 is missing from it.

This suggests that the sequence is of the form x;;1 = f(x;) for
some f.

If it was a random sequence, any pattern would eventually appear.
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Definitions
Forbidden patterns of shifts
N(7)

Shift maps

For N >2, let Wy = {0,1,..., N—1}" be the set of infinite words
on N letters, equipped with the lexicographic order.
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Definitions
Forbidden patterns of shifts
N(7)

Shift maps

For N >2, let Wy = {0,1,..., N—1}" be the set of infinite words
on N letters, equipped with the lexicographic order.

Define the shift on N letters:
Z/\/ . WN — WN

wiwows ... — Worw3zwy . ..
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Definitions
Forbidden patterns of shifts
N(m)

Shifts

Shift maps

For N >2, let Wy = {0,1,..., N—1}" be the set of infinite words
on N letters, equipped with the lexicographic order.

Define the shift on N letters:
Z/\/ . WN — WN

wiwows ... — Worw3zwy . ..

Thinking of words as expansions in base N of numbers in [0, 1),
>y is “equivalent” to the sawtooth map

v Y~ 0 / / / / /
///

(fractional part)
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Example

Shifts

Definitions
Forbidden patterns of shifts
N(7)

The permutation 4217536 is realized (i.e., allowed) by >3, because
taking w = 2102212210... € W3, we have

w = 2102212210. ..
¥ 3(w) = 102212210. ..
7 32(w) = 02212210. ..
> 33(w) = 2212210. ..
34 (w) = 212210. ..

¥ 55(w) = 12210...

7 3%(w) =2210...

4

S W1 N =N

\

lexicographic order
of the shifted words
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Definitions
Forbidden patterns of shifts
N(m)

Shifts

Example

The permutation 4217536 is realized (i.e., allowed) by >3, because
taking w = 2102212210... € W3, we have

w = 2102212210. .. 4 )
¥ 3(w) = 102212210. ..
7 32(w) = 02212210. ..

> 33(w) = 2212210. ..
34 (w) = 212210. ..
¥ 55(w) = 12210...

7 3%(w) =2210...

lexicographic order
of the shifted words

S W1 N =N

We say that w induces 4217536.
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Definitions
Forbidden patterns of shifts
N(7)

Shifts

Forbidden patterns of shifts

Theorem (Amigd-E.-Kennel)

>y has no forbidden patterns of length n < N + 1, but it has
forbidden patterns of each length n > N + 2.
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. Definitions
Shifts Forbidden patterns of shifts
N(7)

Forbidden patterns of shifts

Theorem (Amigd-E.-Kennel)

>y has no forbidden patterns of length n < N + 1, but it has
forbidden patterns of each length n > N + 2.

Proposition (E.)
> n has exactly 6 forbidden patterns of length N + 2.
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Definitions
Forbidden patterns of shifts
N(7)

Shifts

Forbidden patterns of shifts

Theorem (Amigd-E.-Kennel)

>y has no forbidden patterns of length n < N + 1, but it has
forbidden patterns of each length n > N + 2.

Proposition (E.)
> n has exactly 6 forbidden patterns of length N + 2.

Example
The shortest forbidden patterns of >, are

615243,324156, 342516, 162534, 453621, 435261.
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Definitions
Forbidden patterns of shifts
N(r)

The smallest # of letters needed to realize a pattern

For m € S, let  N(w) = min{N : 7 € Allow(>)}.
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Definitions
Forbidden patterns of shifts
N(r)

Shifts

The smallest # of letters needed to realize a pattern

For m € S, let  N(w) = min{N : 7 € Allow(>)}.

Theorem (E.):  N(7) =1+ des(7) + (7).
0 1
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Definitions
Forbidden patterns of shifts
N(r)

Shifts

The smallest # of letters needed to realize a pattern

For m € S, let  N(w) = min{N : 7 € Allow(>)}.

Theorem (E.):  N(7) =1+ des(7) + (7).
0 1

An example of what 7 is:

7 = 892364157 ~ (8,9,2,3,6,4,1,5,7) ~ 536174892 ~~ 536174x92 = #
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Definitions
Forbidden patterns of shifts
N(r)

Shifts

The smallest # of letters needed to realize a pattern

For m € S, let  N(w) = min{N : 7 € Allow(>)}.

Theorem (E.):  N(7) =1+ des(7) + (7).
0 1

An example of what 7 is:

7 = 892364157 ~ (8,9,2,3,6,4,1,5,7) ~ 536174892 ~~ 536174x92 = #

des(7) = des(536174%92) = 4
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Definitions
Forbidden patterns of shifts
N(r)

Shifts

The smallest # of letters needed to realize a pattern

For m € S, let  N(w) = min{N : 7 € Allow(>)}.

Theorem (E.):  N(7) =1+ des(7) + (7).
0 1

An example of what 7 is:

m = 892364157 ~~ (8,9,2,3,6,4,1,5,7) ~~ 536174892 ~~ 536174x92 = 7
des(7) = des(536174%92) = 4
N(892364157) =1+4+0=05
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Definitions
Forbidden patterns of shifts
N(r)

Shifts

The smallest # of letters needed to realize a pattern

For m € S, let  N(w) = min{N : 7 € Allow(>)}.

Theorem (E.):  N(7) =1+ des(7) + (7).
0 1

An example of what 7 is:

m = 892364157 ~~ (8,9,2,3,6,4,1,5,7) ~~ 536174892 ~~ 536174x92 = 7
des(7) = des(536174%92) = 4
N(892364157) =1+4+0=05

We have a (complicated) formula for the number of permutations
in S, that are realized by >, for given n and N.
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Definitions
3-shifts Shift-complexity

(-shifts

» Natural generalization of shifts.
» Widely studied in the literature from the perspective of
measure theory, automata theory, and number theory.
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Definitions
3-shifts Shift-complexity

(-shifts

» Natural generalization of shifts.
» Widely studied in the literature from the perspective of
measure theory, automata theory, and number theory.

For a real number 8 > 1, let Mj be the B-sawtooth map

Ms: [0,1) — [0,1)
x — {0x}
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Definitions
3-shifts Shift-complexity

(-shifts

» Natural generalization of shifts.
» Widely studied in the literature from the perspective of
measure theory, automata theory, and number theory.

For a real number 8 > 1, let Mj be the B-sawtooth map

Mgs: [0,1) — [0,1)
X —  {0x}

We would like to define the G-shift as
Ys we) — W)
wiwows ... — WowszWy . ..
for some set W([3).



Definitions
3-shifts Shift-complexity

The domain of 3

>3 W(p) — W(p)

wiwows ... — Worw3zwy . ..
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Definitions
3-shifts Shift-complexity

The domain of 3

>3 W(p) — W(p)

wiwows ... — Worw3zwy . ..

For M; and > 5 to be “equivalent”, W([3) should be the set of
words given by expansions in base 3 of numbers x € [0, 1):
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Definitions
3-shifts Shift-complexity

The domain of 3

>3 W(p) — W(p)

wiwows ... — Worw3zwy . ..

For M3 and > ; to be “equivalent”, W(03) should be the set of
words given by expansions in base 3 of numbers x € [0, 1):

w1 w2
X=—+—

with
wi = [Bx],
wa = [B{Bx}],

ws = [B{B{Bx}}],
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Definitions
3-shifts Shift-complexity

The domain of 3

>3 W(p) — W(p)

wiwows ... — Worw3zwy . ..

Theorem (Parry '60)
Let

al an
B=ay+ —+—
B B

be the [3-expansion of 3. Then (up to small technicalities)

W(ﬂ) = {W1W2W3 ce DWW A W2 - <ex A0d1d2 ... for all k > 1}.
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Definitions
3-shifts Shift-complexity

The domain of 3

>3 W(p) — W(p)

wiwows ... — Worw3zwy . ..

W(ﬂ) = {W1W2W3 ce DWW A W2 e <Jex A0d1d2 ... for all kK > 1}.
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Definitions
3-shifts Shift-complexity

The domain of 3

Yoo W(E) —  W(p)
wiwows ... — Worw3zwy . ..
W(ﬂ) = {W1W2W3 ce DWW A W2 e <Jex A0d1d2 ... for all kK > 1}.
Example
» For 3= N € Z, agaiarz... = NOO... = NO*°,

W(N) =Wy = {0,1,..., N—1}}.
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Definitions
3-shifts Shift-complexity

The domain of 3

Yoo W(E) —  W(p)
wiwows ... — Worw3zwy . ..
W(ﬂ) = {W1W2W3 ce DWW A W2 e <Jex A0d1d2 ... for all kK > 1}.
Example
» For 3= N € Z, agaiarz... = NOO... = NO*°,

W(N) =Wy = {0,1,..., N—1}}.

» For B=1++/72, agaaz ... = 210>,
W(3) = words over {0,1,2} where every 2 is followed by a 0.
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Definitions
3-shifts Shift-complexity

The shift-complexity of a permutation

It can be shown that if 1 < 3 < [/, then

> W(B) € W(p),
> A”OW(Zg) - A”OW(Z;;/).
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Definitions
3-shifts Shift-complexity

The shift-complexity of a permutation

It can be shown that if 1 < 3 < [/, then

> W(B) € W(p),
> A”OW(Zg) - A”OW(Z;;/).

Definition (shift-complexity)

For any permutation 7, let

B(m) = inf{3: 7 € Allow(>3)}.
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Definitions
3-shifts Shift-complexity

The shift-complexity of a permutation

It can be shown that if 1 < 3 < [/, then
> W(B) € W(g),
> Allow(% ;) C Allow(Z ).

Definition (shift-complexity)

For any permutation 7, let

B(m) = inf{3: 7 € Allow(>3)}.

We have that N(7) = |B(m)] + 1.

Our goal is to be able to determine B(7) for an arbitrary .
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Examples
Main theorem

Computation of B(m) Tables

Another characterization of B(7): statistics on words

For an infinite word w = wyws ... # 0%, let

» b(w) = unique solution with 3 > 1 of

wy wo Wp
— = =1,
B pr
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Examples
Main theorem

Computation of B(m) Tables

Another characterization of B(7): statistics on words

For an infinite word w = wyws ... # 0%, let
» b(w) = unique solution with 3 > 1 of
Wi W Wy,
— =1
BB B

> b(W) = SUPg>1 B(Wka+1 - )
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Examples
Main theorem

Computation of B(m) Tables

Another characterization of B(7): statistics on words

For an infinite word w = wyws ... # 0%, let

» b(w) = unique solution with 3 > 1 of
Wi wa Wh
— =1
BB I

> b(W) = SUPg>1 B(Wka+1 - )

Proposition (E.)
B(m) = inf{b(w) : w induces 7}.
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Examples
Main theorem

Computation of B(m) Tables

Another characterization of B(7): statistics on words

For an infinite word w = wyws ... # 0%, let

» b(w) = unique solution with 3 > 1 of
Wi wa Wh
— =1
BB I

> b(W) = SUPg>1 B(Wka+1 - )

Proposition (E.)
B(m) = inf{b(w) : w induces 7}.

To compute B(w), we'll find a word w inducing 7 such that b(w)
is as small as possible.
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Examples
Main theorem

Computation of B(m) Tables

Example

Goal: find a word w inducing 7 such that b(w) is small.
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Examples
Main theorem

Computation of B(m) Tables

Example

Goal: find a word w inducing 7 such that b(w) is small.

= 7 3 5 4 9 1 8 2 6
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Examples
Main theorem

Computation of B(m) Tables

Example

Goal: find a word w inducing 7 such that b(w) is small.

mT= 7 35 4 91 8 2 6
w = 0
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Examples
Main theorem

Computation of B(m) Tables

Example

Goal: find a word w inducing 7 such that b(w) is small.

T= 7 3 5 4 9 1 8 2 6
w= 0 1
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Examples
Main theorem

Computation of B(m) Tables

Example

Goal: find a word w inducing 7 such that b(w) is small.

= 7 3 5 4 9 1 8 2 6
w = 2 0 1
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Examples
Main theorem

Computation of B(m) Tables

Example

Goal: find a word w inducing 7 such that b(w) is small.

= 7 3 5 4 9 1 8 2 6
2 2 0 1
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Examples
Main theorem

Computation of B(m) Tables

Example

Goal: find a word w inducing 7 such that b(w) is small.

mT= 7 3 5 4 9

1 8 2 6
w = 2 3 2 0 1

Permutations and 3-shifts



Examples
Main theorem

Computation of B(m) Tables

Example

Goal: find a word w inducing 7 such that b(w) is small.

T= 7 3 5 4 9

1 8 2 6
w = 2 3 2 0 17
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Examples
Main theorem

Computation of B(m) Tables

Example

Goal: find a word w inducing 7 such that b(w) is small.
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Examples
Main theorem

Computation of B(m) Tables

Example

Goal: find a word w inducing 7 such that b(w) is small.

T= 7 3 5 4 9 18 26
w= 4 2 3 2 0517
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Examples
Main theorem

Computation of B(m) Tables

Example

Goal: find a word w inducing 7 such that b(w) is small.
=7 3 5 4 9 18 26
w= 423 26 0517
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Examples
Main theorem

Computation of B(m) Tables

Example

Goal: find a word w inducing 7 such that b(w) is small.
=7 3 5 4 9 18 26
w= 423 26 0517
Proposition

The entries wiws . .. w,_1 are forced (if minimizing # letters)
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Examples
Main theorem

Computation of B(m) Tables

Example

Goal: find a word w inducing 7 such that b(w) is small.
=7 3 5 4 9 18 26
w= 423 26 0517
Proposition

The entries wiws . .. w,_1 are forced (if minimizing # letters) ,
and they can be completed into a word w that induces .
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Examples
Main theorem

Computation of B(m) Tables

Example

Goal: find a word w inducing 7 such that b(w) is small.
=7 3 5 4 9 18 26
w= 423 26 0517
Proposition

The entries wiws . .. w,_1 are forced (if minimizing # letters) ,
and they can be completed into a word w that induces .

Now we choose the entries w,wy, 11 ... in order to minimize b(w).
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Examples
Main theorem

Computation of B(m) Tables

Example

Goal: find a word w inducing 7 such that b(w) is small.
mT= 7 3 5 4 918 26
w= 423 2605133 0%
Proposition

The entries wiws . .. w,_1 are forced (if minimizing # letters) ,
and they can be completed into a word w that induces .

Now we choose the entries w,wy, 11 ... in order to minimize b(w).
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Examples
Main theorem

Computation of B(m) Tables

Example

Goal: find a word w inducing 7 such that b(w) is small.
mT= 7 3 5 4 918 26
w= 423 2605133 0%
Proposition

The entries wiws . .. w,_1 are forced (if minimizing # letters) ,
and they can be completed into a word w that induces .

Now we choose the entries w,wy, 11 ... in order to minimize b(w).

In this example,  B(m) = b(42326051330™) = h(6051330).
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Examples
Main theorem

Computation of B(m) Tables

Another example

T=8 93146275
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Examples
Main theorem

Computation of B(m) Tables

Another example

T=8 93146275

w = 0
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Examples
Main theorem

Computation of B(m) Tables

Another example
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Examples
Main theorem

Computation of B(m) Tables

Another example
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Examples
Main theorem

Computation of B(m) Tables

Another example

O =
o N
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Examples
Main theorem

Computation of B(m) Tables

Another example

O =
o N
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Examples
Main theorem

Computation of B(m) Tables

Another example

O =
—_
N O
o N
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Examples
Main theorem

Computation of B(m) Tables

Another example

O =
—_
N O
o N
N~
~ Ol
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Examples
Main theorem

Computation of B(m) Tables

Another example

O =
—_
N O
O N
N~
~ Ol
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Examples
Main theorem

Computation of B(m) Tables

Another example

3
1

O =
—_
N O
O N
N~
~ Ol
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Examples
Main theorem

Computation of B(m) Tables

Another example

3
1

O =
—_
N O
O N
N~
= ol

3% (one possibility)
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Examples
Main theorem

Computation of B(m) Tables

Another example

™= 8 9 3 1 4 6 2 7 5
w= 2 3 1 0 1 2 0 2 1 3 (one possibility)
w= 2 3 1012021202 2 0% (smallrb)
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Examples
Main theorem

Computation of B(m) Tables

Another example

™= 8 9 3 1 4 6 2 7 5
w= 2 3 1 0 1 2 0 2 1 3 (one possibility)
w= 2 3 1012021202 2 0% (smallrb)

In this example, letting w(™ = 2310(1202)"20>°, we have

B(x) = lim b(w(™).

m—0o0

Permutations and 3-shifts



Examples
Main theorem

Computation of B(m) Tables

Computation of B() in general

Given a finite word uqus ... uy, let

pulug...u,(ﬁ) = ﬂr — Ulﬁr_l — U2ﬂr_2 — = u,.
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Computation of B() in general

Given a finite word uqus ... uy, let

pulug...u,(ﬁ) = ﬂr — Ulﬁr_l — U2ﬂr_2 — = u,.

Theorem (E.)
For m € Sy, let c = m(n), £ =77(n), k =7"Y(c—1), and let

WiWs ... W,_1 be the forced entries for w. Let

pWZWZ+1---Wn—1(ﬂ) ifc=1,
Pﬂ'(ﬂ) = pW[W[+1...W,,_1Wka+1...We_1(ﬁ) - ]- IfC # ]., 6 > k,
Pwewesswo1(B) = Pwewpirw1(B) ifc#1, £ < k.

Then B(r) is the unique real root with 3 > 1 of P.([3).
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» For m = 735491826, the forced entries are
Wwi...Wg = 42326051.

Here, B(735491826) ~ 6.139428921 is the root with § > 1 of

P+(8) = peos133(8) — 1 = #° — 63°> — 53° — 3> — 33 — 3.

Permutations and 3-shifts



Examples
Main theorem

Computation of B(m) Tables

Examples

» For m = 735491826, the forced entries are
wy ... wg = 42326051.

Here, 3(735491826) ~ 6.139428921 is the root with § > 1 of
P+(B) = peos133(8) — 1 = 3° — 63° — 53 — B — 35 — 3.

» For m = 893146275, the forced entries are
wy ... wg = 23101202.

Here, B(893146275) ~ 3.343618091 is the root with § > 1 of

P+(8) = p3101202(3)—p310(B) = B’ —38°—3° -2+ 3%+ p-2.
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The shift-complexity of permutations of length < 4

TeS m™ESs3 T E Sy B() B(m) is a root of
12,21 | 123,231, 312 1234, 2341, 3412, 4123 1 B—1
1342, 2413, 3124, 4231 1.465571232 8> —p82—1
132,213,321 | 1243, 1324, 2431, 3142, 4312 | 158 ~ 1.618033989 B2—B—1
4213 1.801937736 83— BZ—28+1
1432, 2143, 3214, 4321 1.839286755 3 —pB—B—1
2134, 3241 2 B—2
4132 2.246979604 B3 —282 —p+1
2314, 3421 1+ 2 ~ 2.414213562 B2 —28—1
1423 35 ~ 2.618033989 B2 —-38+1




Examples
Main theorem

Computation of B(m) Tables

The shift-complexity of permutations of length 5 (pg. 1)

meSs B(x) B(m) is a root of
12345, 23451, 34512, 45123, 51234 1 B—1
13452, 24513, 35124, 41235, 52341 1.380277569 B — 3 —1
12453, 13524, 24135, 35241, 41352, 53412 1.465571232 B -7 -1
52413 1.558979878 Y —B3—28+1
12354, 12435, 14253, 23541, 31425
35412, 41253, 42531, 54123 Lf ~ 1.6180 82— 51
53124 1.722083806 B —p* - —p+1
13542, 25413, 31254, 43125, 54231 1.754877666 B3 —282+8—-1
25314, 53142 1.801937736 83 —B%2—28+1
12543, 13254, 14325, 25431, 31542, 42153, 54312 1.839286755 B _—pB-1
54213 1.905166168 BY -3 —287+1
53214 1.921289610 B B3 —pZ—28+1
15432, 21543, 32154, 43215, 54321 1.927561975 B* - —pB>-—8-1
13245, 21345, 24351, 31245, 32145, ) 52
32451, 42351, 43251, 43512
51342 2.117688633 B —285—B+1
51243 w ~21322 | g4 —283 -2 +28—1
34125, 42513, 45231 2.205569430 B3 —287 -1
35142, 45132, 51324 2.246979604 B3 —282-—pB+1
14352, 25143, 32514, 41325, 52431 2.277452390 B*—283—_pB—1
51432 2.296630263 BY —28° —28+1
25134 2.324717957 8% —332+28=1
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The shift-complexity of permutations of length 5 (pg. 2)

TESs B(~) B() is a root of
23514, 31452 2.359304086 83— 282 -2
13425, 23415, 24531, 34152, 34521, 43152, 45312 | 1+ /2 ~ 2.4142 B2 —28—1
45213 2.481104304 33— 287 —23+2
52143 2.496698205 B 233 — 32— pB+1
52134 2.505068414 Y333+ 87+ —1
14532, 21453, 35214, 42135, 53241 2.521379707 B3 —3321+28 -2
34215, 41532, 45321 2.546818277 B3 282 —B—1
12534, 14523, 15234, 21534, 41523 % ~ 2.6180 B2 —-33+1
14235, 25341 2.658967082 B3 —282 —B—2
52314 2.691739510 B —23% —28%2+1
15342, 24153, 31524, 42315, 53421 2.696797189 B —28%5 — B2 —28—-1
21354, 21435, 32541 1+ 3~ 2.7320 B2 —28—2
54132 2.774622899 B —28% — 332 +28+1
23154, 24315, 35421 2.831177207 B3 —287 —28—1
15423 2.879385242 B3 —337 +1
15324 2.912229178 B3 —28%2-38+1
23145, 34251 3 B—3
51423 3.234022893 B* — 485 +38%2 —28+1
32415, 43521 313 33028 82361
15243 3.490863615 83 —382—28+1
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The highest shift-complexity

For each n, the permutation
p=1n2(n-1)3(n-2) ...

has the highest shift-complexity in S,.
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The highest shift-complexity

For each n, the permutation
p=1n2(n-1)3(n-2) ...
has the highest shift-complexity in S,.

B(p) is the solution with 5 > 1 of

3 24 1 n 1 1
=n-— — — .
ﬁ ﬁ+1 ﬁ"_2_5(ﬂ+1) (6=n mod 2)

As n grows,
2 1
B =n—2+4+ - —).
(p)=n—-2+—+0(3)

Permutations and 3-shifts



Examples
Main theorem
Tables

Computation of B(m)

Thank you

rmutations and -



	Permutations realized by a map
	Motivation
	Definitions
	Maps have forbidden patterns

	Shifts
	Definitions
	Forbidden patterns of shifts
	N()

	-shifts
	Definitions
	Shift-complexity

	Computation of B()
	Examples
	Main theorem
	Tables


