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The homing algorithm

Given a permutation π, repeat the following placement step:

◮ Choose an entry π(i) such that π(i) 6= i .

◮ Place π(i) in the correct position.

◮ Shift the other entries as necessary.

1 23 45 6 78

12

3

456 78

1 2

3

456 78
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◮ How many steps does it take in the worst case. . .
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The problem
Fast Homing
Slow Homing

Counting bad cases

Main questions

◮ Does the algorithm always finish? YES

◮ How many steps does it take in the worst case. . .
◮ with a good choice of placements?
◮ with a random choice of placements?
◮ with a bad choice of placements?
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“Motivation”

◮ Makes sense when sorting physical objects, such as billiard
balls.
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“Motivation”

◮ Makes sense when sorting physical objects, such as billiard
balls.

◮ In hand-sorting files, it is common to take the first file and
move it to the front, then the second, and so on. This is a
(fast) special case of homing.
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“Motivation”

◮ Makes sense when sorting physical objects, such as billiard
balls.

◮ In hand-sorting files, it is common to take the first file and
move it to the front, then the second, and so on. This is a
(fast) special case of homing.

◮ It is fun to analyze this algorithm.

◮ If you have to sort a list and you are paid by the hour, this is
a great algorithm to use.
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History

◮ Despite its simplicity, it seems not to have been considered in
the literature.
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History

◮ Despite its simplicity, it seems not to have been considered in
the literature.

◮ Barry Cipra was looking at a variation of an algorithm of John
H. Conway. In Cipra’s algorithm, after each placement, the
intervening entries are reversed (instead of shifted). This
algorithm does not necessarily terminate:

71325684 → 71348652 → 56843172 → 52713486 →
52317486 → 71325486 → 71325684
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History

◮ Despite its simplicity, it seems not to have been considered in
the literature.

◮ Barry Cipra was looking at a variation of an algorithm of John
H. Conway. In Cipra’s algorithm, after each placement, the
intervening entries are reversed (instead of shifted). This
algorithm does not necessarily terminate:

71325684 → 71348652 → 56843172 → 52713486 →
52317486 → 71325486 → 71325684

◮ Loren Larson misunderstood the definition of the algorithm,
and thought the intervening numbers were shifted.
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Noam Elkies gave a neat proof that homing always terminates:

◮ Suppose it doesn’t. Then there is a cycle, since there are only
finitely many states.
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◮ Suppose it doesn’t. Then there is a cycle, since there are only
finitely many states.
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cycle.
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History (cont’d)

Noam Elkies gave a neat proof that homing always terminates:

◮ Suppose it doesn’t. Then there is a cycle, since there are only
finitely many states.

◮ Let k be the largest number which is placed upward in the
cycle.

◮ Once k is placed, it can be dislodged upward and placed again
downward, but nothing can ever push it below position k.
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History (cont’d)

Noam Elkies gave a neat proof that homing always terminates:

◮ Suppose it doesn’t. Then there is a cycle, since there are only
finitely many states.

◮ Let k be the largest number which is placed upward in the
cycle.

◮ Once k is placed, it can be dislodged upward and placed again
downward, but nothing can ever push it below position k.

◮ Hence it can never again be placed upward, a contradiction.

Sergi Elizalde, Peter Winkler A greedy sorting algorithm



The problem
Fast Homing
Slow Homing

Counting bad cases

Well-chosen placements

Theorem

◮ An algorithm that always places the smallest or largest

available number will terminate in at most n−1 steps.
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Well-chosen placements

Theorem

◮ An algorithm that always places the smallest or largest

available number will terminate in at most n−1 steps.

◮ Let k be the length of the longest increasing subsequence in π.

Then no sequence of fewer than n−k placements can sort π.
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Well-chosen placements

Theorem

◮ An algorithm that always places the smallest or largest

available number will terminate in at most n−1 steps.

◮ Let k be the length of the longest increasing subsequence in π.

Then no sequence of fewer than n−k placements can sort π.

◮ The permutation n . . . 21 is the only one requiring n−1 steps.
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Theorem
The expected number of steps required by random homing from

π ∈ Sn is at most n2+n−2
4 .
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Random placements

Theorem
The expected number of steps required by random homing from

π ∈ Sn is at most n2+n−2
4 .

Proof.

◮ Suppose that we have a permutation where k of the extremal
numbers are home:

123746589
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Random placements

Theorem
The expected number of steps required by random homing from

π ∈ Sn is at most n2+n−2
4 .

Proof.

◮ Suppose that we have a permutation where k of the extremal
numbers are home:

123746589

◮ With probability ≥ 2
n−k

, the next step will place an additional
extremal number.
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Random placements

Theorem
The expected number of steps required by random homing from

π ∈ Sn is at most n2+n−2
4 .

Proof.

◮ Suppose that we have a permutation where k of the extremal
numbers are home:

123746589

◮ With probability ≥ 2
n−k

, the next step will place an additional
extremal number.

◮ Total expected number of steps is ≤ ∑n−2
k=0

n−k
2 .
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Slow Homing: Example

Starting from
2 3 4 5 6 7 . . . n 1

place always the leftmost possible entry:
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Example
Main Theorem
Proof: Stage 1
Proof: Stage 2

Slow Homing: Example

Starting from
2 3 4 5 6 7 . . . n 1

place always the leftmost possible entry:

3 2 4 5 6 7 . . . n 1
2 4 3 5 6 7 . . . n 1
4 2 3 5 6 7 . . . n 1
2 3 5 4 6 7 . . . n 1
3 2 5 4 6 7 . . . n 1
2 5 3 4 6 7 . . . n 1

It takes 2n−1−1 steps to sort this permutation.
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Main result

Theorem
Homing always terminates in at most 2n−1−1 steps.

To prove this, consider the reverse algorithm.
We will show that, starting from the identity permutation, one can
perform at most 2n−1−1 displacements.
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Main Theorem
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Main result

Theorem
Homing always terminates in at most 2n−1−1 steps.

To prove this, consider the reverse algorithm.
We will show that, starting from the identity permutation, one can
perform at most 2n−1−1 displacements.

2n−1−1 = 2n−2
︸︷︷︸

until 1 and n are displaced

+ 2n−2 − 1
︸ ︷︷ ︸

after displacing 1 and n
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Lemma
After 2n−2 displacements, both 1 and n have been displaced and

will never be displaced again.
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Lemma
After 2n−2 displacements, both 1 and n have been displaced and

will never be displaced again.

Proof.

◮ Note that 1 and n can each be displaced only once.
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Example
Main Theorem
Proof: Stage 1
Proof: Stage 2

Lemma
After 2n−2 displacements, both 1 and n have been displaced and

will never be displaced again.

Proof.

◮ Note that 1 and n can each be displaced only once.

◮ If after 2n−2 displacements one of these values hasn’t been
displaced, then it played no role in the process.
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Example
Main Theorem
Proof: Stage 1
Proof: Stage 2

Lemma
After 2n−2 displacements, both 1 and n have been displaced and

will never be displaced again.

Proof.

◮ Note that 1 and n can each be displaced only once.

◮ If after 2n−2 displacements one of these values hasn’t been
displaced, then it played no role in the process.

◮ Hence the remaining n−1 numbers allowed more than 2n−2−1
steps, contradicting the induction hypothesis.
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The code of a permutation

Assume now that 1 and n have both been displaced.
We’ll show that only 2n−2−1 more displacements can occur.

Sergi Elizalde, Peter Winkler A greedy sorting algorithm



The problem
Fast Homing
Slow Homing

Counting bad cases

Example
Main Theorem
Proof: Stage 1
Proof: Stage 2

The code of a permutation

Assume now that 1 and n have both been displaced.
We’ll show that only 2n−2−1 more displacements can occur.

Assign to each permutation π a code α(π) = α2α3 . . . αn−1, where

αi =







0
+
−






if entry i is







exactly
to the right of
to the left of






home.
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The code of a permutation

Assume now that 1 and n have both been displaced.
We’ll show that only 2n−2−1 more displacements can occur.

Assign to each permutation π a code α(π) = α2α3 . . . αn−1, where

αi =







0
+
−






if entry i is







exactly
to the right of
to the left of






home.

Example

π = 356 1 8 4 7 2 −→ α(π) =
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The code of a permutation

Assume now that 1 and n have both been displaced.
We’ll show that only 2n−2−1 more displacements can occur.

Assign to each permutation π a code α(π) = α2α3 . . . αn−1, where

αi =







0
+
−






if entry i is







exactly
to the right of
to the left of
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Example

π = 356 1 8 4 7 2 −→ α(π) = +
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Example
Main Theorem
Proof: Stage 1
Proof: Stage 2

The code of a permutation

Assume now that 1 and n have both been displaced.
We’ll show that only 2n−2−1 more displacements can occur.

Assign to each permutation π a code α(π) = α2α3 . . . αn−1, where

αi =







0
+
−






if entry i is







exactly
to the right of
to the left of






home.

Example

π = 356 1 8 4 7 2 −→ α(π) = + −
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Example
Main Theorem
Proof: Stage 1
Proof: Stage 2

The code of a permutation

Assume now that 1 and n have both been displaced.
We’ll show that only 2n−2−1 more displacements can occur.

Assign to each permutation π a code α(π) = α2α3 . . . αn−1, where

αi =







0
+
−






if entry i is







exactly
to the right of
to the left of






home.

Example

π = 356 1 8 4 7 2 −→ α(π) = + − +
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Example
Main Theorem
Proof: Stage 1
Proof: Stage 2

The code of a permutation

Assume now that 1 and n have both been displaced.
We’ll show that only 2n−2−1 more displacements can occur.

Assign to each permutation π a code α(π) = α2α3 . . . αn−1, where

αi =







0
+
−






if entry i is







exactly
to the right of
to the left of






home.

Example

π = 35 6 1 8 4 7 2 −→ α(π) = + − + −
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The code of a permutation

Assume now that 1 and n have both been displaced.
We’ll show that only 2n−2−1 more displacements can occur.

Assign to each permutation π a code α(π) = α2α3 . . . αn−1, where

αi =







0
+
−






if entry i is







exactly
to the right of
to the left of






home.

Example

π = 356 1 8 4 7 2 −→ α(π) = + − + − −
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Example
Main Theorem
Proof: Stage 1
Proof: Stage 2

The code of a permutation

Assume now that 1 and n have both been displaced.
We’ll show that only 2n−2−1 more displacements can occur.

Assign to each permutation π a code α(π) = α2α3 . . . αn−1, where

αi =







0
+
−






if entry i is







exactly
to the right of
to the left of






home.

Example

π = 356 1 8 4 7 2 −→ α(π) = + − + − − 0
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The weight of a code

α = + − + − − 0

Define the weight of a code α recursively:

Sergi Elizalde, Peter Winkler A greedy sorting algorithm



The problem
Fast Homing
Slow Homing

Counting bad cases

Example
Main Theorem
Proof: Stage 1
Proof: Stage 2

The weight of a code

α = + − + − − 0
5 1 3 3 4

Define the weight of a code α recursively:

◮ For each −, count the number of symbols to its left, and
for each +, count the number of symbols to its right.
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Example
Main Theorem
Proof: Stage 1
Proof: Stage 2

The weight of a code

α = + − + − − 0
5 1 3 3 4

α̂ = − + − − 0

Define the weight of a code α recursively:

◮ For each −, count the number of symbols to its left, and
for each +, count the number of symbols to its right.

◮ Let d be the largest of these numbers, and let α̂ be the code
obtained by deleting the corresponding symbol.
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Example
Main Theorem
Proof: Stage 1
Proof: Stage 2

The weight of a code

α = + − + − − 0
5 1 3 3 4

α̂ = − + − − 0

Define the weight of a code α recursively:

◮ For each −, count the number of symbols to its left, and
for each +, count the number of symbols to its right.

◮ Let d be the largest of these numbers, and let α̂ be the code
obtained by deleting the corresponding symbol.

◮ Define
w(α) = 2d + w(α̂).
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The weight of a code: example

w( + − + − − 0 )
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w( + − + − − 0 )
5 1 3 3 4
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Proof: Stage 2

The weight of a code: example

w( + − + − − 0 )
5 1 3 3 4

= 25 + w( − + − − 0 )
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The weight of a code: example

w( + − + − − 0 )
5 1 3 3 4

= 25 + w( − + − − 0 )
0 3 2 3
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w( + − + − − 0 )
5 1 3 3 4

= 25 + w( − + − − 0 )
0 3 2 3
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w( + − + − − 0 )
5 1 3 3 4
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0 3 2 3
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Example
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Proof: Stage 2

The weight of a code: example

w( + − + − − 0 )
5 1 3 3 4

= 25 + w( − + − − 0 )
0 3 2 3

= 25 + 23 + w( − + − 0 )
0 2 2

= 25 + 23 + 22 + w( − + 0 )
0 1
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Example
Main Theorem
Proof: Stage 1
Proof: Stage 2

The weight of a code: example

w( + − + − − 0 )
5 1 3 3 4

= 25 + w( − + − − 0 )
0 3 2 3
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w( + − + − − 0 )
5 1 3 3 4

= 25 + w( − + − − 0 )
0 3 2 3

= 25 + 23 + w( − + − 0 )
0 2 2

= 25 + 23 + 22 + w( − + 0 )
0 1

= 25 + 23 + 22 + 21 + w( − 0 )
0

= 25 + 23 + 22 + 21 + 20 + w( 0 )
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Main Theorem
Proof: Stage 1
Proof: Stage 2

The weight of a code: example

w( + − + − − 0 )
5 1 3 3 4

= 25 + w( − + − − 0 )
0 3 2 3

= 25 + 23 + w( − + − 0 )
0 2 2

= 25 + 23 + 22 + w( − + 0 )
0 1

= 25 + 23 + 22 + 21 + w( − 0 )
0

= 25 + 23 + 22 + 21 + 20 + w( 0 )

= 25 + 23 + 22 + 21 + 20 = 47
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Bound on the weight

Lemma
The maximum of w(α) over codes α of length k is 2k − 1, for

codes of the form + + · · · + −− · · · −.
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Example
Main Theorem
Proof: Stage 1
Proof: Stage 2

Bound on the weight

Lemma
The maximum of w(α) over codes α of length k is 2k − 1, for

codes of the form + + · · · + −− · · · −.

Proof.
In the recursion,

w(α) ≤ 2k−1 + w(α̂),

with equality when a − is deleted from the right or a + from the
left.
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The weight increases at each displacement

Lemma
Let π ∈ Sn with π(1) 6= 1 and π(n) 6= n, and let π′ be the result of

applying some displacement to π. Let α = α(π) and α′ = α(π′).
Then

w(α′) > w(α).
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applying some displacement to π. Let α = α(π) and α′ = α(π′).
Then

w(α′) > w(α).

Proof sketch.

◮ A number i can be displaced iff αi = 0 in the code.
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Lemma
Let π ∈ Sn with π(1) 6= 1 and π(n) 6= n, and let π′ be the result of

applying some displacement to π. Let α = α(π) and α′ = α(π′).
Then

w(α′) > w(α).

Proof sketch.

◮ A number i can be displaced iff αi = 0 in the code.

◮ If it is displaced to the left, then αi becomes a −, and some
entries αj with j < i can change from − to 0 or from 0 to +.
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Example
Main Theorem
Proof: Stage 1
Proof: Stage 2

The weight increases at each displacement

Lemma
Let π ∈ Sn with π(1) 6= 1 and π(n) 6= n, and let π′ be the result of

applying some displacement to π. Let α = α(π) and α′ = α(π′).
Then

w(α′) > w(α).

Proof sketch.

◮ A number i can be displaced iff αi = 0 in the code.

◮ If it is displaced to the left, then αi becomes a −, and some
entries αj with j < i can change from − to 0 or from 0 to +.

◮ It can be shown that this increases the weight of the code.
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Finishing the proof

Combining these lemmas, the maximum number of
displacements is

◮ at most 2n−2 until 1 and n are displaced, plus

◮ at most 2n−2−1 after 1 and n have been displaced.
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Example
Main Theorem
Proof: Stage 1
Proof: Stage 2

Finishing the proof

Combining these lemmas, the maximum number of
displacements is

◮ at most 2n−2 until 1 and n are displaced, plus

◮ at most 2n−2−1 after 1 and n have been displaced.

So at most 2n−1−1 in total.
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The number of worst-case permutations

h(π) = max. length of a seq. of placements from π to 12 . . . n.
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Mn = {π ∈ Sn : h(π) = 2n−1−1}.
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The number of worst-case permutations

h(π) = max. length of a seq. of placements from π to 12 . . . n.

Mn = {π ∈ Sn : h(π) = 2n−1−1}.
For example, 23 . . . n1 ∈ Mn.

Theorem
Bn−1 ≤ |Mn| ≤ (n − 1)!,

where Bn = n-th Bell number = # partitions of {1, 2, . . . , n}.
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Counting bad cases

The number of worst-case permutations

h(π) = max. length of a seq. of placements from π to 12 . . . n.

Mn = {π ∈ Sn : h(π) = 2n−1−1}.
For example, 23 . . . n1 ∈ Mn.

Theorem
Bn−1 ≤ |Mn| ≤ (n − 1)!,

where Bn = n-th Bell number = # partitions of {1, 2, . . . , n}.

Bn grows super-exponentially:

Bn ∼ 1√
n

λ(n)n+1/2eλ(n)−n−1,

where λ(n) = n
W (n) , and W (n)eW (n) = n.
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The number of worst-case permutations

fi ,j = |{π ∈ Mi+j : α(π) = + + · · ·+
︸ ︷︷ ︸

i−1

−− · · · −
︸ ︷︷ ︸

j−1

}|
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fi ,j = |{π ∈ Mi+j : α(π) = + + · · ·+
︸ ︷︷ ︸

i−1

−− · · · −
︸ ︷︷ ︸

j−1

}|

F (u, v) =
∑

i ,j≥1

fi ,j u
iv j

|Mn| =
∑

i+j=n fi ,j is the coefficient of tn in F (t, t).
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The number of worst-case permutations

fi ,j = |{π ∈ Mi+j : α(π) = + + · · ·+
︸ ︷︷ ︸

i−1

−− · · · −
︸ ︷︷ ︸

j−1

}|

F (u, v) =
∑

i ,j≥1

fi ,j u
iv j

|Mn| =
∑

i+j=n fi ,j is the coefficient of tn in F (t, t).

Theorem

F (u, v) = uv + uv
∂

∂u
F (u, v) + uv

∂

∂v
F (u, v) − u2v2 ∂2

∂u∂v
F (u, v)
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THANK YOU
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