A greedy sorting algorithm

Sergi Elizalde Peter Winkler
Dartmouth College

Rutgers Experimental Mathematics Seminar

The homing algorithm

Given a permutation π, repeat the following placement step:

- Choose an entry $\pi(i)$ such that $\pi(i) \neq i$.
- Place $\pi(i)$ in the correct position.
- Shift the other entries as necessary.

Main questions

- Does the algorithm always finish?

Main questions

- Does the algorithm always finish?

YES

Main questions

- Does the algorithm always finish? YES
- How many steps does it take in the worst case...

Main questions

- Does the algorithm always finish?
- How many steps does it take in the worst case...
- with a good choice of placements?
- with a random choice of placements?
- with a bad choice of placements?

"Motivation"

- Makes sense when sorting physical objects, such as billiard balls.

"Motivation"

- Makes sense when sorting physical objects, such as billiard balls.
- In hand-sorting files, it is common to take the first file and move it to the front, then the second, and so on. This is a (fast) special case of homing.

"Motivation"

- Makes sense when sorting physical objects, such as billiard balls.
- In hand-sorting files, it is common to take the first file and move it to the front, then the second, and so on. This is a (fast) special case of homing.
- It is fun to analyze this algorithm.

"Motivation"

- Makes sense when sorting physical objects, such as billiard balls.
- In hand-sorting files, it is common to take the first file and move it to the front, then the second, and so on. This is a (fast) special case of homing.
- It is fun to analyze this algorithm.
- If you have to sort a list and you are paid by the hour, this is a great algorithm to use.

History

- Despite its simplicity, it seems not to have been considered in the literature.

History

- Despite its simplicity, it seems not to have been considered in the literature.
- Barry Cipra was looking at a variation of an algorithm of John H. Conway. In Cipra's algorithm, after each placement, the intervening entries are reversed (instead of shifted). This algorithm does not necessarily terminate:
$7132568 \underline{4} \rightarrow \underline{71348652} \rightarrow 5684317 \underline{2} \rightarrow 5271 \underline{3} 486 \rightarrow$ $5231 \underline{1} 486 \rightarrow 71325486 \rightarrow 71325684$

History

- Despite its simplicity, it seems not to have been considered in the literature.
- Barry Cipra was looking at a variation of an algorithm of John H. Conway. In Cipra's algorithm, after each placement, the intervening entries are reversed (instead of shifted). This algorithm does not necessarily terminate:
$7132568 \underline{4} \rightarrow \underline{71348652} \rightarrow 5684317 \underline{2} \rightarrow 5271 \underline{3} 486 \rightarrow$ $5231 \underline{1} 486 \rightarrow 71325486 \rightarrow 71325684$
- Loren Larson misunderstood the definition of the algorithm, and thought the intervening numbers were shifted.

History (cont'd)

Noam Elkies gave a neat proof that homing always terminates:

- Suppose it doesn't. Then there is a cycle, since there are only finitely many states.

History (cont'd)

Noam Elkies gave a neat proof that homing always terminates:

- Suppose it doesn't. Then there is a cycle, since there are only finitely many states.
- Let k be the largest number which is placed upward in the cycle.

History (cont'd)

Noam Elkies gave a neat proof that homing always terminates:

- Suppose it doesn't. Then there is a cycle, since there are only finitely many states.
- Let k be the largest number which is placed upward in the cycle.
- Once k is placed, it can be dislodged upward and placed again downward, but nothing can ever push it below position k.

History (cont'd)

Noam Elkies gave a neat proof that homing always terminates:

- Suppose it doesn't. Then there is a cycle, since there are only finitely many states.
- Let k be the largest number which is placed upward in the cycle.
- Once k is placed, it can be dislodged upward and placed again downward, but nothing can ever push it below position k.
- Hence it can never again be placed upward, a contradiction.

Well-chosen placements

Theorem

- An algorithm that always places the smallest or largest available number will terminate in at most $n-1$ steps.

Well-chosen placements

Theorem

- An algorithm that always places the smallest or largest available number will terminate in at most $n-1$ steps.
- Let k be the length of the longest increasing subsequence in π. Then no sequence of fewer than $n-k$ placements can sort π.

Well-chosen placements

Theorem

- An algorithm that always places the smallest or largest available number will terminate in at most $n-1$ steps.
- Let k be the length of the longest increasing subsequence in π. Then no sequence of fewer than $n-k$ placements can sort π.
- The permutation n... 21 is the only one requiring $n-1$ steps.

Random placements

Theorem

The expected number of steps required by random homing from $\pi \in S_{n}$ is at most $\frac{n^{2}+n-2}{4}$.

Random placements

Theorem

The expected number of steps required by random homing from $\pi \in S_{n}$ is at most $\frac{n^{2}+n-2}{4}$.

Proof.

- Suppose that we have a permutation where k of the extremal numbers are home:

123746589

Random placements

Theorem

The expected number of steps required by random homing from $\pi \in S_{n}$ is at most $\frac{n^{2}+n-2}{4}$.

Proof.

- Suppose that we have a permutation where k of the extremal numbers are home:

$$
123746589
$$

- With probability $\geq \frac{2}{n-k}$, the next step will place an additional extremal number.

Random placements

Theorem

The expected number of steps required by random homing from $\pi \in S_{n}$ is at most $\frac{n^{2}+n-2}{4}$.

Proof.

- Suppose that we have a permutation where k of the extremal numbers are home:

$$
123746589
$$

- With probability $\geq \frac{2}{n-k}$, the next step will place an additional extremal number.
- Total expected number of steps is $\leq \sum_{k=0}^{n-2} \frac{n-k}{2}$.

Slow Homing: Example

Starting from

$$
234567 \ldots n 1
$$

place always the leftmost possible entry:

Slow Homing: Example

Starting from

$$
234567 \ldots n 1
$$

place always the leftmost possible entry:

Slow Homing: Example

Starting from

$$
234567 \ldots n 1
$$

place always the leftmost possible entry:

$$
324567 \ldots n 1
$$

Slow Homing: Example

Starting from

$$
234567 \ldots n 1
$$

place always the leftmost possible entry:

$$
324567 \ldots n 1
$$

Slow Homing: Example

Starting from

$$
234567 \ldots n 1
$$

place always the leftmost possible entry:

$$
\begin{aligned}
& 324567 \ldots n 1 \\
& 243567 \ldots n 1
\end{aligned}
$$

Slow Homing: Example

Starting from

$$
234567 \ldots n 1
$$

place always the leftmost possible entry:

$$
\begin{aligned}
& 324567 \ldots n 1 \\
& 243567 \ldots n 1
\end{aligned}
$$

Slow Homing: Example

Starting from

$$
234567 \ldots n 1
$$

place always the leftmost possible entry:

$$
\begin{aligned}
& 324567 \ldots n 1 \\
& 243567 \ldots n 1 \\
& 423567 \ldots n 1
\end{aligned}
$$

Slow Homing: Example

Starting from

$$
234567 \ldots n 1
$$

place always the leftmost possible entry:

$$
\begin{aligned}
& 324567 \ldots n 1 \\
& 243567 \ldots n 1 \\
& 423567 \ldots n 1
\end{aligned}
$$

Slow Homing: Example

Starting from

$$
234567 \ldots n 1
$$

place always the leftmost possible entry:

$$
\begin{aligned}
& 324567 \ldots n 1 \\
& 243567 \ldots n 1 \\
& 423567 \ldots n 1 \\
& 235467 \ldots n 1
\end{aligned}
$$

Slow Homing: Example

Starting from

$$
234567 \ldots n 1
$$

place always the leftmost possible entry:

$$
\begin{aligned}
& 324567 \ldots n 1 \\
& 243567 \ldots n 1 \\
& 423567 \ldots n 1 \\
& 235467 \ldots n 1
\end{aligned}
$$

Slow Homing: Example

Starting from

$$
234567 \ldots n 1
$$

place always the leftmost possible entry:

$$
\begin{aligned}
& 324567 \ldots n 1 \\
& 243567 \ldots n 1 \\
& 423567 \ldots n 1 \\
& 235467 \ldots n 1 \\
& 325467 \ldots n 1
\end{aligned}
$$

Slow Homing: Example

Starting from

$$
234567 \ldots n 1
$$

place always the leftmost possible entry:

$$
\begin{aligned}
& 324567 \ldots n 1 \\
& 243567 \ldots n 1 \\
& 423567 \ldots n 1 \\
& 235467 \ldots n 1 \\
& 325467 \ldots n 1
\end{aligned}
$$

Slow Homing: Example

Starting from

$$
234567 \ldots n 1
$$

place always the leftmost possible entry:

$$
\begin{aligned}
& 324567 \ldots n 1 \\
& 243567 \ldots n 1 \\
& 423567 \ldots n 1 \\
& 235467 \ldots n 1 \\
& 325467 \ldots n 1 \\
& 253467 \ldots n 1
\end{aligned}
$$

Slow Homing: Example

Starting from

$$
234567 \ldots n 1
$$

place always the leftmost possible entry:

$$
\begin{aligned}
& 324567 \ldots n 1 \\
& 243567 \ldots n 1 \\
& 423567 \ldots n 1 \\
& 235467 \ldots n 1 \\
& 325467 \ldots n 1 \\
& 253467 \ldots n 1
\end{aligned}
$$

It takes $2^{n-1}-1$ steps to sort this permutation.

The problem

Main result

Theorem
Homing always terminates in at most $2^{n-1}-1$ steps.

Main result

Theorem
Homing always terminates in at most $2^{n-1}-1$ steps.

To prove this, consider the reverse algorithm.
We will show that, starting from the identity permutation, one can perform at most $2^{n-1}-1$ displacements.

Main result

Theorem

Homing always terminates in at most $2^{n-1}-1$ steps.

To prove this, consider the reverse algorithm.
We will show that, starting from the identity permutation, one can perform at most $2^{n-1}-1$ displacements.
$2^{n-1}-1=\quad \underbrace{2^{n-2}}+\underbrace{2^{n-2}-1}$
until 1 and n are displaced after displacing 1 and n

Lemma

After 2^{n-2} displacements, both 1 and n have been displaced and will never be displaced again.

Lemma

After 2^{n-2} displacements, both 1 and n have been displaced and will never be displaced again.

Proof.

- Note that 1 and n can each be displaced only once.

Lemma

After 2^{n-2} displacements, both 1 and n have been displaced and will never be displaced again.

Proof.

- Note that 1 and n can each be displaced only once.
- If after 2^{n-2} displacements one of these values hasn't been displaced, then it played no role in the process.

Lemma

After 2^{n-2} displacements, both 1 and n have been displaced and will never be displaced again.

Proof.

- Note that 1 and n can each be displaced only once.
- If after 2^{n-2} displacements one of these values hasn't been displaced, then it played no role in the process.
- Hence the remaining $n-1$ numbers allowed more than $2^{n-2}-1$ steps, contradicting the induction hypothesis.

The code of a permutation

Assume now that 1 and n have both been displaced. We'll show that only $2^{n-2}-1$ more displacements can occur.

The code of a permutation

Assume now that 1 and n have both been displaced.
We'll show that only $2^{n-2}-1$ more displacements can occur.
Assign to each permutation π a code $\alpha(\pi)=\alpha_{2} \alpha_{3} \ldots \alpha_{n-1}$, where
$\alpha_{i}=\left\{\begin{array}{c}0 \\ + \\ -\end{array}\right\}$ if entry i is $\left\{\begin{array}{c}\text { exactly } \\ \text { to the right of } \\ \text { to the left of }\end{array}\right\}$ home.

The code of a permutation

Assume now that 1 and n have both been displaced.
We'll show that only $2^{n-2}-1$ more displacements can occur.
Assign to each permutation π a code $\alpha(\pi)=\alpha_{2} \alpha_{3} \ldots \alpha_{n-1}$, where
$\alpha_{i}=\left\{\begin{array}{c}0 \\ + \\ -\end{array}\right\}$ if entry i is $\left\{\begin{array}{c}\text { exactly } \\ \text { to the right of } \\ \text { to the left of }\end{array}\right\}$ home.
Example
$\pi=35618472 \quad \longrightarrow \quad \alpha(\pi)=$

The code of a permutation

Assume now that 1 and n have both been displaced.
We'll show that only $2^{n-2}-1$ more displacements can occur.
Assign to each permutation π a code $\alpha(\pi)=\alpha_{2} \alpha_{3} \ldots \alpha_{n-1}$, where
$\alpha_{i}=\left\{\begin{array}{c}0 \\ + \\ -\end{array}\right\}$ if entry i is $\left\{\begin{array}{c}\text { exactly } \\ \text { to the right of } \\ \text { to the left of }\end{array}\right\}$ home.
Example
$\pi=35618472 \longrightarrow \quad \alpha(\pi)=+$

The code of a permutation

Assume now that 1 and n have both been displaced.
We'll show that only $2^{n-2}-1$ more displacements can occur.
Assign to each permutation π a code $\alpha(\pi)=\alpha_{2} \alpha_{3} \ldots \alpha_{n-1}$, where
$\alpha_{i}=\left\{\begin{array}{c}0 \\ + \\ -\end{array}\right\}$ if entry i is $\left\{\begin{array}{c}\text { exactly } \\ \text { to the right of } \\ \text { to the left of }\end{array}\right\}$ home.
Example
$\pi=35618472 \quad \longrightarrow \quad \alpha(\pi)=+-$

The code of a permutation

Assume now that 1 and n have both been displaced.
We'll show that only $2^{n-2}-1$ more displacements can occur.
Assign to each permutation π a code $\alpha(\pi)=\alpha_{2} \alpha_{3} \ldots \alpha_{n-1}$, where
$\alpha_{i}=\left\{\begin{array}{c}0 \\ + \\ -\end{array}\right\}$ if entry i is $\left\{\begin{array}{c}\text { exactly } \\ \text { to the right of } \\ \text { to the left of }\end{array}\right\}$ home.
Example
$\pi=35618472 \quad \longrightarrow \quad \alpha(\pi)=+-+$

The code of a permutation

Assume now that 1 and n have both been displaced.
We'll show that only $2^{n-2}-1$ more displacements can occur.
Assign to each permutation π a code $\alpha(\pi)=\alpha_{2} \alpha_{3} \ldots \alpha_{n-1}$, where
$\alpha_{i}=\left\{\begin{array}{c}0 \\ + \\ -\end{array}\right\}$ if entry i is $\left\{\begin{array}{c}\text { exactly } \\ \text { to the right of } \\ \text { to the left of }\end{array}\right\}$ home.
Example
$\pi=35618472 \longrightarrow \alpha(\pi)=+-+-$

The code of a permutation

Assume now that 1 and n have both been displaced.
We'll show that only $2^{n-2}-1$ more displacements can occur.
Assign to each permutation π a code $\alpha(\pi)=\alpha_{2} \alpha_{3} \ldots \alpha_{n-1}$, where
$\alpha_{i}=\left\{\begin{array}{c}0 \\ + \\ -\end{array}\right\}$ if entry i is $\left\{\begin{array}{c}\text { exactly } \\ \text { to the right of } \\ \text { to the left of }\end{array}\right\}$ home.
Example
$\pi=35618472 \longrightarrow \quad \alpha(\pi)=+-+--$

The code of a permutation

Assume now that 1 and n have both been displaced.
We'll show that only $2^{n-2}-1$ more displacements can occur.
Assign to each permutation π a code $\alpha(\pi)=\alpha_{2} \alpha_{3} \ldots \alpha_{n-1}$, where
$\alpha_{i}=\left\{\begin{array}{c}0 \\ + \\ -\end{array}\right\}$ if entry i is $\left\{\begin{array}{c}\text { exactly } \\ \text { to the right of } \\ \text { to the left of }\end{array}\right\}$ home.
Example
$\pi=35618472 \longrightarrow \alpha(\pi)=+-+--0$

The problem

The weight of a code

$$
\alpha=+-\quad+\quad-\quad-0
$$

Define the weight of a code α recursively:

The weight of a code

$$
\alpha=\begin{array}{rrrrrr}
+ & - & + & - & - & 0 \\
5 & 1 & 3 & 3 & 4 &
\end{array}
$$

Define the weight of a code α recursively:

- For each - , count the number of symbols to its left, and for each + , count the number of symbols to its right.

The weight of a code

$\alpha=$	+	-	+	-	-	0	
	5	1	3	3	4		
$\hat{\alpha}$	$=$		-	+	-	-	0

Define the weight of a code α recursively:

- For each - , count the number of symbols to its left, and for each + , count the number of symbols to its right.
- Let d be the largest of these numbers, and let $\hat{\alpha}$ be the code obtained by deleting the corresponding symbol.

The weight of a code

$\alpha=$	+	-	+	-	-	0	
	5	1	3	3	4		
$\hat{\alpha}$	$=$		-	+	-	-	0

Define the weight of a code α recursively:

- For each -, count the number of symbols to its left, and for each + , count the number of symbols to its right.
- Let d be the largest of these numbers, and let $\hat{\alpha}$ be the code obtained by deleting the corresponding symbol.
- Define

$$
w(\alpha)=2^{d}+w(\hat{\alpha}) .
$$

The problem

The weight of a code: example

$$
w(+\quad-\quad+\quad-\quad 0)
$$

The problem

Example

The weight of a code: example

$$
w\left(\begin{array}{cccccc}
+ & - & + & - & - & 0
\end{array}\right)
$$

The problem

Example
Main Theorem
Proof: Stage 1
Proof: Stage 2

The weight of a code: example

$$
\begin{gathered}
w\left(\begin{array}{ccccc}
+ & - & + & - & 0) \\
5 & 1 & 3 & 3 & 4
\end{array}\right. \\
=2^{5}+w\left(\begin{array}{llll}
& + & &
\end{array}\right)
\end{gathered}
$$

The problem

Example
Main Theorem
Proof: Stage 1
Proof: Stage 2

The weight of a code: example

$$
\begin{aligned}
& w(+\quad-\quad+\quad-0) \\
& \begin{array}{lllll}
5 & 1 & 3 & 3 & 4
\end{array} \\
& =2^{5}+w(-\quad+\quad-0) \\
& 0333
\end{aligned}
$$

Example
Main Theorem
Proof: Stage 1
Proof: Stage 2

The weight of a code: example

$$
\begin{array}{rl}
& w\left(\begin{array}{rrrrrr}
+ & - & + & - & - & 0
\end{array}\right) \\
5 & 1
\end{array} 3
$$

Example
Main Theorem
Proof: Stage 1
Proof: Stage 2

The weight of a code: example

$$
\begin{aligned}
& w(+\quad-\quad+\quad-0) \\
& \begin{array}{lllll}
5 & 1 & 3 & 3 & 4
\end{array} \\
& =2^{5}+w(-+-\quad-0) \\
& \begin{array}{llll}
0 & 3 & 2
\end{array} \\
& =2^{5}+2^{3}+w\left(\begin{array}{cccc}
- & + & - & 0 \\
0 & 2 & 2
\end{array}\right)
\end{aligned}
$$

Example
Main Theorem
Proof: Stage 1
Proof: Stage 2

The weight of a code: example

$$
\begin{aligned}
& w(+\quad-\quad+\quad-0) \\
& \begin{array}{lllll}
5 & 1 & 3 & 3 & 4
\end{array} \\
& =2^{5}+w(-\quad+\quad-0) \\
& \begin{array}{llll}
0 & 3 & 2
\end{array} \\
& =2^{5}+2^{3}+w\left(\begin{array}{ccc}
- & + & - \\
0 & 2 & 2
\end{array}\right) \\
& =2^{5}+2^{3}+2^{2}+w(-0)
\end{aligned}
$$

Example
Main Theorem
Proof: Stage 1
Proof: Stage 2

The weight of a code: example

$$
\begin{aligned}
& w(+\quad-\quad+\quad-0) \\
& \begin{array}{lllll}
5 & 1 & 3 & 3 & 4
\end{array} \\
& =2^{5}+w(-+\quad-0) \\
& \begin{array}{llll}
0 & 3 & 2
\end{array} \\
& =2^{5}+2^{3}+w\left(\begin{array}{cccc}
- & + & - & 0 \\
0 & 2 & 2
\end{array}\right) \\
& =2^{5}+2^{3}+2^{2}+w\left(\begin{array}{ccc}
- & + & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

The weight of a code: example

$$
\begin{aligned}
& w(+\quad-\quad+\quad-0) \\
& \begin{array}{lllll}
5 & 1 & 3 & 3 & 4
\end{array} \\
& =2^{5}+w(-+-\quad-0) \\
& \begin{array}{llll}
0 & 3 & 2
\end{array} \\
& =2^{5}+2^{3}+w\left(\begin{array}{cccc}
- & + & - & 0 \\
0 & 2 & 2
\end{array}\right) \\
& =2^{5}+2^{3}+2^{2}+w\left(\begin{array}{ccc}
- & + & 0 \\
0 & 1
\end{array}\right) \\
& =2^{5}+2^{3}+2^{2}+2^{1}+w(-0)
\end{aligned}
$$

The weight of a code: example

$$
\begin{aligned}
& w(+-\quad+\quad-\quad 0) \\
& \begin{array}{lllll}
5 & 1 & 3 & 3 & 4
\end{array} \\
& =2^{5}+w(-+-\quad-0) \\
& \begin{array}{llll}
0 & 3 & 2
\end{array} \\
& =2^{5}+2^{3}+w\left(\begin{array}{cccc}
- & + & - & 0 \\
0 & 2 & 2
\end{array}\right) \\
& =2^{5}+2^{3}+2^{2}+w\left(\begin{array}{ccc}
- & + & 0 \\
0 & 1
\end{array}\right) \\
& =2^{5}+2^{3}+2^{2}+2^{1}+w(-0) \\
& 0
\end{aligned}
$$

The weight of a code: example

$$
\begin{aligned}
& w(+-\quad+\quad-\quad 0) \\
& \begin{array}{lllll}
5 & 1 & 3 & 3 & 4
\end{array} \\
& =2^{5}+w(-\quad+\quad-0) \\
& \begin{array}{llll}
0 & 3 & 2
\end{array} \\
& =2^{5}+2^{3}+w\left(\begin{array}{cccc}
- & + & - & 0 \\
0 & 2 & 2
\end{array}\right) \\
& =2^{5}+2^{3}+2^{2}+w\left(\begin{array}{ccc}
- & + & 0 \\
0 & 1
\end{array}\right) \\
& =2^{5}+2^{3}+2^{2}+2^{1}+w(-0) \\
& 0 \\
& =2^{5}+2^{3}+2^{2}+2^{1}+2^{0}+w(0)
\end{aligned}
$$

The weight of a code: example

$$
\begin{aligned}
& w(+\quad-\quad+\quad-0) \\
& \begin{array}{lllll}
5 & 1 & 3 & 3 & 4
\end{array} \\
& =2^{5}+w(-\quad+\quad-0) \\
& \begin{array}{llll}
0 & 3 & 2
\end{array} \\
& =2^{5}+2^{3}+w(-\quad+\quad 0) \\
& 022 \\
& =2^{5}+2^{3}+2^{2}+w\left(\begin{array}{cc}
- & + \\
0 & 1
\end{array}\right) \\
& =2^{5}+2^{3}+2^{2}+2^{1}+w(-0) \\
& 0 \\
& =2^{5}+2^{3}+2^{2}+2^{1}+2^{0}+w(0) \\
& =2^{5}+2^{3}+2^{2}+2^{1}+2^{0}=47
\end{aligned}
$$

Bound on the weight

Lemma

The maximum of $w(\alpha)$ over codes α of length k is $2^{k}-1$, for codes of the form $++\cdots+--\cdots-$.

Bound on the weight

Lemma

The maximum of $w(\alpha)$ over codes α of length k is $2^{k}-1$, for codes of the form $++\cdots+\cdots-\cdots-$.

Proof.

In the recursion,

$$
w(\alpha) \leq 2^{k-1}+w(\hat{\alpha})
$$

with equality when $a-$ is deleted from the right or $a+$ from the left.

The weight increases at each displacement

Lemma

Let $\pi \in S_{n}$ with $\pi(1) \neq 1$ and $\pi(n) \neq n$, and let π^{\prime} be the result of applying some displacement to π. Let $\alpha=\alpha(\pi)$ and $\alpha^{\prime}=\alpha\left(\pi^{\prime}\right)$. Then

$$
w\left(\alpha^{\prime}\right)>w(\alpha) .
$$

The weight increases at each displacement

Lemma

Let $\pi \in S_{n}$ with $\pi(1) \neq 1$ and $\pi(n) \neq n$, and let π^{\prime} be the result of applying some displacement to π. Let $\alpha=\alpha(\pi)$ and $\alpha^{\prime}=\alpha\left(\pi^{\prime}\right)$. Then

$$
w\left(\alpha^{\prime}\right)>w(\alpha) .
$$

Proof sketch.

- A number i can be displaced iff $\alpha_{i}=0$ in the code.

The weight increases at each displacement

Lemma

Let $\pi \in S_{n}$ with $\pi(1) \neq 1$ and $\pi(n) \neq n$, and let π^{\prime} be the result of applying some displacement to π. Let $\alpha=\alpha(\pi)$ and $\alpha^{\prime}=\alpha\left(\pi^{\prime}\right)$. Then

$$
w\left(\alpha^{\prime}\right)>w(\alpha) .
$$

Proof sketch.

- A number i can be displaced iff $\alpha_{i}=0$ in the code.
- If it is displaced to the left, then α_{i} becomes a - , and some entries α_{j} with $j<i$ can change from - to 0 or from 0 to + .

The weight increases at each displacement

Lemma

Let $\pi \in S_{n}$ with $\pi(1) \neq 1$ and $\pi(n) \neq n$, and let π^{\prime} be the result of applying some displacement to π. Let $\alpha=\alpha(\pi)$ and $\alpha^{\prime}=\alpha\left(\pi^{\prime}\right)$. Then

$$
w\left(\alpha^{\prime}\right)>w(\alpha) .
$$

Proof sketch.

- A number i can be displaced iff $\alpha_{i}=0$ in the code.
- If it is displaced to the left, then α_{i} becomes a - , and some entries α_{j} with $j<i$ can change from - to 0 or from 0 to + .
- It can be shown that this increases the weight of the code.

Finishing the proof

Combining these lemmas, the maximum number of displacements is

- at most 2^{n-2} until 1 and n are displaced, plus
- at most $2^{n-2}-1$ after 1 and n have been displaced.

Finishing the proof

Combining these lemmas, the maximum number of displacements is

- at most 2^{n-2} until 1 and n are displaced, plus
- at most $2^{n-2}-1$ after 1 and n have been displaced.

So at most $2^{n-1}-1$ in total.

The number of worst-case permutations

$h(\pi)=$ max. length of a seq. of placements from π to $12 \ldots n$.

The number of worst-case permutations

$h(\pi)=$ max. length of a seq. of placements from π to $12 \ldots n$.

$$
M_{n}=\left\{\pi \in S_{n}: h(\pi)=2^{n-1}-1\right\} .
$$

The number of worst-case permutations

$h(\pi)=$ max. length of a seq. of placements from π to $12 \ldots n$. $M_{n}=\left\{\pi \in S_{n}: h(\pi)=2^{n-1}-1\right\}$.

For example, $23 \ldots n 1 \in M_{n}$.

The number of worst-case permutations

$h(\pi)=$ max. length of a seq. of placements from π to $12 \ldots n$. $M_{n}=\left\{\pi \in S_{n}: h(\pi)=2^{n-1}-1\right\}$.

For example, $23 \ldots n 1 \in M_{n}$.

Theorem

$$
B_{n-1} \leq\left|M_{n}\right| \leq(n-1)!,
$$

where $B_{n}=n$-th Bell number $=\#$ partitions of $\{1,2, \ldots, n\}$.

The number of worst-case permutations

$h(\pi)=$ max. length of a seq. of placements from π to $12 \ldots n$.
$M_{n}=\left\{\pi \in S_{n}: h(\pi)=2^{n-1}-1\right\}$.
For example, $23 \ldots n 1 \in M_{n}$.

Theorem

$$
B_{n-1} \leq\left|M_{n}\right| \leq(n-1)!,
$$

where $B_{n}=n$-th Bell number $=\#$ partitions of $\{1,2, \ldots, n\}$.
B_{n} grows super-exponentially:

$$
B_{n} \sim \frac{1}{\sqrt{n}} \lambda(n)^{n+1 / 2} e^{\lambda(n)-n-1}
$$

where $\lambda(n)=\frac{n}{W(n)}$, and $W(n) e^{W(n)}=n$.

The number of worst-case permutations

$$
f_{i, j}=|\{\pi \in M_{i+j}: \alpha(\pi)=\underbrace{++\cdots+}_{i-1} \underbrace{--\cdots-}_{j-1}\}|
$$

The number of worst-case permutations

$$
\begin{gathered}
f_{i, j}=|\{\pi \in M_{i+j}: \alpha(\pi)=\underbrace{++\cdots+}_{i-1} \underbrace{--\cdots-\cdots}_{j-1}\}| \\
F(u, v)=\sum_{i, j \geq 1} f_{i, j} u^{i} v^{j}
\end{gathered}
$$

The number of worst-case permutations

$$
\begin{gathered}
f_{i, j}=|\{\pi \in M_{i+j}: \alpha(\pi)=\underbrace{++\cdots}_{i-1} \underbrace{--\cdots-}_{j-1}\}| \\
F(u, v)=\sum_{i, j \geq 1} f_{i, j} u^{i} v^{j}
\end{gathered}
$$

$\left|M_{n}\right|=\sum_{i+j=n} f_{i, j}$ is the coefficient of t^{n} in $F(t, t)$.

The number of worst-case permutations

$$
\begin{gathered}
f_{i, j}=|\{\pi \in M_{i+j}: \alpha(\pi)=\underbrace{++\cdots+}_{i-1} \underbrace{--\cdots-}_{j-1}\}| \\
F(u, v)=\sum_{i, j \geq 1} f_{i, j} u^{i} v^{j}
\end{gathered}
$$

$\left|M_{n}\right|=\sum_{i+j=n} f_{i, j}$ is the coefficient of t^{n} in $F(t, t)$.
Theorem

$$
F(u, v)=u v+u v \frac{\partial}{\partial u} F(u, v)+u v \frac{\partial}{\partial v} F(u, v)-u^{2} v^{2} \frac{\partial^{2}}{\partial u \partial v} F(u, v)
$$

The problem
Fast Homing
Slow Homing
Counting bad cases

The problem
Fast Homing
Slow Homing
Counting bad cases

THANK

12345
23451

