A greedy sorting algorithm

Sergi Elizalde Peter Winkler

Dartmouth College

Rutgers Experimental Mathematics Seminar

・ロト ・回ト ・ヨト ・ヨト

æ

The homing algorithm

Given a permutation π , repeat the following *placement* step:

- Choose an entry $\pi(i)$ such that $\pi(i) \neq i$.
- Place $\pi(i)$ in the correct position.
- Shift the other entries as necessary.

<ロ> (日) (日) (日) (日) (日)

Main questions

Does the algorithm always finish?

イロン イヨン イヨン イヨン

æ

Main questions

Does the algorithm always finish? YES

イロン イヨン イヨン イヨン

臣

Main questions

- Does the algorithm always finish? YES
- ▶ How many steps does it take in the worst case...

Main questions

- Does the algorithm always finish? YES
- How many steps does it take in the worst case...
 - with a good choice of placements?
 - with a random choice of placements?
 - with a bad choice of placements?

- ∢ ⊒ →

"Motivation"

 Makes sense when sorting physical objects, such as billiard balls.

イロン イヨン イヨン イヨン

æ

"Motivation"

- Makes sense when sorting physical objects, such as billiard balls.
- In hand-sorting files, it is common to take the first file and move it to the front, then the second, and so on. This is a (fast) special case of homing.

A (1) A (2) A (2) A

"Motivation"

- Makes sense when sorting physical objects, such as billiard balls.
- In hand-sorting files, it is common to take the first file and move it to the front, then the second, and so on. This is a (fast) special case of homing.
- It is fun to analyze this algorithm.

- < 同 > < 三 > < 三 > >

"Motivation"

- Makes sense when sorting physical objects, such as billiard balls.
- In hand-sorting files, it is common to take the first file and move it to the front, then the second, and so on. This is a (fast) special case of homing.
- It is fun to analyze this algorithm.
- If you have to sort a list and you are paid by the hour, this is a great algorithm to use.

(日) (同) (日) (日)

History

 Despite its simplicity, it seems not to have been considered in the literature.

・ロン ・四と ・ヨン ・ヨン

æ

History

- Despite its simplicity, it seems not to have been considered in the literature.
- Barry Cipra was looking at a variation of an algorithm of John H. Conway. In Cipra's algorithm, after each placement, the intervening entries are reversed (instead of shifted). This algorithm does not necessarily terminate:

 $\begin{array}{c} 7132568\underline{4} \rightarrow \underline{7}1348652 \rightarrow 5684317\underline{2} \rightarrow 5271\underline{3}486 \rightarrow \\ 5231\underline{7}486 \rightarrow 7132548\underline{6} \rightarrow 71325684 \end{array}$

History

- Despite its simplicity, it seems not to have been considered in the literature.
- Barry Cipra was looking at a variation of an algorithm of John H. Conway. In Cipra's algorithm, after each placement, the intervening entries are reversed (instead of shifted). This algorithm does not necessarily terminate:

 $\begin{array}{l} 7132568\underline{4} \rightarrow \underline{7}1348652 \rightarrow 5684317\underline{2} \rightarrow 5271\underline{3}486 \rightarrow \\ 5231\underline{7}486 \rightarrow 7132548\underline{6} \rightarrow 71325684 \end{array}$

Loren Larson misunderstood the definition of the algorithm, and thought the intervening numbers were shifted.

History (cont'd)

Noam Elkies gave a neat proof that homing always terminates:

Suppose it doesn't. Then there is a cycle, since there are only finitely many states.

(日) (同) (日) (日)

History (cont'd)

Noam Elkies gave a neat proof that homing always terminates:

- Suppose it doesn't. Then there is a cycle, since there are only finitely many states.
- ▶ Let *k* be the largest number which is placed *upward* in the cycle.

(日) (同) (日) (日)

History (cont'd)

Noam Elkies gave a neat proof that homing always terminates:

- Suppose it doesn't. Then there is a cycle, since there are only finitely many states.
- ► Let *k* be the largest number which is placed *upward* in the cycle.
- Once k is placed, it can be dislodged upward and placed again downward, but nothing can ever push it below position k.

History (cont'd)

Noam Elkies gave a neat proof that homing always terminates:

- Suppose it doesn't. Then there is a cycle, since there are only finitely many states.
- ► Let *k* be the largest number which is placed *upward* in the cycle.
- Once k is placed, it can be dislodged upward and placed again downward, but nothing can ever push it below position k.
- ► Hence it can never again be placed upward, a contradiction.

(日) (同) (日) (日)

Well-chosen placements

Theorem

► An algorithm that always places the smallest or largest available number will terminate in at most n−1 steps.

Image: Image:

- ∢ ⊒ →

Well-chosen placements

Theorem

- ► An algorithm that always places the smallest or largest available number will terminate in at most n−1 steps.
- Let k be the length of the longest increasing subsequence in π. Then no sequence of fewer than n-k placements can sort π.

Well-chosen placements

Theorem

- ► An algorithm that always places the smallest or largest available number will terminate in at most n−1 steps.
- Let k be the length of the longest increasing subsequence in π.
 Then no sequence of fewer than n-k placements can sort π.
- The permutation $n \dots 21$ is the only one requiring n-1 steps.

Random placements

Theorem

The expected number of steps required by random homing from $\pi \in S_n$ is at most $\frac{n^2+n-2}{4}$.

Random placements

Theorem

The expected number of steps required by random homing from $\pi \in S_n$ is at most $\frac{n^2+n-2}{4}$.

Proof.

Suppose that we have a permutation where k of the extremal numbers are home:

123746589

★ E > < E >

Random placements

Theorem

The expected number of steps required by random homing from $\pi \in S_n$ is at most $\frac{n^2+n-2}{4}$.

Proof.

Suppose that we have a permutation where k of the extremal numbers are home:

123<mark>74</mark>6589

• With probability $\geq \frac{2}{n-k}$, the next step will place an additional extremal number.

(ロ) (四) (三) (三)

Random placements

Theorem

The expected number of steps required by random homing from $\pi \in S_n$ is at most $\frac{n^2+n-2}{4}$.

Proof.

Suppose that we have a permutation where k of the extremal numbers are home:

123746589

- With probability $\geq \frac{2}{n-k}$, the next step will place an additional extremal number.
- Total expected number of steps is $\leq \sum_{k=0}^{n-2} \frac{n-k}{2}$.

(ロ) (四) (三) (三)

Example Main Theorem Proof: Stage 1 Proof: Stage 2

Slow Homing: Example

Starting from

234567...*n*1

place always the leftmost possible entry:

イロン イヨン イヨン イヨン

æ

Example Main Theorem Proof: Stage 1 Proof: Stage 2

Slow Homing: Example

Starting from

234567...*n*1

place always the leftmost possible entry:

イロン イヨン イヨン イヨン

æ

Example Main Theorem Proof: Stage 1 Proof: Stage 2

Slow Homing: Example

Starting from

234567...*n*1

place always the leftmost possible entry:

324567...*n*1

Example Main Theorem Proof: Stage 1 Proof: Stage 2

Slow Homing: Example

Starting from

234567...*n*1

place always the leftmost possible entry:

<u>3</u>24567...*n*1

Example Main Theorem Proof: Stage 1 Proof: Stage 2

Slow Homing: Example

Starting from

234567...*n*1

place always the leftmost possible entry:

324567...*n*1 243567...*n*1

Example Main Theorem Proof: Stage 1 Proof: Stage 2

Slow Homing: Example

Starting from

234567...*n*1

place always the leftmost possible entry:

324567...*n*1 243567...*n*1

Example Main Theorem Proof: Stage 1 Proof: Stage 2

Slow Homing: Example

Starting from

234567...*n*1

place always the leftmost possible entry:

324567...n1 243567...n1 423567...n1

Example Main Theorem Proof: Stage 1 Proof: Stage 2

Slow Homing: Example

Starting from

234567...*n*1

place always the leftmost possible entry:

324567...n1 243567...n1 423567...n1

Example Main Theorem Proof: Stage 1 Proof: Stage 2

Slow Homing: Example

Starting from

234567...*n*1

place always the leftmost possible entry:

324567...n1 243567...n1 423567...n1 235467...n1

Example Main Theorem Proof: Stage 1 Proof: Stage 2

Slow Homing: Example

Starting from

234567...*n*1

place always the leftmost possible entry:

324567...n1 243567...n1 423567...n1 235467...n1

Example Main Theorem Proof: Stage 1 Proof: Stage 2

Slow Homing: Example

Starting from

234567...*n*1

place always the leftmost possible entry:

324567...n1 243567...n1 423567...n1 235467...n1 325467...n1

Example Main Theorem Proof: Stage 1 Proof: Stage 2

Slow Homing: Example

Starting from

234567...*n*1

place always the leftmost possible entry:

324567...n1 243567...n1 423567...n1 235467...n1 325467...n1

Example Main Theorem Proof: Stage 1 Proof: Stage 2

Slow Homing: Example

Starting from

234567...*n*1

place always the leftmost possible entry:

324567...n1 243567...n1 423567...n1 235467...n1 325467...n1 253467...n1

Example Main Theorem Proof: Stage 1 Proof: Stage 2

Slow Homing: Example

Starting from

234567...*n*1

place always the leftmost possible entry:

324567...n1 243567...n1 423567...n1 235467...n1 325467...n1 253467...n1

It takes $2^{n-1}-1$ steps to sort this permutation.

(日) (同) (日) (日)

Example Main Theorem Proof: Stage 1 Proof: Stage 2

Main result

Theorem

Homing always terminates in at most $2^{n-1}-1$ steps.

・ロト ・日本 ・ヨト ・ヨト

Example Main Theorem Proof: Stage 1 Proof: Stage 2

Main result

Theorem

Homing always terminates in at most $2^{n-1}-1$ steps.

To prove this, consider the reverse algorithm. We will show that, starting from the identity permutation, one can perform at most $2^{n-1}-1$ displacements.

(日) (同) (日) (日)

Example Main Theorem Proof: Stage 1 Proof: Stage 2

Main result

Theorem

Homing always terminates in at most $2^{n-1}-1$ steps.

To prove this, consider the reverse algorithm. We will show that, starting from the identity permutation, one can perform at most $2^{n-1}-1$ displacements.

$$2^{n-1}-1 = \underbrace{2^{n-2}}_{\text{until 1 and } n \text{ are displaced}} + \underbrace{2^{n-2}-1}_{\text{after displacing 1 and } n}$$

(日) (同) (日) (日)

The problem	Example
Fast Homing	Main Theorem
Slow Homing	Proof: Stage 1
Counting bad cases	Proof: Stage 2

After 2^{n-2} displacements, both 1 and n have been displaced and will never be displaced again.

 ∃ >

The problem	Example
Fast Homing	Main Theorem
Slow Homing	Proof: Stage 1
Counting bad cases	Proof: Stage 2

After 2^{n-2} displacements, both 1 and n have been displaced and will never be displaced again.

Proof.

▶ Note that 1 and *n* can each be displaced only once.

The problem	Example
Fast Homing	Main Theorem
Slow Homing	Proof: Stage 1
Counting bad cases	Proof: Stage 2

After 2^{n-2} displacements, both 1 and n have been displaced and will never be displaced again.

Proof.

- ▶ Note that 1 and *n* can each be displaced only once.
- If after 2ⁿ⁻² displacements one of these values hasn't been displaced, then it played no role in the process.

The problem	Example
Fast Homing	Main Theorem
Slow Homing	Proof: Stage 1
Counting bad cases	Proof: Stage 2

After 2^{n-2} displacements, both 1 and n have been displaced and will never be displaced again.

Proof.

- ▶ Note that 1 and *n* can each be displaced only once.
- If after 2ⁿ⁻² displacements one of these values hasn't been displaced, then it played no role in the process.
- ► Hence the remaining n-1 numbers allowed more than 2ⁿ⁻²-1 steps, contradicting the induction hypothesis.

Example Main Theorem Proof: Stage 1 Proof: Stage 2

The code of a permutation

Assume now that 1 and *n* have both been displaced. We'll show that only $2^{n-2}-1$ more displacements can occur.

Image: A match the second s

- ∢ ⊒ →

Example Main Theorem Proof: Stage 1 Proof: Stage 2

The code of a permutation

Assume now that 1 and *n* have both been displaced. We'll show that only $2^{n-2}-1$ more displacements can occur.

Assign to each permutation π a code $\alpha(\pi) = \alpha_2 \alpha_3 \dots \alpha_{n-1}$, where

$$\alpha_{i} = \left\{ \begin{array}{c} 0 \\ + \\ - \end{array} \right\} \text{ if entry } i \text{ is } \left\{ \begin{array}{c} \text{exactly} \\ \text{ to the right of} \\ \text{ to the left of} \end{array} \right\} \text{ home.}$$

(日) (同) (日) (日)

Example Main Theorem Proof: Stage 1 Proof: Stage 2

The code of a permutation

Assume now that 1 and *n* have both been displaced. We'll show that only $2^{n-2}-1$ more displacements can occur.

Assign to each permutation π a code $\alpha(\pi) = \alpha_2 \alpha_3 \dots \alpha_{n-1}$, where

$$\alpha_{i} = \left\{ \begin{array}{c} 0 \\ + \\ - \end{array} \right\} \text{ if entry } i \text{ is } \left\{ \begin{array}{c} \text{exactly} \\ \text{to the right of} \\ \text{to the left of} \end{array} \right\} \text{ home.}$$

Example

 $\pi = 35618472 \longrightarrow \alpha(\pi) =$

イロン イヨン イヨン イヨン

Example Main Theorem Proof: Stage 1 Proof: Stage 2

The code of a permutation

Assume now that 1 and *n* have both been displaced. We'll show that only $2^{n-2}-1$ more displacements can occur.

Assign to each permutation π a code $\alpha(\pi) = \alpha_2 \alpha_3 \dots \alpha_{n-1}$, where

$$\alpha_{i} = \left\{ \begin{array}{c} 0 \\ + \\ - \end{array} \right\} \text{ if entry } i \text{ is } \left\{ \begin{array}{c} \text{exactly} \\ \text{to the right of} \\ \text{to the left of} \end{array} \right\} \text{ home.}$$

Example

 $\pi = 35618472 \longrightarrow \alpha(\pi) = +$

Example Main Theorem Proof: Stage 1 Proof: Stage 2

The code of a permutation

Assume now that 1 and *n* have both been displaced. We'll show that only $2^{n-2}-1$ more displacements can occur.

Assign to each permutation π a code $\alpha(\pi) = \alpha_2 \alpha_3 \dots \alpha_{n-1}$, where

$$\alpha_{i} = \left\{ \begin{array}{c} 0 \\ + \\ - \end{array} \right\} \text{ if entry } i \text{ is } \left\{ \begin{array}{c} \text{exactly} \\ \text{ to the right of} \\ \text{ to the left of} \end{array} \right\} \text{ home.}$$

Example

 $\pi = 35618472 \longrightarrow \alpha(\pi) = + -$

Example Main Theorem Proof: Stage 1 Proof: Stage 2

The code of a permutation

Assume now that 1 and *n* have both been displaced. We'll show that only $2^{n-2}-1$ more displacements can occur.

Assign to each permutation π a code $\alpha(\pi) = \alpha_2 \alpha_3 \dots \alpha_{n-1}$, where

$$\alpha_{i} = \left\{ \begin{array}{c} 0 \\ + \\ - \end{array} \right\} \text{ if entry } i \text{ is } \left\{ \begin{array}{c} \text{exactly} \\ \text{to the right of} \\ \text{to the left of} \end{array} \right\} \text{ home.}$$

Example

 $\pi = 35618472 \longrightarrow \alpha(\pi) = + - +$

Example Main Theorem Proof: Stage 1 Proof: Stage 2

The code of a permutation

Assume now that 1 and *n* have both been displaced. We'll show that only $2^{n-2}-1$ more displacements can occur.

Assign to each permutation π a code $\alpha(\pi) = \alpha_2 \alpha_3 \dots \alpha_{n-1}$, where

$$\alpha_{i} = \left\{ \begin{array}{c} 0 \\ + \\ - \end{array} \right\} \text{ if entry } i \text{ is } \left\{ \begin{array}{c} \text{exactly} \\ \text{to the right of} \\ \text{to the left of} \end{array} \right\} \text{ home.}$$

Example

 $\pi = 35618472 \longrightarrow \alpha(\pi) = + - + -$

Example Main Theorem Proof: Stage 1 Proof: Stage 2

The code of a permutation

Assume now that 1 and *n* have both been displaced. We'll show that only $2^{n-2}-1$ more displacements can occur.

Assign to each permutation π a code $\alpha(\pi) = \alpha_2 \alpha_3 \dots \alpha_{n-1}$, where

$$\alpha_{i} = \left\{ \begin{array}{c} 0 \\ + \\ - \end{array} \right\} \text{ if entry } i \text{ is } \left\{ \begin{array}{c} \text{exactly} \\ \text{to the right of} \\ \text{to the left of} \end{array} \right\} \text{ home.}$$

Example

 $\pi = 35618472 \longrightarrow \alpha(\pi) = + - + - -$

Example Main Theorem Proof: Stage 1 Proof: Stage 2

The code of a permutation

Assume now that 1 and *n* have both been displaced. We'll show that only $2^{n-2}-1$ more displacements can occur.

Assign to each permutation π a code $\alpha(\pi) = \alpha_2 \alpha_3 \dots \alpha_{n-1}$, where

$$\alpha_{i} = \left\{ \begin{array}{c} 0 \\ + \\ - \end{array} \right\} \text{ if entry } i \text{ is } \left\{ \begin{array}{c} \text{exactly} \\ \text{to the right of} \\ \text{to the left of} \end{array} \right\} \text{ home.}$$

Example

 $\pi = 35618472 \longrightarrow \alpha(\pi) = + - + - - 0$

Example Main Theorem Proof: Stage 1 Proof: Stage 2

The weight of a code

$\alpha = + - + - - 0$

Define the weight of a code α recursively:

Example Main Theorem Proof: Stage 1 Proof: Stage 2

The weight of a code

Define the weight of a code α recursively:

► For each -, count the number of symbols to its left, and for each +, count the number of symbols to its right.

Example Main Theorem Proof: Stage 1 Proof: Stage 2

The weight of a code

Define the weight of a code α recursively:

- ► For each -, count the number of symbols to its left, and for each +, count the number of symbols to its right.
- ► Let *d* be the largest of these numbers, and let *â* be the code obtained by deleting the corresponding symbol.

Example Main Theorem Proof: Stage 1 Proof: Stage 2

The weight of a code

Define the weight of a code α recursively:

- ► For each -, count the number of symbols to its left, and for each +, count the number of symbols to its right.
- ► Let *d* be the largest of these numbers, and let *â* be the code obtained by deleting the corresponding symbol.

Define

$$w(\alpha) = 2^d + w(\hat{\alpha}).$$

<ロ> (四) (四) (三) (三) (三)

Example Main Theorem Proof: Stage 1 Proof: Stage 2

The weight of a code: example

$$w(+ - + - 0)$$

Sergi Elizalde, Peter Winkler A greedy sorting algorithm

イロト イヨト イヨト イヨト

Example Main Theorem Proof: Stage 1 Proof: Stage 2

The weight of a code: example

$$w(+ - + - - 0) \\ 5 1 3 3 4$$

イロト イヨト イヨト イヨト

Example Main Theorem Proof: Stage 1 Proof: Stage 2

The weight of a code: example

$$w(+ - + - - 0)$$

5 1 3 3 4
= 2⁵ + w(- + - 0)

イロト イヨト イヨト イヨト

Example Main Theorem Proof: Stage 1 Proof: Stage 2

The weight of a code: example

$$w(+ - + - - 0)$$

5 1 3 3 4

$$= 2^{5} + w(- + - - 0)$$

0 3 2 3

イロト イヨト イヨト イヨト

Example Main Theorem Proof: Stage 1 Proof: Stage 2

The weight of a code: example

$$w(+ - + - - 0)$$
5 1 3 3 4
$$= 2^{5} + w(- + - 0)$$
0 3 2 3
$$= 2^{5} + 2^{3} + w(- + 0)$$

イロト イヨト イヨト イヨト

Example Main Theorem Proof: Stage 1 Proof: Stage 2

The weight of a code: example

$$w(+ - + - - 0)$$
5 1 3 3 4
$$= 2^{5} + w(- + - 0)$$
0 3 2 3
$$= 2^{5} + 2^{3} + w(- + - 0)$$
0 2 2

イロト イヨト イヨト イヨト

Example Main Theorem Proof: Stage 1 Proof: Stage 2

The weight of a code: example

$$w(+ - + - - 0)$$
5 1 3 3 4
$$= 2^{5} + w(- + - - 0)$$
0 3 2 3
$$= 2^{5} + 2^{3} + w(- + - 0)$$
0 2 2
$$= 2^{5} + 2^{3} + 2^{2} + w(- + 0)$$

イロト イヨト イヨト イヨト

Example Main Theorem Proof: Stage 1 Proof: Stage 2

The weight of a code: example

$$w(+ - + - - 0)$$
5 1 3 3 4
$$= 2^{5} + w(- + - - 0)$$
0 3 2 3
$$= 2^{5} + 2^{3} + w(- + - 0)$$
0 2 2
$$= 2^{5} + 2^{3} + 2^{2} + w(- + 0)$$
0 1

イロト イヨト イヨト イヨト

Example Main Theorem Proof: Stage 1 Proof: Stage 2

The weight of a code: example

$$w(+ - + - - 0)$$
5 1 3 3 4
$$= 2^{5} + w(- + - - 0)$$
0 3 2 3
$$= 2^{5} + 2^{3} + w(- + - 0)$$
0 2 2
$$= 2^{5} + 2^{3} + 2^{2} + w(- + 0)$$
0 1
$$= 2^{5} + 2^{3} + 2^{2} + 2^{1} + w(- 0)$$

・ロト ・日本 ・ヨト ・ヨト

Example Main Theorem Proof: Stage 1 Proof: Stage 2

The weight of a code: example

$$w(+ - + - - 0)$$
5 1 3 3 4
$$= 2^{5} + w(- + - - 0)$$
0 3 2 3
$$= 2^{5} + 2^{3} + w(- + - 0)$$
0 2 2
$$= 2^{5} + 2^{3} + 2^{2} + w(- + 0)$$
0 1
$$= 2^{5} + 2^{3} + 2^{2} + 2^{1} + w(- 0)$$
0

・ロト ・日本 ・ヨト ・ヨト

Example Main Theorem Proof: Stage 1 Proof: Stage 2

The weight of a code: example

$$w(+ - + - - 0)$$
5 1 3 3 4
$$= 2^{5} + w(- + - - 0)$$
0 3 2 3
$$= 2^{5} + 2^{3} + w(- + - 0)$$
0 2 2
$$= 2^{5} + 2^{3} + 2^{2} + w(- + 0)$$
0 1
$$= 2^{5} + 2^{3} + 2^{2} + 2^{1} + w(- 0)$$
0
$$= 2^{5} + 2^{3} + 2^{2} + 2^{1} + 2^{0} + w(0)$$

・ロト ・日本 ・ヨト ・ヨト

Example Main Theorem Proof: Stage 1 Proof: Stage 2

The weight of a code: example

$$w(+ - + - - 0)$$
5 1 3 3 4
$$= 2^{5} + w(- + - 0)$$
0 3 2 3
$$= 2^{5} + 2^{3} + w(- + 0)$$
0 2 2
$$= 2^{5} + 2^{3} + 2^{2} + w(- + 0)$$
0 1
$$= 2^{5} + 2^{3} + 2^{2} + 2^{1} + w(- 0)$$
0
$$= 2^{5} + 2^{3} + 2^{2} + 2^{1} + 2^{0} + w(0)$$

$$= 2^{5} + 2^{3} + 2^{2} + 2^{1} + 2^{0} = 47$$

イロト イヨト イヨト イヨト

Example Main Theorem Proof: Stage 1 Proof: Stage 2

Bound on the weight

Lemma

The maximum of $w(\alpha)$ over codes α of length k is $2^k - 1$, for codes of the form $+ + \cdots + - - \cdots -$.

・ロト ・回 ト ・ヨト ・ヨト

Example Main Theorem Proof: Stage 1 Proof: Stage 2

Bound on the weight

Lemma

The maximum of $w(\alpha)$ over codes α of length k is $2^k - 1$, for codes of the form $+ + \cdots + - - \cdots -$.

Proof.

In the recursion,

$$w(\alpha) \leq 2^{k-1} + w(\hat{\alpha}),$$

with equality when a - is deleted from the right or a + from the left.

Example Main Theorem Proof: Stage 1 Proof: Stage 2

The weight increases at each displacement

Lemma

Let $\pi \in S_n$ with $\pi(1) \neq 1$ and $\pi(n) \neq n$, and let π' be the result of applying some displacement to π . Let $\alpha = \alpha(\pi)$ and $\alpha' = \alpha(\pi')$. Then

 $w(\alpha') > w(\alpha).$

・ロト ・同ト ・ヨト ・ヨト

Example Main Theorem Proof: Stage 1 Proof: Stage 2

The weight increases at each displacement

Lemma

Let $\pi \in S_n$ with $\pi(1) \neq 1$ and $\pi(n) \neq n$, and let π' be the result of applying some displacement to π . Let $\alpha = \alpha(\pi)$ and $\alpha' = \alpha(\pi')$. Then

 $w(\alpha') > w(\alpha).$

Proof sketch.

• A number *i* can be displaced iff $\alpha_i = 0$ in the code.

Example Main Theorem Proof: Stage 1 Proof: Stage 2

The weight increases at each displacement

Lemma

Let $\pi \in S_n$ with $\pi(1) \neq 1$ and $\pi(n) \neq n$, and let π' be the result of applying some displacement to π . Let $\alpha = \alpha(\pi)$ and $\alpha' = \alpha(\pi')$. Then

 $w(\alpha') > w(\alpha).$

Proof sketch.

- A number *i* can be displaced iff $\alpha_i = 0$ in the code.
- If it is displaced to the left, then α_i becomes a −, and some entries α_i with j < i can change from − to 0 or from 0 to +.</p>

イロト イポト イヨト イヨト

Example Main Theorem Proof: Stage 1 Proof: Stage 2

The weight increases at each displacement

Lemma

Let $\pi \in S_n$ with $\pi(1) \neq 1$ and $\pi(n) \neq n$, and let π' be the result of applying some displacement to π . Let $\alpha = \alpha(\pi)$ and $\alpha' = \alpha(\pi')$. Then

 $w(\alpha') > w(\alpha).$

Proof sketch.

- A number *i* can be displaced iff $\alpha_i = 0$ in the code.
- If it is displaced to the left, then α_i becomes a −, and some entries α_i with j < i can change from − to 0 or from 0 to +.</p>
- It can be shown that this increases the weight of the code.

Example Main Theorem Proof: Stage 1 Proof: Stage 2

Finishing the proof

Combining these lemmas, the maximum number of displacements is

- at most 2^{n-2} until 1 and *n* are displaced, plus
- at most $2^{n-2}-1$ after 1 and *n* have been displaced.

Example Main Theorem Proof: Stage 1 Proof: Stage 2

Finishing the proof

Combining these lemmas, the maximum number of displacements is

- at most 2^{n-2} until 1 and *n* are displaced, plus
- at most $2^{n-2}-1$ after 1 and *n* have been displaced.

So at most $2^{n-1}-1$ in total.

The number of worst-case permutations

 $h(\pi) = \max$. length of a seq. of placements from π to $12 \dots n$.

イロト イヨト イヨト イヨト

The number of worst-case permutations

 $h(\pi) = \max$. length of a seq. of placements from π to $12 \dots n$. $M_n = \{\pi \in S_n : h(\pi) = 2^{n-1} - 1\}.$

イロト イヨト イヨト イヨト

The number of worst-case permutations

 $h(\pi) = \max$. length of a seq. of placements from π to $12 \dots n$.

$$M_n = \{ \pi \in S_n : h(\pi) = 2^{n-1} - 1 \}.$$

For example, $23 \dots n1 \in M_n$.

イロト イヨト イヨト イヨト

The number of worst-case permutations

 $h(\pi) = \max$. length of a seq. of placements from π to $12 \dots n$.

$$M_n = \{\pi \in S_n : h(\pi) = 2^{n-1} - 1\}.$$

For example, $23 \dots n1 \in M_n$.

Theorem

$$B_{n-1}\leq |M_n|\leq (n-1)!,$$

where $B_n = n$ -th Bell number = # partitions of $\{1, 2, ..., n\}$.

イロト イポト イヨト イヨト

The number of worst-case permutations

 $h(\pi) = \max$. length of a seq. of placements from π to $12 \dots n$.

$$M_n = \{ \pi \in S_n : h(\pi) = 2^{n-1} - 1 \}.$$

For example, $23 \dots n1 \in M_n$.

Theorem

$$B_{n-1}\leq |M_n|\leq (n-1)!,$$

where $B_n = n$ -th Bell number = # partitions of $\{1, 2, ..., n\}$.

 B_n grows super-exponentially:

$$B_n \sim \frac{1}{\sqrt{n}} \lambda(n)^{n+1/2} e^{\lambda(n)-n-1},$$

where $\lambda(n) = \frac{n}{W(n)}$, and $W(n)e^{W(n)} = n$.

・ロト ・日下・ ・ ヨト

The number of worst-case permutations

$$f_{i,j} = |\{\pi \in M_{i+j} : \alpha(\pi) = \underbrace{+ + \cdots +}_{i-1} \underbrace{- \cdots -}_{j-1}\}|$$

イロン イヨン イヨン イヨン

The number of worst-case permutations

$$f_{i,j} = |\{\pi \in M_{i+j} : \alpha(\pi) = \underbrace{+ \cdots +}_{i-1} \underbrace{- \cdots -}_{j-1}\}|$$
$$F(u, v) = \sum_{i,j \ge 1} f_{i,j} u^i v^j$$

イロン 不同と 不同と 不同と

The number of worst-case permutations

$$f_{i,j} = |\{\pi \in M_{i+j} : \alpha(\pi) = \underbrace{+ + \cdots +}_{i-1} \underbrace{- \cdots -}_{j-1}\}|$$

$$F(u,v) = \sum_{i,j\geq 1} f_{i,j} u^i v^j$$

 $|M_n| = \sum_{i+j=n} f_{i,j}$ is the coefficient of t^n in F(t, t).

・ロン ・回と ・ヨン・

The number of worst-case permutations

$$f_{i,j} = |\{\pi \in M_{i+j} : \alpha(\pi) = \underbrace{+ + \cdots +}_{i-1} \underbrace{- \cdots -}_{j-1}\}|$$

$$F(u,v) = \sum_{i,j\geq 1} f_{i,j} u^i v^j$$

 $|M_n| = \sum_{i+j=n} f_{i,j}$ is the coefficient of t^n in F(t, t).

Theorem

$$F(u,v) = uv + uv \frac{\partial}{\partial u} F(u,v) + uv \frac{\partial}{\partial v} F(u,v) - u^2 v^2 \frac{\partial^2}{\partial u \partial v} F(u,v)$$

・ロン ・回と ・ヨン・

1 2 3 4 5

1 2 3 4 5

