The Structure of the Consecutive Pattern Poset

Sergi Elizalde

Dartmouth College

Joint work with Peter McNamara

MIT Combinatorics Seminar
\% March 17, 2017 \&

Outline

- Classical and consecutive patterns
- The consecutive pattern poset
- Results
- Open problems

Classical patterns

Definition. An occurrence of a permutation σ as a pattern in a permutation τ is a subsequence of τ whose letters are in the same relative order as those in σ.

Examples.

- 231 occurs in twice in 416325: 416325 and 416325.

Classical patterns

Definition. An occurrence of a permutation σ as a pattern in a permutation τ is a subsequence of τ whose letters are in the same relative order as those in σ.

Examples.

- 231 occurs in twice in 416325: 416325 and 416325.
- An inversion in τ is an occurrence of 21, e.g. 1423.

Classical patterns

Definition. An occurrence of a permutation σ as a pattern in a permutation τ is a subsequence of τ whose letters are in the same relative order as those in σ.

Examples.

- 231 occurs in twice in 416325: 416325 and 416325.
- An inversion in τ is an occurrence of 21, e.g. 1423.

Big research area in the last three decades.
Knuth (1975): For any permutation $\sigma \in S_{3}$, the number of permutations in S_{n} avoiding σ is C_{n}.

Open: find a formula for the number permutations avoiding 1324.

Classical patterns

Definition. An occurrence of a permutation σ as a pattern in a permutation τ is a subsequence of τ whose letters are in the same relative order as those in σ.

Examples.

- 231 occurs in twice in 416325: 416325 and 416325.
- An inversion in τ is an occurrence of 21, e.g. 1423.

Big research area in the last three decades.
Knuth (1975): For any permutation $\sigma \in S_{3}$, the number of permutations in S_{n} avoiding σ is C_{n}.

Open: find a formula for the number permutations avoiding 1324.
This is NOT the definition that we will focus on.

Consecutive patterns

Definition. An occurrence of a consecutive pattern σ in a permutation τ is a subsequence of adjacent letters of τ in the same relative order as those in σ.

Consecutive patterns

Definition. An occurrence of a consecutive pattern σ in a permutation τ is a subsequence of adjacent letters of τ in the same relative order as those in σ.

When not specified, patterns will be consecutive patterns in this talk.
Examples.

- 123 occurs twice in 7245136: 7245136 and 7245136.

Consecutive patterns

Definition. An occurrence of a consecutive pattern σ in a permutation τ is a subsequence of adjacent letters of τ in the same relative order as those in σ.

When not specified, patterns will be consecutive patterns in this talk.
Examples.

- 123 occurs twice in 7245136: 7245136 and 7245136.
- 416325 avoids 231.

Consecutive patterns

Definition. An occurrence of a consecutive pattern σ in a permutation τ is a subsequence of adjacent letters of τ in the same relative order as those in σ.
When not specified, patterns will be consecutive patterns in this talk.
Examples.

- 123 occurs twice in 7245136: 7245136 and 7245136.
- 416325 avoids 231.
- A descent in τ is an occurrence of 21, e.g. 4132 and 4132 .

Consecutive patterns

Definition. An occurrence of a consecutive pattern σ in a permutation τ is a subsequence of adjacent letters of τ in the same relative order as those in σ.
When not specified, patterns will be consecutive patterns in this talk.
Examples.

- 123 occurs twice in 7245136: 7245136 and 7245136.
- 416325 avoids 231.
- A descent in τ is an occurrence of 21, e.g. 4132 and 4132.
- A peak is an occurrence of 132 or 231, e.g. 13425.

Consecutive patterns

Definition. An occurrence of a consecutive pattern σ in a permutation τ is a subsequence of adjacent letters of τ in the same relative order as those in σ.
When not specified, patterns will be consecutive patterns in this talk.
Examples.

- 123 occurs twice in 7245136: 7245136 and 7245136.
- 416325 avoids 231.
- A descent in τ is an occurrence of 21, e.g. 4132 and 4132.
- A peak is an occurrence of 132 or 231, e.g. 13425.
- A permutation is alternating (up-down or down-up) iff it avoids 123 and 321.

Consecutive patterns

Definition. An occurrence of a consecutive pattern σ in a permutation τ is a subsequence of adjacent letters of τ in the same relative order as those in σ.

When not specified, patterns will be consecutive patterns in this talk.
Examples.

- 123 occurs twice in 7245136: 7245136 and 7245136.
- 416325 avoids 231.
- A descent in τ is an occurrence of 21, e.g. 4132 and 4132.
- A peak is an occurrence of 132 or 231, e.g. 13425.
- A permutation is alternating (up-down or down-up) iff it avoids 123 and 321.
Consecutive patterns arise naturally in dynamical systems, and play a role in distinguishing deterministic from random sequences.

Consecutive patterns

Definition. An occurrence of a consecutive pattern σ in a permutation τ is a subsequence of adjacent letters of τ in the same relative order as those in σ.
When not specified, patterns will be consecutive patterns in this talk.
Examples.

- 123 occurs twice in 7245136: 7245136 and 7245136 .
- 416325 avoids 231.
- A descent in τ is an occurrence of 21, e.g. 4132 and 4132.
- A peak is an occurrence of 132 or 231, e.g. 13425.
- A permutation is alternating (up-down or down-up) iff it avoids 123 and 321.

Consecutive patterns arise naturally in dynamical systems, and play a role in distinguishing deterministic from random sequences.
Work in the area by Aldred, Amigó, Atkinson, Bandt, Baxter, Bernini, Bóna, Dotsenko, Duane, Dwyer, Ehrenborg, Ferrari, Keller, Kennel, Khoroshkin, Kitaev, Liese, Liu, Mansour, McCaughan, Mendes, Nakamura, Noy, Perarnau, Perry, Pompe, Pudwell, Rawlings, Remmel, Sagan, Shapiro, Steingrímsson, Warlimont, Willenbring, Zeilberger ...

A sample of known results on consecutive patterns

For a fixed pattern σ, let

$$
P_{\sigma}(u, z)=\sum_{n \geq 0} \sum_{\pi \in S_{n}} u^{\#\{\text { occurrences of } \sigma \text { in } \pi\}} \frac{z^{n}}{n!}
$$

A sample of known results on consecutive patterns

For a fixed pattern σ, let

$$
\begin{aligned}
P_{\sigma}(u, z) & =\sum_{n \geq 0} \sum_{\pi \in S_{n}} u^{\#\{\text { occurrences of } \sigma \text { in } \pi\}} \frac{z^{n}}{n!} \\
P_{\sigma}(0, z)= & \sum_{n \geq 0} \alpha_{n}(\sigma) \frac{z^{n}}{n!} \\
& \text { where } \alpha_{n}(\sigma)=\#\left\{\pi \in S_{n}: \pi \text { avoids } \sigma\right\} .
\end{aligned}
$$

A sample of known results on consecutive patterns

For a fixed pattern σ, let

$$
\begin{aligned}
P_{\sigma}(u, z) & =\sum_{n \geq 0} \sum_{\pi \in S_{n}} u^{\#\{\text { occurrences of } \sigma \text { in } \pi\}} \frac{z^{n}}{n!} \\
P_{\sigma}(0, z) & =\sum_{n \geq 0} \alpha_{n}(\sigma) \frac{z^{n}}{n!} \\
& \text { where } \alpha_{n}(\sigma)=\#\left\{\pi \in S_{n}: \pi \text { avoids } \sigma\right\} .
\end{aligned}
$$

1. Exact enumeration: Formulas for $P_{\sigma}(u, z)$ are known for some σ.

A sample of known results on consecutive patterns

For a fixed pattern σ, let

$$
\begin{aligned}
P_{\sigma}(u, z) & =\sum_{n \geq 0} \sum_{\pi \in S_{n}} u^{\#\{\text { occurrences of } \sigma \text { in } \pi\}} \frac{z^{n}}{n!} \\
P_{\sigma}(0, z) & =\sum_{n \geq 0} \alpha_{n}(\sigma) \frac{z^{n}}{n!} \\
& \text { where } \alpha_{n}(\sigma)=\#\left\{\pi \in S_{n}: \pi \text { avoids } \sigma\right\} .
\end{aligned}
$$

1. Exact enumeration: Formulas for $P_{\sigma}(u, z)$ are known for some σ.

Examples:

$$
\begin{aligned}
P_{132}(u, z) & =\left(1-\int_{0}^{z} e^{(u-1) t^{2} / 2} d t\right)^{-1} \\
P_{1234}(0, z) & =\frac{2}{\cos z-\sin z+e^{-z}}
\end{aligned}
$$

A sample of known results on consecutive patterns

For a fixed pattern σ, let

$$
\begin{aligned}
P_{\sigma}(u, z) & =\sum_{n \geq 0} \sum_{\pi \in S_{n}} u^{\#\{\text { occurrences of } \sigma \text { in } \pi\}} \frac{z^{n}}{n!} \\
P_{\sigma}(0, z) & =\sum_{n \geq 0} \alpha_{n}(\sigma) \frac{z^{n}}{n!} \\
& \text { where } \alpha_{n}(\sigma)=\#\left\{\pi \in S_{n}: \pi \text { avoids } \sigma\right\} .
\end{aligned}
$$

1. Exact enumeration: Formulas for $P_{\sigma}(u, z)$ are known for some σ.

Examples:

$$
\begin{aligned}
P_{132}(u, z) & =\left(1-\int_{0}^{z} e^{(u-1) t^{2} / 2} d t\right)^{-1} \\
P_{1234}(0, z) & =\frac{2}{\cos z-\sin z+e^{-z}}
\end{aligned}
$$

Also for σ monotone; σ non-overlapping with $\sigma_{1}=1 ; \sigma=1324$; etc.

A sample of known results on consecutive patterns

2. Classification according to consecutive Wilf-equivalence: Let

$$
\begin{aligned}
& \sigma \sim \tau \text { if } P_{\sigma}(0, z)=P_{\tau}(0, z), \\
& \sigma \stackrel{s}{\sim} \tau \text { if } P_{\sigma}(u, z)=P_{\tau}(u, z) .
\end{aligned}
$$

Example: $1342 \stackrel{S}{\sim} 1432$.

A sample of known results on consecutive patterns

2. Classification according to consecutive Wilf-equivalence: Let

$$
\begin{aligned}
& \sigma \stackrel{\sim}{\sim} \tau \text { if } P_{\sigma}(0, z)=P_{\tau}(0, z), \\
& \sigma \stackrel{s}{\sim} \tau \text { if } P_{\sigma}(u, z)=P_{\tau}(u, z) .
\end{aligned}
$$

Example: $1342 \stackrel{S}{\sim} 1432$.
Equivalence classes known only for patterns of length up to 6 .

A sample of known results on consecutive patterns

2. Classification according to consecutive Wilf-equivalence: Let

$$
\begin{aligned}
& \sigma \sim \tau \text { if } P_{\sigma}(0, z)=P_{\tau}(0, z), \\
& \sigma \stackrel{\stackrel{s}{\sim} \tau \text { if } P_{\sigma}(u, z)=P_{\tau}(u, z) .}{ } .
\end{aligned}
$$

Example: $1342 \stackrel{s}{\sim} 1432$.
Equivalence classes known only for patterns of length up to 6 .
Conjecture [Nakamura '11]: $\sigma \sim \tau$ iff $\sigma \stackrel{\mathcal{S}}{\sim} \tau$.

A sample of known results on consecutive patterns

2. Classification according to consecutive Wilf-equivalence: Let

$$
\begin{aligned}
& \sigma \sim \tau \text { if } P_{\sigma}(0, z)=P_{\tau}(0, z), \\
& \sigma \stackrel{S}{\sim} \tau \text { if } P_{\sigma}(u, z)=P_{\tau}(u, z) .
\end{aligned}
$$

Example: $1342 \stackrel{s}{\sim} 1432$.
Equivalence classes known only for patterns of length up to 6 .
Conjecture [Nakamura '11]: $\sigma \sim \tau$ iff $\sigma \stackrel{s}{\sim} \tau$.
3. Asymptotic enumeration:

Theorem [E. '06] For every $\sigma, \lim _{n \rightarrow \infty}\left(\frac{\alpha_{n}(\sigma)}{n!}\right)^{1 / n}$ exists.

A sample of known results on consecutive patterns

2. Classification according to consecutive Wilf-equivalence: Let

$$
\begin{aligned}
& \sigma \stackrel{\sim}{\sim} \tau \text { if } P_{\sigma}(0, z)=P_{\tau}(0, z), \\
& \sigma \stackrel{s}{\sim} \tau \text { if } P_{\sigma}(u, z)=P_{\tau}(u, z) .
\end{aligned}
$$

Example: $1342 \stackrel{S}{\sim} 1432$.
Equivalence classes known only for patterns of length up to 6 .
Conjecture [Nakamura '11]: $\sigma \sim \tau$ iff $\sigma \stackrel{\mathcal{S}}{\sim} \tau$.
3. Asymptotic enumeration:

Theorem [E. '06] For every σ, $\lim _{n \rightarrow \infty}\left(\frac{\alpha_{n}(\sigma)}{n!}\right)^{1 / n}$ exists.
Theorem [E. '13] For every $\sigma \in S_{m}$ there exists n_{0} such that

$$
\alpha_{n}(123 \ldots(m-2) m(m-1)) \leq \alpha_{n}(\sigma) \leq \alpha_{n}(12 \ldots m)
$$

for all $n \geq n_{0}$.

Pattern posets

Order permutations by pattern containment: $\sigma \leq \tau$ if σ occurs as a pattern in τ.

Classical patterns

Consecutive patterns

Pattern posets

Order permutations by pattern containment: $\sigma \leq \tau$ if σ occurs as a pattern in τ.

Classical patterns

Consecutive patterns

The consecutive pattern poset is more manageable:

- Every permutation covers at most two others.
- The Möbius function is known [Bernini-Ferrari-Steingrímsson, Sagan-Willenbring '11], unlike in the clasical case.

Pattern posets

- In the consecutive pattern poset, when σ occurs just once in τ, $[\sigma, \tau]$ is a product of two chains [BFS11].

Pattern posets

- In the consecutive pattern poset, when σ occurs just once in τ, $[\sigma, \tau]$ is a product of two chains [BFS11].

No analogue for classical pattern poset.

Main questions

Unless otherwise specified: consecutive pattern poset.

1. Which open intervals are disconnected?
2. Which intervals are shellable?
3. Which intervals are rank-unimodal?
4. Which intervals are (strongly) Sperner?
5. Which intervals have Möbius function equal to 0 ?

1. Which open intervals are disconnected?

Definition. For $\sigma<\tau$, we say that σ straddles τ if σ is both a prefix and suffix of τ and has no other occurrences in τ.

1. Which open intervals are disconnected?

Definition. For $\sigma<\tau$, we say that σ straddles τ if σ is both a prefix and suffix of τ and has no other occurrences in τ.

Theorem
For $\sigma<\tau$ with $|\tau|-|\sigma| \geq 3$, the open interval (σ, τ) is disconnected if and only if σ straddles τ.
In this case, (σ, τ) consists of two disjoint chains.

2. Which intervals are shellable?

Some combinatorial topology...
Poset $P \longrightarrow$ Simplicial complex $\Delta(P)$

2. Which intervals are shellable?

Some combinatorial topology...

$$
\text { Poset } P \longrightarrow \text { Simplicial complex } \Delta(P)
$$

To each interval $[p, q]$ we associate an order complex $\Delta(p, q)$, whose faces are the chains in (p, q).

2. Which intervals are shellable?

Some combinatorial topology...

$$
\text { Poset } P \longrightarrow \text { Simplicial complex } \Delta(P)
$$

To each interval $[p, q]$ we associate an order complex $\Delta(p, q)$, whose faces are the chains in (p, q).
Example.

2. Which intervals are shellable?

Some combinatorial topology...

$$
\text { Poset } P \longrightarrow \text { Simplicial complex } \Delta(P)
$$

To each interval $[p, q]$ we associate an order complex $\Delta(p, q)$, whose faces are the chains in (p, q).
Example.

2. Which intervals are shellable?

Some combinatorial topology...

$$
\text { Poset } P \longrightarrow \text { Simplicial complex } \Delta(P)
$$

To each interval $[p, q]$ we associate an order complex $\Delta(p, q)$, whose faces are the chains in (p, q).
Example.

$$
\begin{array}{ll}
\text { e• } \quad \bullet c \\
\text { a• } & \bullet f
\end{array}
$$

d• $\quad b$

2. Which intervals are shellable?

Some combinatorial topology...

$$
\text { Poset } P \longrightarrow \text { Simplicial complex } \Delta(P)
$$

To each interval $[p, q]$ we associate an order complex $\Delta(p, q)$, whose faces are the chains in (p, q).
Example.

2. Which intervals are shellable?

Some combinatorial topology...

$$
\text { Poset } P \longrightarrow \text { Simplicial complex } \Delta(P)
$$

To each interval $[p, q]$ we associate an order complex $\Delta(p, q)$, whose faces are the chains in (p, q).
Example.

2. Which intervals are shellable?

Some combinatorial topology...

$$
\text { Poset } P \longrightarrow \text { Simplicial complex } \Delta(P)
$$

To each interval $[p, q]$ we associate an order complex $\Delta(p, q)$, whose faces are the chains in (p, q).
Example.

Definition. A pure d-dimensional complex is shellable if its facets can be ordered $F_{1}, F_{2}, \ldots, F_{n}$ such that, for all $2 \leq i \leq n$, $F_{i} \cap\left(F_{1} \cup F_{2} \cup \cdots \cup F_{i-1}\right)$ is pure and $(d-1)$-dimensional.

2. Which intervals are shellable?

Some combinatorial topology...

$$
\text { Poset } P \longrightarrow \text { Simplicial complex } \Delta(P)
$$

To each interval $[p, q]$ we associate an order complex $\Delta(p, q)$, whose faces are the chains in (p, q).
Example.

Definition. A pure d-dimensional complex is shellable if its facets can be ordered $F_{1}, F_{2}, \ldots, F_{n}$ such that, for all $2 \leq i \leq n$, $F_{i} \cap\left(F_{1} \cup F_{2} \cup \cdots \cup F_{i-1}\right)$ is pure and $(d-1)$-dimensional.

Shellability

Non-shellable example:

Shellability

Non-shellable example:

Why we care about shellability:

- Shellable \Rightarrow contractible, or homotopic to a wedge of spheres in the top dimension.
- Combinatorial tools for showing shellability of $\Delta(P)$: EL-shellability, CL-shellability, etc.

Disconnected and non-shellable

Easy non-shellable example: If (σ, τ) disconnected with $|\tau|-|\sigma| \geq 3$, then $\Delta(\sigma, \tau)$ is not shellable.

We call this a non-trivial disconnected interval.
If $[\sigma, \tau]$ contains a non-trivial disconnected subinterval, then $[\sigma, \tau]$ is not shellable.

2. Which intervals are shellable?

If $[\sigma, \tau]$ contains a non-trivial disconnected subinterval, then $[\sigma, \tau]$ is not shellable.

What about intervals without disconnected subintervals?

2. Which intervals are shellable?

If $[\sigma, \tau]$ contains a non-trivial disconnected subinterval, then $[\sigma, \tau]$ is not shellable.

What about intervals without disconnected subintervals?

Theorem
The interval $[\sigma, \tau]$ is shellable if and only if it contains no non-trivial disconnected subintervals.

2. Which intervals are shellable?

If $[\sigma, \tau]$ contains a non-trivial disconnected subinterval, then $[\sigma, \tau]$ is not shellable.

What about intervals without disconnected subintervals?

Theorem
The interval $[\sigma, \tau]$ is shellable if and only if it contains no non-trivial disconnected subintervals.

Theorem
Fix σ, and let $\tau \in S_{n}$ be uniformly random. Then

$$
\lim _{n \rightarrow \infty}(\text { Probability that }[\sigma, \tau] \text { is shellable })=0
$$

3. Which intervals are rank-unimodal?

3. Which intervals are rank-unimodal?

Every interval $[\sigma, \tau]$ is rank-unimodal.

3. Which intervals are rank-unimodal?

Theorem

Every interval $[\sigma, \tau]$ is rank-unimodal.
Idea of proof.

- Top part is grid-like.
- Use explicit injection for all other ranks.

3. Which intervals are rank-unimodal?

Theorem

Every interval $[\sigma, \tau]$ is rank-unimodal.
Idea of proof.

- Top part is grid-like.
- Use explicit injection for all other ranks.

Conjecture [McNamara-Steingrímsson '15]
Every interval $[\sigma, \tau]$ in the classical pattern poset is rank-unimodal.
(True for intervals of rank ≤ 8.)

4. Which intervals are (strongly) Sperner?

Definition. A poset P is Sperner if the largest rank size equals the size of the largest antichain.

4. Which intervals are (strongly) Sperner?

Definition. A poset P is Sperner if the largest rank size equals the size of the largest antichain.

Example.

Sperner:

4. Which intervals are (strongly) Sperner?

Definition. A poset P is Sperner if the largest rank size equals the size of the largest antichain.

Example.

Not Sperner:

4. Which intervals are (strongly) Sperner?

Definition. A poset P is Sperner if the largest rank size equals the size of the largest antichain.

Example.

Not Sperner:

4. Which intervals are (strongly) Sperner?

Definition. A poset P is Sperner if the largest rank size equals the size of the largest antichain.

Example.

Not Sperner:

Definition. A poset P is k-Sperner if the sum of the sizes of the k largest ranks equals the size of the largest union of k antichains.

4. Which intervals are (strongly) Sperner?

Definition. A poset P is Sperner if the largest rank size equals the size of the largest antichain.

Example.

Not Sperner: but 2-Sperner:

Definition. A poset P is k-Sperner if the sum of the sizes of the k largest ranks equals the size of the largest union of k antichains.

4. Which intervals are (strongly) Sperner?

Definition. A poset P is Sperner if the largest rank size equals the size of the largest antichain.

Example.

Not Sperner: but 2-Sperner:

Definition. A poset P is k-Sperner if the sum of the sizes of the k largest ranks equals the size of the largest union of k antichains. P is strongly Sperner if is it k-Sperner for all k.

4. Which intervals are (strongly) Sperner?

Definition. A poset P is Sperner if the largest rank size equals the size of the largest antichain.

Example.

Not Sperner: but 2-Sperner:

Definition. A poset P is k-Sperner if the sum of the sizes of the k largest ranks equals the size of the largest union of k antichains. P is strongly Sperner if is it k-Sperner for all k.

Theorem
Every interval $[\sigma, \tau]$ is strongly Sperner.

4. Which intervals are (strongly) Sperner?

Definition. A poset P is Sperner if the largest rank size equals the size of the largest antichain.
Example.

Not Sperner: but 2-Sperner:

Definition. A poset P is k-Sperner if the sum of the sizes of the k largest ranks equals the size of the largest union of k antichains.
P is strongly Sperner if is it k-Sperner for all k.
Theorem
Every interval $[\sigma, \tau]$ is strongly Sperner.
The proof uses a result of Griggs, plus the injections from our rank-unimodality proof.

5. Which intervals have Möbius function equal to 0 ?

Interior $i(\tau)$: the permutation pattern obtained by deleting first and last element of τ.

Exterior $x(\tau)$: the longest proper prefix that is also a suffix (as a pattern).

Examples.
$\tau=21435, \quad i(\tau)=132, x(\tau)=213$
$\tau=123456$ (monotone), $x(\tau)=12345$
$\tau=18765432, x(\tau)=1$

5. Which intervals have Möbius function equal to 0 ?

Interior $i(\tau)$: the permutation pattern obtained by deleting first and last element of τ.

Exterior $x(\tau)$: the longest proper prefix that is also a suffix (as a pattern).

Examples.
$\tau=21435, i(\tau)=132, x(\tau)=213$
$\tau=123456$ (monotone), $x(\tau)=12345$
$\tau=18765432, x(\tau)=1$
Theorem [BFS, SW '11]. For $\sigma \leq \tau$,

$$
\mu(\sigma, \tau)= \begin{cases}\mu(\sigma, x(\tau)) & \text { if }|\tau|-|\sigma|>2 \text { and } \sigma \leq x(\tau) \not \leq i(\tau), \\ 1 & \text { if }|\tau|-|\sigma|=2, \tau \text { is not monotone, } \\ & \text { and } \sigma \in\{i(\tau), x(\tau)\}, \\ (-1)^{|\tau|-|\sigma|} & \text { if }|\tau|-|\sigma|<2, \\ 0 & \text { otherwise. }\end{cases}
$$

5. Which intervals have Möbius function equal to 0 ?

Theorem
Fix σ, and let $\tau \in S_{n}$ wtih $\tau \geq \sigma$ be uniformly random. Then

$$
\lim _{n \rightarrow \infty}(\text { Probability that } \mu(\sigma, \tau)=0)=1
$$

5. Which intervals have Möbius function equal to 0 ?

Theorem
Fix σ, and let $\tau \in S_{n}$ wtih $\tau \geq \sigma$ be uniformly random. Then

$$
\lim _{n \rightarrow \infty}(\text { Probability that } \mu(\sigma, \tau)=0)=1 .
$$

Crucial role played by $x(\tau)$.

Length of the exterior

Number of permutations $\tau \in S_{n}$ with $|x(\tau)|=k$:

$n \backslash k$	1	2	3	4	5	6	7	8	9
2	2								
3	4	2							
4	12	10	2						
5	48	58	12	2					
6	280	306	118	14	2	2			
7	1864	2186	822	150	16	2			
8	14840	17034	6580	1660	186	18	2		
9	132276	154162	58854	15118	2222	226	20	2	
10	1323504	1532574	588898	150388	30238	2904	270	22	2

Length of the exterior

Number of permutations $\tau \in S_{n}$ with $|x(\tau)|=k$:

$n \backslash k$	1	2	3	4	5	6	7	8	9
2	2								
3	4	2							
4	12	10	2						
5	48	58	12	2					
6	280	306	118	14	2				
7	1864	2186	822	150	16	2			
8	14840	17034	6580	1660	186	18	2		
9	132276	154162	58854	15118	2222	226	20	2	
10	1323504	1532574	588898	150388	30238	2904	270	22	2

Easy: Main diagonal values are 2.

Length of the exterior

Number of permutations $\tau \in S_{n}$ with $|x(\tau)|=k$:

$n \backslash k$	1	2	3	4	5	6	7	8	9
2	2								
3	4	2							
4	12	10	2						
5	48	58	12	2					
6	280	306	118	14	2		2		
7	1864	2186	822	150	16	2			
8	14840	17034	6580	1660	186	18	2		
9	132276	154162	58854	15118	2222	226	20	2	
10	1323504	1532574	588898	150388	30238	2904	270	22	2

Easy: Main diagonal values are 2.
Lemma: Next diagonal values are $2 n+2$ (for $n \geq 4$).

Length of the exterior

Number of permutations $\tau \in S_{n}$ with $|x(\tau)|=k$:

$n \backslash k$	1	2	3	4	5	6	7	8	9
2	2								
3	4	2							
4	12	10	2						
5	48	58	12	2					
6	280	306	118	14	2				
7	1864	2186	822	150	16	2			
8	14840	17034	6580	1660	186	18	2		
9	132276	154162	58854	15118	2222	226	20	2	
10	1323504	1532574	588898	150388	30238	2904	270	22	2

Easy: Main diagonal values are 2.
Lemma: Next diagonal values are $2 n+2$ (for $n \geq 4$).

Theorem

$$
e-1 \leq \lim _{n \rightarrow \infty} \mathbb{E}_{n}(|x(\tau)|) \leq e
$$

Open problems: exterior

$n \backslash k$	1	2	3	4	5	6	7	8	9
2	2								
3	4	2							
4	12	10	2						
5	48	58	12	2					
6	280	306	118	14	2	2			
7	1864	2186	822	150	16	2			
8	14840	17034	6580	1660	186	18	2		
9	132276	154162	58854	15118	2222	226	20	2	
10	1323504	1532574	588898	150388	30238	2904	270	22	2

1. Find a formula for the remaining entries in the table.

Open problems: exterior

$n \backslash k$	1	2	3	4	5	6	7	8	9
2	2								
3	4	2							
4	12	10	2						
5	48	58	12	2					
6	280	306	118	14	2				
7	1864	2186	822	150	16	2			
8	14840	17034	6580	1660	186	18	2		
9	132276	154162	58854	15118	2222	226	20	2	
10	1323504	1532574	588898	150388	30238	2904	270	22	2

1. Find a formula for the remaining entries in the table.
2. Known: first column is divisible by 4 . Is the second column $\equiv 2 \bmod 4$?

Open problems: exterior

$n \backslash k$	1	2	3	4	5	6	7	8	9
2	2								
3	4	2							
4	12	10	2						
5	48	58	12	2					
6	280	306	118	14	2		2		
7	1864	2186	822	150	16				
8	14840	17034	6580	1660	186	18	2		
9	132276	154162	58854	15118	2222	226	20	2	
10	1323504	1532574	588898	150388	30238	2904	270	22	2

1. Find a formula for the remaining entries in the table.
2. Known: first column is divisible by 4 . Is the second column $\equiv 2 \bmod 4$?
3. Find $\lim _{n \rightarrow \infty} \mathbb{P}_{n}(|x(\tau)|=k)$ for each k. (We know limit exists.)

Bóna '11: $0.3640981 \leq \lim _{n \rightarrow \infty} \mathbb{P}_{n}(|x(\tau)|=1) \leq 0.3640993$.

Open problems: exterior

$n \backslash k$	1	2	3	4	5	6	7	8	9
2	2								
3	4	2							
4	12	10	2						
5	48	58	12	2					
6	280	306	118	14	2		2		
7	1864	2186	822	150	16				
8	14840	17034	6580	1660	186	18	2		
9	132276	154162	58854	15118	2222	226	20	2	
10	1323504	1532574	588898	150388	30238	2904	270	22	2

1. Find a formula for the remaining entries in the table.
2. Known: first column is divisible by 4 . Is the second column $\equiv 2 \bmod 4$?
3. Find $\lim _{n \rightarrow \infty} \mathbb{P}_{n}(|x(\tau)|=k)$ for each k. (We know limit exists.)

Bóna '11: $0.3640981 \leq \lim _{n \rightarrow \infty} \mathbb{P}_{n}(|x(\tau)|=1) \leq 0.3640993$.
4. Find the exact value of $\lim _{n \rightarrow \infty} \mathbb{E}_{n}(|x(\tau)|)$. Steingrímsson: It seems to be ≈ 1.9127.

Open problems: exterior

$n \backslash k$	1	2	3	4	5	6	7	8	9
2	2								
3	4	2							
4	12	10	2						
5	48	58	12	2	2				
6	280	306	118	14	2				
7	1864	2186	822	150	16	2			
8	14840	17034	6580	1660	186	18	2		
9	132276	154162	58854	15118	2222	226	20	2	
10	1323504	1532574	588898	150388	30238	2904	270	22	2

1. Find a formula for the remaining entries in the table.
2. Known: first column is divisible by 4 . Is the second column $\equiv 2 \bmod 4$?
3. Find $\lim _{n \rightarrow \infty} \mathbb{P}_{n}(|x(\tau)|=k$) for each k. (We know limit exists.)

Bóna '11: $0.3640981 \leq \lim _{n \rightarrow \infty} \mathbb{P}_{n}(|x(\tau)|=1) \leq 0.3640993$.
4. Find the exact value of $\lim _{n \rightarrow \infty} \mathbb{E}_{n}(|x(\tau)|)$. Steingrímsson: It seems to be ≈ 1.9127.
5. Find the number of $\tau \in S_{n}$ such that $x(\tau) \leq i(\tau)$.

Open problems: pattern posets

Consecutive case:

6. Characterize those intervals $[\sigma, \tau]$ that are lattices.
7. Find an easy classification of intervals that contain no non-trivial disconnected subinterval (and are thus shellable).

Open problems: pattern posets

Consecutive case:

6. Characterize those intervals $[\sigma, \tau]$ that are lattices.
7. Find an easy classification of intervals that contain no non-trivial disconnected subinterval (and are thus shellable).

Classical case:

8. Wilf '02: What's the Möbius function $\mu(\sigma, \tau)$? So far known only in very specific cases.
9. Prove the rank-unimodality conjecture.
10. Can anything be said about when σ occurs just once in τ ?
11. Understand non-shellable intervals without non-trivial disconnected subintervals. e.g. [123, 3416725].

Open problems: pattern posets

Consecutive case:

6. Characterize those intervals $[\sigma, \tau]$ that are lattices.
7. Find an easy classification of intervals that contain no non-trivial disconnected subinterval (and are thus shellable).

Classical case:

8. Wilf '02: What's the Möbius function $\mu(\sigma, \tau)$? So far known only in very specific cases.
9. Prove the rank-unimodality conjecture.
10. Can anything be said about when σ occurs just once in τ ?
11. Understand non-shellable intervals without non-trivial disconnected subintervals. e.g. [123, 3416725].

Thanks!

