Schur-positive grid classes

Sergi Elizalde

Dartmouth College

Joint work with Yuval Roichman

Combinatorics Graduate Student Conference, Apr 1-3, 2016

Clemson University

Permutations Standard Young tableaux

Pattern avoidance

Two sequences $a_1 \dots a_k$ and $b_1 \dots b_k$ are order-isomorphic if

$$a_i < a_j \Longleftrightarrow b_i < b_j.$$

Example: 634 and 312 are order-isomorphic.

Permutations Standard Young tableaux

Pattern avoidance

Two sequences $a_1 \dots a_k$ and $b_1 \dots b_k$ are order-isomorphic if

$$a_i < a_j \Longleftrightarrow b_i < b_j.$$

Example: 634 and 312 are order-isomorphic.

Given two permutations $\pi \in \mathcal{S}_n$ and $\sigma \in \mathcal{S}_k$,

 π contains σ if some subsequence of π is order-isomorphic to σ .

Example: 216354 contains 312.

Permutations Standard Young tableaux

Pattern avoidance

Two sequences $a_1 \dots a_k$ and $b_1 \dots b_k$ are order-isomorphic if

$$a_i < a_j \Longleftrightarrow b_i < b_j.$$

Example: 634 and 312 are order-isomorphic.

Given two permutations $\pi \in \mathcal{S}_n$ and $\sigma \in \mathcal{S}_k$,

 π contains σ if some subsequence of π is order-isomorphic to σ .

Example: 216354 contains 312.

Given a set of permutations B, π avoids B if π does not contain any $\sigma \in B$.

Permutations Standard Young tableaux

Pattern avoidance

Two sequences $a_1 \dots a_k$ and $b_1 \dots b_k$ are order-isomorphic if

$$a_i < a_j \Longleftrightarrow b_i < b_j.$$

Example: 634 and 312 are order-isomorphic.

Given two permutations $\pi \in \mathcal{S}_n$ and $\sigma \in \mathcal{S}_k$,

 π contains σ if some subsequence of π is order-isomorphic to σ .

Example: 216354 contains 312.

Given a set of permutations B, π avoids B if π does not contain any $\sigma \in B$.

Let

$$\mathcal{S}_n(B) = \{\pi \in \mathcal{S}_n : \pi \text{ avoids } B\}.$$

Permutations Standard Young tableaux

Statistics on permutations

For $\pi \in \mathcal{S}_n$, define its

descent set

$$\mathsf{Des}(\pi) = \{i: \ \pi(i) > \pi(i+1)\},$$

Permutations Standard Young tableaux

Statistics on permutations

- For $\pi \in \mathcal{S}_n$, define its
 - descent set

$$\mathsf{Des}(\pi) = \{i: \ \pi(i) > \pi(i+1)\},\$$

inversion number

$$inv(\pi) = \#\{i < j : \pi(i) > \pi(j)\}.$$

Permutations Standard Young tableaux

Statistics on permutations

- For $\pi \in \mathcal{S}_n$, define its
 - descent set

$$\mathsf{Des}(\pi) = \{i: \ \pi(i) > \pi(i+1)\},\$$

inversion number

$$\operatorname{inv}(\pi) = \#\{i < j: \pi(i) > \pi(j)\}.$$

Example: For $\pi = 51432$,

$$Des(\pi) = \{1, 3, 4\}, inv(\pi) = 4 + 2 + 1 = 7.$$

Permutations Standard Young tableaux

Standard Young tableaux

 $\lambda = (\lambda_1, \lambda_2, ...)$ is a partition of n if $\lambda_1 \ge \lambda_2 \ge \cdots \ge 0$ and $\lambda_1 + \lambda_2 + \cdots = n$. We write $\lambda \vdash n$. Example: $(4, 2, 1) \vdash 7$

Permutations Standard Young tableaux

Standard Young tableaux

 $\lambda = (\lambda_1, \lambda_2, \dots)$ is a partition of *n* if $\lambda_1 \ge \lambda_2 \ge \dots \ge 0$ and $\lambda_1 + \lambda_2 + \dots = n$. We write $\lambda \vdash n$.

Example: $(4, 2, 1) \vdash 7$

 λ can be represented as

Permutations Standard Young tableaux

Standard Young tableaux

 $\lambda = (\lambda_1, \lambda_2, \dots)$ is a partition of *n* if $\lambda_1 \ge \lambda_2 \ge \dots \ge 0$ and $\lambda_1 + \lambda_2 + \dots = n$. We write $\lambda \vdash n$.

Example: $(4, 2, 1) \vdash 7$

 λ can be represented as

A Standard Young tableau of shape λ is a filling of this shape with the numbers $1, \ldots, n$ with increasing rows and columns:

Example:
$$T = \begin{bmatrix} 1 & 2 & 4 & 7 \\ 3 & 6 & 5 \\ 5 & 5 & \\ \end{bmatrix}$$

Permutations Standard Young tableaux

Standard Young tableaux

 $\lambda = (\lambda_1, \lambda_2, \dots)$ is a partition of *n* if $\lambda_1 \ge \lambda_2 \ge \dots \ge 0$ and $\lambda_1 + \lambda_2 + \dots = n$. We write $\lambda \vdash n$.

Example: $(4, 2, 1) \vdash 7$

 λ can be represented as

A Standard Young tableau of shape λ is a filling of this shape with the numbers $1, \ldots, n$ with increasing rows and columns:

Example:
$$T = \begin{bmatrix} 1 & 2 & 4 & 7 \\ 3 & 6 \\ 5 \end{bmatrix}$$
 Des $(T) = \{2, 4\}$

Its descent set is $Des(T) = \{i : i + 1 \text{ is in a lower row than } i\}.$

Permutations Standard Young tableaux

Standard and semistandard Young tableaux

Let $SYT(\lambda)$ be the set of all standard Young tableaux of shape λ .

Permutations Standard Young tableaux

Standard and semistandard Young tableaux

Let $SYT(\lambda)$ be the set of all standard Young tableaux of shape λ .

Permutations Standard Young tableaux

Standard and semistandard Young tableaux

Let $SYT(\lambda)$ be the set of all standard Young tableaux of shape λ .

$$SYT(3,2) = \left\{ \begin{array}{c|c} 1 & 2 & 3 \\ \hline 4 & 5 \\ \hline 4 & 5 \\ \hline \end{array}, \begin{array}{c} 1 & 2 & 4 \\ \hline 3 & 5 \\ \hline \end{array}, \begin{array}{c} 1 & 2 & 5 \\ \hline 3 & 4 \\ \hline \end{array}, \begin{array}{c} 1 & 3 & 4 \\ \hline 2 & 5 \\ \hline \end{array}, \begin{array}{c} 1 & 3 & 5 \\ \hline 2 & 4 \\ \hline \end{array} \right\}$$

Allowing the entries to be any positive entries (possibly repeated) and the rows to be weakly increasing, we obtain the set $SSYT(\lambda)$ of semistandard Young tableaux of shape λ .

Permutations Standard Young tableaux

Standard and semistandard Young tableaux

Let $SYT(\lambda)$ be the set of all standard Young tableaux of shape λ .

$$SYT(3,2) = \left\{ \begin{array}{c|ccccc} 1 & 2 & 3 \\ \hline 1 & 2 & 3 \\ \hline 4 & 5 \\ \hline \end{array}, \begin{array}{c} 1 & 2 & 4 \\ \hline 3 & 5 \\ \hline \end{array}, \begin{array}{c} 1 & 2 & 5 \\ \hline 3 & 4 \\ \hline \end{array}, \begin{array}{c} 1 & 3 & 4 \\ \hline 2 & 5 \\ \hline \end{array}, \begin{array}{c} 1 & 3 & 5 \\ \hline 2 & 4 \\ \hline \end{array} \right\}$$

Allowing the entries to be any positive entries (possibly repeated) and the rows to be weakly increasing, we obtain the set $SSYT(\lambda)$ of semistandard Young tableaux of shape λ .

$$SSYT(3,2) = \begin{cases} \boxed{1 \ 1 \ 1}, \\ \boxed{2 \ 2}, \\ \boxed{2 \ 2}, \\ \boxed{2 \ 3}, \\ \boxed{1 \ 2 \ 3}, \\ \boxed{1 \ 2 \ 3}, \\ \boxed{2 \ 4 \ 5}, \\ \boxed{3 \ 5}, \\ \\ \\ \hline \end{array}$$

Symmetric functions Quasi-symmetric functions Known Schur-positive sets

Symmetric functions

A symmetric function is a formal power series $f(x_1, x_2, ...)$ of bounded degree that is invariant under any permutation of the (infinitely many) variables $x_1, x_2, ...$

Symmetric functions Quasi-symmetric functions Known Schur-positive sets

Symmetric functions

A symmetric function is a formal power series $f(x_1, x_2, ...)$ of bounded degree that is invariant under any permutation of the (infinitely many) variables $x_1, x_2, ...$

Examples

$$f = \sum_{i \neq j} x_i^3 x_j = x_1^3 x_2 + x_2^3 x_1 + x_1^3 x_3 + x_3^3 x_1 + x_2^3 x_3 + x_3^3 x_2 + \dots$$
$$g = 2 \sum_i x_i^2 + \sum_{i < j} x_i x_j = 2x_1^2 + 2x_2^2 + \dots + x_1 x_2 + x_1 x_3 + \dots$$

Symmetric functions Quasi-symmetric functions Known Schur-positive sets

Symmetric functions

A symmetric function is a formal power series $f(x_1, x_2, ...)$ of bounded degree that is invariant under any permutation of the (infinitely many) variables $x_1, x_2, ...$

Examples

$$f = \sum_{i \neq j} x_i^3 x_j = x_1^3 x_2 + x_2^3 x_1 + x_1^3 x_3 + x_3^3 x_1 + x_2^3 x_3 + x_3^3 x_2 + \dots$$
$$g = 2 \sum_i x_i^2 + \sum_{i < j} x_i x_j = 2x_1^2 + 2x_2^2 + \dots + x_1 x_2 + x_1 x_3 + \dots$$

The set of homogeneous symmetric functions of degree k forms a vector space over \mathbb{Q} , denoted by Λ_k .

Symmetric functions Quasi-symmetric functions Known Schur-positive sets

Schur functions

For $\lambda \vdash k$, define the Schur function

$$s_{\lambda} = \sum_{T \in SSYT(\lambda)} \prod_{i} x_{i}^{\text{number of } is \text{ in } T}.$$

Symmetric functions Quasi-symmetric functions Known Schur-positive sets

Schur functions

For $\lambda \vdash k$, define the Schur function

$$s_{\lambda} = \sum_{T \in SSYT(\lambda)} \prod_{i} x_{i}^{\text{number of } is \text{ in } T}.$$

Example

$$SSYT(2,1) = \left\{ \begin{array}{c|c} 1 & 1 \\ 2 \\ \end{array}, \begin{array}{c} 1 & 2 \\ 2 \\ \end{array}, \begin{array}{c} 1 & 1 \\ 3 \\ \end{array}, \begin{array}{c} 1 & 3 \\ 3 \\ \end{array}, \begin{array}{c} 2 & 2 \\ 3 \\ \end{array}, \begin{array}{c} 2 & 3 \\ 3 \\ \end{array}, \begin{array}{c} 1 & 2 \\ 3 \\ \end{array}, \begin{array}{c} 1 & 3 \\ 2 \\ \end{array}, \begin{array}{c} 1 & 3 \\ 2 \\ \end{array}, \begin{array}{c} 1 & 3 \\ \end{array}, \begin{array}{c} 1 & 3 \\ 2 \\ \end{array}, \begin{array}{c} 1 & 3 \\ \\$$

Symmetric functions Quasi-symmetric functions Known Schur-positive sets

Schur functions

For $\lambda \vdash k$, define the Schur function

$$s_{\lambda} = \sum_{T \in SSYT(\lambda)} \prod_{i} x_{i}^{\text{number of } is \text{ in } T}.$$

Example

$$SSYT(2,1) = \left\{ \begin{array}{c|c} 1 & 1 \\ 2 \\ \end{array}, \begin{array}{c} 1 & 2 \\ 2 \\ \end{array}, \begin{array}{c} 1 & 1 \\ 3 \\ \end{array}, \begin{array}{c} 1 & 3 \\ 3 \\ \end{array}, \begin{array}{c} 2 & 2 \\ 3 \\ \end{array}, \begin{array}{c} 2 & 3 \\ 3 \\ \end{array}, \begin{array}{c} 1 & 2 \\ 3 \\ \end{array}, \begin{array}{c} 1 & 3 \\ 3 \\ \end{array}, \begin{array}{c} 1 & 3 \\ \end{array}, \begin{array}{c} 2 \\ 3 \\ \end{array}, \begin{array}{c} 1 & 3 \\ \end{array}, \begin{array}{c} 1 & 3 \\ \end{array}, \begin{array}{c} 2 \\ \end{array}, \begin{array}{c} 1 & 3 \\ \end{array}, \begin{array}{c} 1 & 3 \\ \end{array}, \begin{array}{c} 2 \\ \end{array}, \begin{array}{c} 2 \\ \end{array}, \begin{array}{c} 1 & 3 \\ \end{array}, \begin{array}{c} 2 \\ \end{array}, \begin{array}{c} 2 \\ \end{array}, \begin{array}{c} 1 & 3 \\ \end{array}, \begin{array}{c} 2 \\ \end{array}, \begin{array}{c} 2 \\ \end{array}, \begin{array}{c} 1 & 3 \\ \end{array}, \begin{array}{c} 2 \\ \end{array}, \begin{array}{c} 2 \\ \end{array}, \begin{array}{c} 1 & 3 \\ \end{array}, \begin{array}{c} 2 \\ \end{array}, \begin{array}{c} 2 \\ \end{array}, \begin{array}{c} 1 \\ \end{array}, \begin{array}{c} 2 \\ \end{array}, \begin{array}{c} 2 \\ \end{array}, \begin{array}{c} 1 \\ \end{array}, \begin{array}{c} 2 \\ \end{array}, \end{array}, \begin{array}{c} 2 \\ \end{array}, \end{array}, \begin{array}{c} 2 \\ \end{array}, \\$$

 $s_{2,1} = x_1^2 x_2 + x_1 x_2^2 + x_1^2 x_3 + x_1 x_3^2 + x_2^2 x_3 + x_2 x_3^2 + 2x_1 x_2 x_3 + \dots$

Symmetric functions Quasi-symmetric functions Known Schur-positive sets

Schur functions

For $\lambda \vdash k$, define the Schur function

$$s_{\lambda} = \sum_{T \in SSYT(\lambda)} \prod_{i} x_{i}^{number of is in T}.$$

Example

$$SSYT(2,1) = \left\{ \begin{array}{c|c} 1 & 1 \\ 2 \end{array}, \begin{array}{c} 1 & 2 \\ 2 \end{array}, \begin{array}{c} 1 & 1 \\ 3 \end{array}, \begin{array}{c} 1 & 3 \\ 3 \end{array}, \begin{array}{c} 2 & 2 \\ 3 \end{array}, \begin{array}{c} 2 & 3 \\ 3 \end{array}, \begin{array}{c} 1 & 2 \\ 3 \end{array}, \begin{array}{c} 1 & 3 \\ 3 \end{array}, \begin{array}{c} 1 & 3 \\ 3 \end{array}, \begin{array}{c} 1 & 3 \\ 2 \end{array}, \dots \right\}$$

$$s_{2,1} = x_1^2 x_2 + x_1 x_2^2 + x_1^2 x_3 + x_1 x_3^2 + x_2^2 x_3 + x_2 x_3^2 + 2x_1 x_2 x_3 + \dots$$

Theorem

Schur functions are symmetric, and $\{s_{\lambda} : \lambda \vdash k\}$ is a basis for Λ_k .

Symmetric functions Quasi-symmetric functions Known Schur-positive sets

Schur-positivity

A symmetric function is Schur-positive if all the coefficients in its expansion in the Schur basis are nonnegative.

Symmetric functions Quasi-symmetric functions Known Schur-positive sets

Schur-positivity

A symmetric function is Schur-positive if all the coefficients in its expansion in the Schur basis are nonnegative.

Example: Given $\lambda \vdash k$ and $\mu \vdash \ell$, consider the product

$$s_\lambda s_\mu = \sum_
u c^
u_{\lambda,\mu} s_
u.$$

Symmetric functions Quasi-symmetric functions Known Schur-positive sets

Schur-positivity

A symmetric function is Schur-positive if all the coefficients in its expansion in the Schur basis are nonnegative.

Example: Given $\lambda \vdash k$ and $\mu \vdash \ell$, consider the product

$$s_\lambda s_\mu = \sum_
u c^
u_{\lambda,\mu} s_
u.$$

The Littlewood–Richardson rule gives a combinatorial interpretation of the coefficients $c_{\lambda,\mu}^{\nu}$, showing that $s_{\lambda}s_{\mu}$ is Schur-positive.

Symmetric functions Quasi-symmetric functions Known Schur-positive sets

Quasi-symmetric functions

A quasi-symmetric function is a formal power series $f(x_1, x_2, ...)$ of bounded degree where, for every fixed $\alpha_1, ..., \alpha_k$, the coefficient of $x_{i_1}^{\alpha_1} \dots x_{i_k}^{\alpha_k}$ is the same for any increasing indices $i_1 < \dots < i_k$.

Symmetric functions Quasi-symmetric functions Known Schur-positive sets

Quasi-symmetric functions

A quasi-symmetric function is a formal power series $f(x_1, x_2, ...)$ of bounded degree where, for every fixed $\alpha_1, ..., \alpha_k$, the coefficient of $x_{i_1}^{\alpha_1} \dots x_{i_k}^{\alpha_k}$ is the same for any increasing indices $i_1 < \dots < i_k$.

Example: $f = \sum_{i < j} x_i^2 x_j$ is quasisymmetric but not symmetric.

Symmetric functions Quasi-symmetric functions Known Schur-positive sets

Quasi-symmetric functions

A quasi-symmetric function is a formal power series $f(x_1, x_2, ...)$ of bounded degree where, for every fixed $\alpha_1, ..., \alpha_k$, the coefficient of $x_{i_1}^{\alpha_1} \dots x_{i_k}^{\alpha_k}$ is the same for any increasing indices $i_1 < \dots < i_k$. Example: $f = \sum_{i < i} x_i^2 x_i$ is quasisymmetric but not symmetric.

For $\pi \in \mathcal{S}_n$, define the quasisymmetric function

$$F_{\pi} = \sum_{\substack{i_1 \leq i_2 \leq \dots \leq i_n \\ i_j < i_{j+1} \text{ if } j \in \mathsf{Des}(\pi)}} x_{i_1} x_{i_2} \cdots x_{i_n}.$$

Symmetric functions Quasi-symmetric functions Known Schur-positive sets

Quasi-symmetric functions

A quasi-symmetric function is a formal power series $f(x_1, x_2, ...)$ of bounded degree where, for every fixed $\alpha_1, ..., \alpha_k$, the coefficient of $x_{i_1}^{\alpha_1} \dots x_{i_k}^{\alpha_k}$ is the same for any increasing indices $i_1 < \dots < i_k$. Example: $f = \sum_{i < i} x_i^2 x_i$ is quasisymmetric but not symmetric.

For $\pi \in \mathcal{S}_n$, define the quasisymmetric function

$$F_{\pi} = \sum_{\substack{i_1 \leq i_2 \leq \dots \leq i_n \\ i_j < i_{j+1} \text{ if } j \in \mathsf{Des}(\pi)}} x_{i_1} x_{i_2} \cdots x_{i_n}.$$

Example: $\pi = 132$, $Des(\pi) = \{2\}$.

$$F_{132} = x_1 x_1 x_2 + x_1 x_1 x_3 + x_1 x_2 x_3 + x_2 x_2 x_3 + \dots$$

Symmetric functions Quasi-symmetric functions Known Schur-positive sets

Quasi-symmetric functions

For $A \subseteq S_n$, let

$$\mathcal{Q}(A) = \sum_{\pi \in A} F_{\pi}.$$

Symmetric functions Quasi-symmetric functions Known Schur-positive sets

Quasi-symmetric functions

For $A \subseteq S_n$, let

$$\mathcal{Q}(A) = \sum_{\pi \in A} F_{\pi}.$$

Question 1 (Gessel, Reutenauer '93): For which $A \subseteq S_n$ is Q(A) symmetric?

Symmetric functions Quasi-symmetric functions Known Schur-positive sets

Quasi-symmetric functions

For $A \subseteq S_n$, let

$$\mathcal{Q}(A) = \sum_{\pi \in A} F_{\pi}.$$

Question 1 (Gessel, Reutenauer '93): For which $A \subseteq S_n$ is Q(A) symmetric?

Question 2 (Adin, Roichman '13): For which $A \subseteq S_n$ is Q(A) Schur-positive?

Symmetric functions Quasi-symmetric functions Known Schur-positive sets

Quasi-symmetric functions

For $A \subseteq \mathcal{S}_n$, let

$$\mathcal{Q}(A) = \sum_{\pi \in A} F_{\pi}.$$

Question 1 (Gessel, Reutenauer '93): For which $A \subseteq S_n$ is Q(A) symmetric?

Question 2 (Adin, Roichman '13): For which $A \subseteq S_n$ is Q(A) Schur-positive?

For simplicity, we'll say "*A* is Schur-positive" instead of "Q(A) is Schur-positive".

Symmetric functions Quasi-symmetric functions Known Schur-positive sets

Quasi-symmetric functions

For $A \subseteq \mathcal{S}_n$, let

$$\mathcal{Q}(A) = \sum_{\pi \in A} F_{\pi}.$$

Question 1 (Gessel, Reutenauer '93): For which $A \subseteq S_n$ is Q(A) symmetric?

Question 2 (Adin, Roichman '13): For which $A \subseteq S_n$ is Q(A) Schur-positive?

For simplicity, we'll say "*A* is Schur-positive" instead of "Q(A) is Schur-positive".

We define Q(A) similarly if A is a multiset.

Symmetric functions Quasi-symmetric functions Known Schur-positive sets

Known Schur-positive sets

Theorem (Gessel '84) $Q(S_n) = \sum_{\lambda \vdash n} |SYT(\lambda)| s_{\lambda}.$

Symmetric functions Quasi-symmetric functions Known Schur-positive sets

Known Schur-positive sets

Theorem (Gessel '84) $Q(S_n) = \sum_{\lambda \vdash n} |SYT(\lambda)| s_{\lambda}.$

Theorem (Gessel '84)

Subsets of S_n closed under Knuth relations are Schur-positive.

Symmetric functions Quasi-symmetric functions Known Schur-positive sets

Known Schur-positive sets

Theorem (Gessel '84) $Q(S_n) = \sum_{\lambda \vdash n} |SYT(\lambda)| s_{\lambda}.$

Theorem (Gessel '84)

Subsets of S_n closed under Knuth relations are Schur-positive. The proof uses that if $\pi \stackrel{RSK}{\mapsto} (P, Q)$, then $Des(\pi) = Des(Q)$.

Symmetric functions Quasi-symmetric functions Known Schur-positive sets

Known Schur-positive sets

Theorem (Gessel '84) $Q(S_n) = \sum_{\lambda \vdash n} |SYT(\lambda)| s_{\lambda}.$

Theorem (Gessel '84)

Subsets of S_n closed under Knuth relations are Schur-positive. The proof uses that if $\pi \stackrel{RSK}{\mapsto} (P, Q)$, then $\text{Des}(\pi) = \text{Des}(Q)$.

For $J \subseteq \{1, \ldots, n-1\}$, define the inverse descent class $\mathsf{D}_J^{-1} = \{\pi \in \mathcal{S}_n : \mathsf{Des}(\pi^{-1}) = J\}.$

Symmetric functions Quasi-symmetric functions Known Schur-positive sets

Known Schur-positive sets

Theorem (Gessel '84) $Q(S_n) = \sum_{\lambda \vdash n} |SYT(\lambda)| s_{\lambda}.$

Theorem (Gessel '84)

Subsets of S_n closed under Knuth relations are Schur-positive. The proof uses that if $\pi \stackrel{RSK}{\mapsto} (P, Q)$, then $\text{Des}(\pi) = \text{Des}(Q)$.

For $J \subseteq \{1, \ldots, n-1\}$, define the inverse descent class

$$\mathsf{D}_J^{-1}=\{\pi\in\mathcal{S}_n: \ \mathsf{Des}(\pi^{-1})=J\}.$$

Corollary D_J^{-1} is Schur-positive.

Symmetric functions Quasi-symmetric functions Known Schur-positive sets

Know Schur-positive sets

Theorem (Gessel, Reutenauer '93)

Subsets of S_n closed under conjugation are Schur-positive.

Symmetric functions Quasi-symmetric functions Known Schur-positive sets

Know Schur-positive sets

Theorem (Gessel, Reutenauer '93)

Subsets of S_n closed under conjugation are Schur-positive.

Corollary

• The set of involutions in S_n is Schur-positive.

Symmetric functions Quasi-symmetric functions Known Schur-positive sets

Know Schur-positive sets

Theorem (Gessel, Reutenauer '93)

Subsets of S_n closed under conjugation are Schur-positive.

Corollary

- The set of involutions in S_n is Schur-positive.
- The set of derangements in S_n is Schur-positive.

Symmetric functions Quasi-symmetric functions Known Schur-positive sets

Know Schur-positive sets

Theorem (Gessel, Reutenauer '93) Subsets of S_n closed under conjugation are Schur-positive. Corollary

- The set of involutions in S_n is Schur-positive.
- The set of derangements in S_n is Schur-positive.

Theorem (Adin, Roichman '15) For every k, the set $\{\pi \in S_n : inv(\pi) = k\}$ is Schur-positive.

Symmetric functions Quasi-symmetric functions Known Schur-positive sets

Arc permutations

A permutation $\pi \in S_n$ is an arc permutation if every prefix of π forms an interval in \mathbb{Z}_n . Let \mathcal{A}_n = set of arc permutations in S_n .

Symmetric functions Quasi-symmetric functions Known Schur-positive sets

Arc permutations

A permutation $\pi \in S_n$ is an arc permutation if every prefix of π forms an interval in \mathbb{Z}_n . Let $\mathcal{A}_n = \text{set of arc permutations in } S_n$. Example: 546132 $\in \mathcal{A}_6$, 541632 $\notin \mathcal{A}_6$.

Symmetric functions Quasi-symmetric functions Known Schur-positive sets

Arc permutations

A permutation $\pi \in S_n$ is an arc permutation if every prefix of π forms an interval in \mathbb{Z}_n . Let $\mathcal{A}_n =$ set of arc permutations in S_n . Example: 546132 $\in \mathcal{A}_6$, 541632 $\notin \mathcal{A}_6$.

Proposition

 $\mathcal{A}_n = \mathcal{S}_n(1324, 1342, 2413, 2431, 3124, 3142, 4213, 4231)$

Symmetric functions Quasi-symmetric functions Known Schur-positive sets

Arc permutations

A permutation $\pi \in S_n$ is an arc permutation if every prefix of π forms an interval in \mathbb{Z}_n . Let $\mathcal{A}_n =$ set of arc permutations in S_n . Example: 546132 $\in \mathcal{A}_6$, 541632 $\notin \mathcal{A}_6$.

Proposition

 $\mathcal{A}_n = \mathcal{S}_n(1324, 1342, 2413, 2431, 3124, 3142, 4213, 4231)$

Theorem There is a bijection between A_n and the set of SYT of certain shapes that preserves the descent set.

Symmetric functions Quasi-symmetric functions Known Schur-positive sets

Arc permutations

A permutation $\pi \in S_n$ is an arc permutation if every prefix of π forms an interval in \mathbb{Z}_n . Let $\mathcal{A}_n =$ set of arc permutations in S_n . Example: 546132 $\in \mathcal{A}_6$, 541632 $\notin \mathcal{A}_6$.

Proposition

 $\mathcal{A}_n = \mathcal{S}_n(1324, 1342, 2413, 2431, 3124, 3142, 4213, 4231)$

Theorem There is a bijection between A_n and the set of SYT of certain shapes that preserves the descent set.

Grid classes and pattern avoidance Schur-positive grid classes

Geometric grid classes

For a $\{0, 1, -1\}$ -matrix M, let $\Gamma(M)$ be the set of line segments of slope ± 1 whose locations are determined by the entries of M.

Grid classes and pattern avoidance Schur-positive grid classes

Geometric grid classes

For a $\{0, 1, -1\}$ -matrix M, let $\Gamma(M)$ be the set of line segments of slope ± 1 whose locations are determined by the entries of M.

Grid classes and pattern avoidance Schur-positive grid classes

Geometric grid classes

For a $\{0, 1, -1\}$ -matrix M, let $\Gamma(M)$ be the set of line segments of slope ± 1 whose locations are determined by the entries of M.

Define the geometric grid class

 $\mathcal{G}_n(M) = \{\pi \in \mathcal{S}_n : \ \pi \text{ can be drawn on } \Gamma(M)\}.$

Grid classes and pattern avoidance Schur-positive grid classes

Geometric grid classes

For a $\{0, 1, -1\}$ -matrix M, let $\Gamma(M)$ be the set of line segments of slope ± 1 whose locations are determined by the entries of M.

Example:

$$M = \begin{pmatrix} 0 & 1 \\ -1 & 0 \\ 1 & -1 \end{pmatrix} \qquad \Gamma(M) =$$

Define the geometric grid class

$$\mathcal{G}_n(M) = \{ \pi \in \mathcal{S}_n : \pi \text{ can be drawn on } \Gamma(M) \}$$

Example: 4532617 $\in \mathcal{G}_7 \begin{pmatrix} 1 \\ -1 \end{pmatrix}$.

Grid classes and pattern avoidance Schur-positive grid classes

Geometric grid classes

For a $\{0, 1, -1\}$ -matrix M, let $\Gamma(M)$ be the set of line segments of slope ± 1 whose locations are determined by the entries of M.

Example:

$$M = \begin{pmatrix} 0 & 1 \\ -1 & 0 \\ 1 & -1 \end{pmatrix} \qquad \Gamma(M) =$$

Define the geometric grid class

$$\mathcal{G}_n(M) = \{ \pi \in \mathcal{S}_n : \pi \text{ can be drawn on } \Gamma(M) \}.$$

Example: 4532617 $\in \mathcal{G}_7 \begin{pmatrix} 1 \\ -1 \end{pmatrix}$.

Grid classes and pattern avoidance Schur-positive grid classes

Grid classes and pattern avoidance

Theorem (Albert, Atkinson, Bouvel, Ruškuc, Vatter '13) Every geometric grid class can be characterized by avoidance of a finite set of patterns.

Grid classes and pattern avoidance Schur-positive grid classes

Grid classes and pattern avoidance

Theorem (Albert, Atkinson, Bouvel, Ruškuc, Vatter '13) Every geometric grid class can be characterized by avoidance of a finite set of patterns.

Example:

$$\mathcal{G}_n\left(\begin{array}{c}1\\1\end{array}\right)=\mathcal{S}_n(321,2143,2413).$$

Grid classes and pattern avoidance Schur-positive grid classes

Arc permutations as grid classes

Arc permutations can be expressed as a union of two (geometric) grid classes:

$$\mathcal{A}_{n} = \mathcal{G}_{n} \begin{pmatrix} 1 & 0 \\ -1 & 0 \\ 0 & -1 \\ 0 & 1 \end{pmatrix} \cup \mathcal{G}_{n} \begin{pmatrix} 0 & -1 \\ 0 & 1 \\ 1 & 0 \\ -1 & 0 \end{pmatrix}.$$

Grid classes and pattern avoidance Schur-positive grid classes

Elementary examples of Schur-positive grid classes One-Column grid classes

Proposition

Every one-column grid class is Schur-positive.

Grid classes and pattern avoidance Schur-positive grid classes

Elementary examples of Schur-positive grid classes One-Column grid classes

Proposition

Every one-column grid class is Schur-positive.

 $\mathcal{Q}(\mathcal{H}_5) = s_5 + 2 \, s_{4,1} + 2 \, s_{3,2} + 3 \, s_{3,1,1} + 4 \, s_{2,2,1} + 4 \, s_{2,1,1,1} + s_{1,1,1,1,1}$

Grid classes and pattern avoidance Schur-positive grid classes

Elementary examples Co-layered permutations

Let \mathcal{L}_n^k be the grid class determined by the $k \times k$ identity matrix.

Example:

 $\mathcal{L}_n^k = \mathcal{G}_n(\mathrm{Id}_3)$

Grid classes and pattern avoidance Schur-positive grid classes

Elementary examples Co-layered permutations

Let \mathcal{L}_n^k be the grid class determined by the $k \times k$ identity matrix.

Example: $\mathcal{L}_{n}^{k} = \mathcal{G}_{n}(\mathrm{Id}_{3})$

Proposition \mathcal{L}_n^k is Schur-positive and

$$\mathcal{Q}(\mathcal{L}_n^k) = \sum_{r=0}^{k-1} s_{n-r,1^r}.$$

Grid classes and pattern avoidance Schur-positive grid classes

Elementary examples Co-layered permutations

Let \mathcal{L}_n^k be the grid class determined by the $k \times k$ identity matrix.

Example: $\mathcal{L}_n^k = \mathcal{G}_n(\mathrm{Id}_3)$

Proposition \mathcal{L}_n^k is Schur-positive and

$$\mathcal{Q}(\mathcal{L}_n^k) = \sum_{r=0}^{k-1} s_{n-r,1^r}.$$

Example: $\mathcal{L}_4^2 = \{1234, 4.123, 34.12, 234.1\}.$

Grid classes and pattern avoidance Schur-positive grid classes

Elementary examples Co-layered permutations

Let \mathcal{L}_n^k be the grid class determined by the $k \times k$ identity matrix.

Example: $\mathcal{L}_n^k = \mathcal{G}_n(\mathrm{Id}_3)$

Proposition \mathcal{L}_n^k is Schur-positive and

$$\mathcal{Q}(\mathcal{L}_n^k) = \sum_{r=0}^{k-1} s_{n-r,1^r}.$$

Example: $\mathcal{L}_4^2 = \{1234, 4.123, 34.12, 234.1\}.$ $\mathcal{Q}(\mathcal{L}_4^2) = s_4 + s_{3.1}.$

Main theorem Vertical rotations Horizontal rotations Stacking grids

Main theorem

Given $A, B \in S_n$, let AB be the multiset of permutations obtained as products $\pi\sigma$ where $\pi \in A$ and $\sigma \in B$.

Main theorem Vertical rotations Horizontal rotations Stacking grids

Main theorem

Given $A, B \in S_n$, let AB be the multiset of permutations obtained as products $\pi\sigma$ where $\pi \in A$ and $\sigma \in B$.

Theorem

For every Schur-positive set $A \subseteq S_n$ and every $J \subseteq [n-1]$, the multiset

$$AD_J^{-1}$$

is Schur-positive.

Main theorem Vertical rotations Horizontal rotations Stacking grids

Main theorem

Given $A, B \in S_n$, let AB be the multiset of permutations obtained as products $\pi\sigma$ where $\pi \in A$ and $\sigma \in B$.

Theorem

For every Schur-positive set $A \subseteq S_n$ and every $J \subseteq [n-1]$, the multiset

$$AD_J^{-1}$$

is Schur-positive.

In fact,

$$\mathcal{Q}(AD_J^{-1}) = \mathcal{Q}(A) * \mathcal{Q}(D_J^{-1}),$$

where * denotes the Kronecker product.

Main theorem Vertical rotations Horizontal rotations Stacking grids

Application: vertical rotations

Let $c \in S_n$ be the *n*-cycle c = (1, 2, ..., n), and let $C_n = \langle c \rangle = \{c^k : 0 \le k < n\}$ be the subgroup it generates.

Main theorem Vertical rotations Horizontal rotations Stacking grids

Application: vertical rotations

Let $c \in S_n$ be the *n*-cycle c = (1, 2, ..., n), and let $C_n = \langle c \rangle = \{c^k : 0 \le k < n\}$ be the subgroup it generates.

For $A \subseteq S_n$, $C_n A$ is the multiset of vertical rotations of elements in A.

Main theorem Vertical rotations Horizontal rotations Stacking grids

Application: vertical rotations

Let $c \in S_n$ be the *n*-cycle c = (1, 2, ..., n), and let $C_n = \langle c \rangle = \{c^k : 0 \le k < n\}$ be the subgroup it generates.

For $A \subseteq S_n$, $C_n A$ is the multiset of vertical rotations of elements in A.

Observation:
$$C_n = \mathcal{L}_n^2$$
.

Main theorem Vertical rotations Horizontal rotations Stacking grids

Application: vertical rotations

Let $c \in S_n$ be the *n*-cycle c = (1, 2, ..., n), and let $C_n = \langle c \rangle = \{c^k : 0 \le k < n\}$ be the subgroup it generates.

For $A \subseteq S_n$, $C_n A$ is the multiset of vertical rotations of elements in A.

Observation:
$$C_n = \mathcal{L}_n^2$$
.

Corollary

▶ For $J \subseteq [n-1]$, the multiset $C_n D_J^{-1}$ is Schur-positive.

Main theorem Vertical rotations Horizontal rotations Stacking grids

Application: vertical rotations

Let $c \in S_n$ be the *n*-cycle c = (1, 2, ..., n), and let $C_n = \langle c \rangle = \{c^k : 0 \le k < n\}$ be the subgroup it generates.

For $A \subseteq S_n$, $C_n A$ is the multiset of vertical rotations of elements in A.

Observation:
$$C_n = \mathcal{L}_n^2$$
.

Corollary

- ▶ For $J \subseteq [n-1]$, the multiset $C_n D_J^{-1}$ is Schur-positive.
- ► For a one-column grid class H_n, the multiset C_nH_n is Schur-positive.

Main theorem Vertical rotations Horizontal rotations Stacking grids

Arc permutations revisited

Corollary A_n is Schur-positive.

Main theorem Vertical rotations Horizontal rotations Stacking grids

Arc permutations revisited

Corollary A_n is Schur-positive.

Proof Idea

Main theorem Vertical rotations Horizontal rotations Stacking grids

Arc permutations revisited

Corollary

 \mathcal{A}_n is Schur-positive.

Proof Idea

Main theorem Vertical rotations Horizontal rotations Stacking grids

Arc permutations revisited

Corollary

 \mathcal{A}_n is Schur-positive.

Proof Idea $= 2 + 2 = 2A_n.$

Main theorem Vertical rotations Horizontal rotations Stacking grids

Horizontal rotations

We can view S_{n-1} as a subset of S_n by fixing the last entry n.

Main theorem Vertical rotations Horizontal rotations Stacking grids

Horizontal rotations

We can view S_{n-1} as a subset of S_n by fixing the last entry n. If $A \subseteq S_{n-1}$, then $AC_n \subseteq S_n$ is the set of horizontal rotations of elements in A.

Main theorem Vertical rotations Horizontal rotations Stacking grids

Horizontal rotations

We can view S_{n-1} as a subset of S_n by fixing the last entry n. If $A \subseteq S_{n-1}$, then $AC_n \subseteq S_n$ is the set of horizontal rotations of elements in A.

Theorem

For every Schur-positive set $A \subseteq S_{n-1}$, AC_n is Schur-positive.

Main theorem Vertical rotations Horizontal rotations Stacking grids

Horizontal rotations

We can view S_{n-1} as a subset of S_n by fixing the last entry n. If $A \subseteq S_{n-1}$, then $AC_n \subseteq S_n$ is the set of horizontal rotations of elements in A.

Theorem

For every Schur-positive set $A \subseteq S_{n-1}$, AC_n is Schur-positive.

In fact, $\mathcal{Q}(AC_n) = \mathcal{Q}(A)s_1$.

Equivalently, if A "corresponds" to an S_{n-1} -representation ρ , then AC_n "corresponds" to the S_n -representation $\rho \uparrow^{S_n}$.

Main theorem Vertical rotations Horizontal rotations Stacking grids

Horizontal rotations

Let M_k be the $2k \times 2$ matrix whose odd rows are (1,0) and whose even rows are (0,1).

Main theorem Vertical rotations Horizontal rotations Stacking grids

Horizontal rotations

Let M_k be the $2k \times 2$ matrix whose odd rows are (1,0) and whose even rows are (0,1).

Corollary $Q(G_n(M_k))$ is Schur-positive for all k.

Main theorem Vertical rotations Horizontal rotations Stacking grids

Stacking operations

Given matrices M_1 and M_2 , one of which has one column, let $\Gamma\begin{pmatrix}M_1\\M_2\end{pmatrix}$ be the grid obtained by stacking $\Gamma(M_1)$ atop $\Gamma(M_2)$, and $\mathcal{G}_n\begin{pmatrix}M_1\\M_2\end{pmatrix}$ the corresponding grid class.

Main theorem Vertical rotations Horizontal rotations Stacking grids

Stacking operations

Given matrices M_1 and M_2 , one of which has one column, let $\Gamma\begin{pmatrix}M_1\\M_2\end{pmatrix}$ be the grid obtained by stacking $\Gamma(M_1)$ atop $\Gamma(M_2)$, and $\mathcal{G}_n\begin{pmatrix}M_1\\M_2\end{pmatrix}$ the corresponding grid class.

Example

Main theorem Vertical rotations Horizontal rotations Stacking grids

Stacking operations

Given matrices M_1 and M_2 , one of which has one column, let $\Gamma\begin{pmatrix}M_1\\M_2\end{pmatrix}$ be the grid obtained by stacking $\Gamma(M_1)$ atop $\Gamma(M_2)$, and $\mathcal{G}_n\begin{pmatrix}M_1\\M_2\end{pmatrix}$ the corresponding grid class.

Example

Proposition The above two grids are Schur-positive.

Main theorem Vertical rotations Horizontal rotations Stacking grids

Stacking operations

Given matrices M_1 and M_2 , one of which has one column, let $\Gamma\begin{pmatrix}M_1\\M_2\end{pmatrix}$ be the grid obtained by stacking $\Gamma(M_1)$ atop $\Gamma(M_2)$, and $\mathcal{G}_n\begin{pmatrix}M_1\\M_2\end{pmatrix}$ the corresponding grid class.

Example

Proposition The above two grids are Schur-positive.

Question: If M_1 has one column and $\mathcal{G}(M_2)$ is Schur-positive, is $\mathcal{G}_n\begin{pmatrix}M_1\\M_2\end{pmatrix}$ necessarily Schur-positive?

Main theorem Vertical rotations Horizontal rotations Stacking grids

Open questions

Conjecture

For every one-column grid class \mathcal{H}_n , the set underlying the multiset $C_n \mathcal{H}_n$ is Schur-positive.

Main theorem Vertical rotations Horizontal rotations Stacking grids

Open questions

Conjecture

For every one-column grid class \mathcal{H}_n , the set underlying the multiset $C_n \mathcal{H}_n$ is Schur-positive.

Conjecture

For every Schur-positive set $A \subseteq \mathcal{S}_n$ and every $J \subseteq [n-1]$,

$$\mathcal{Q}(D_J^{-1}A)=\mathcal{Q}(AD_J^{-1}).$$

Main theorem Vertical rotations Horizontal rotations Stacking grids

Open questions

Conjecture

For every one-column grid class \mathcal{H}_n , the set underlying the multiset $C_n \mathcal{H}_n$ is Schur-positive.

Conjecture

For every Schur-positive set $A \subseteq \mathcal{S}_n$ and every $J \subseteq [n-1]$,

$$\mathcal{Q}(D_J^{-1}A)=\mathcal{Q}(AD_J^{-1}).$$

Since our main theorem states that $D_J^{-1}A$ is a fine multiset, it would follow that AD_J^{-1} is fine as well.

Main theorem Vertical rotations Horizontal rotations Stacking grids

Open questions

Conjecture

For every one-column grid class \mathcal{H}_n , the set underlying the multiset $C_n \mathcal{H}_n$ is Schur-positive.

Conjecture

For every Schur-positive set $A \subseteq \mathcal{S}_n$ and every $J \subseteq [n-1]$,

$$\mathcal{Q}(D_J^{-1}A)=\mathcal{Q}(AD_J^{-1}).$$

Since our main theorem states that $D_J^{-1}A$ is a fine multiset, it would follow that AD_J^{-1} is fine as well.

Question: Which pairs of Knuth classes $A, B \subseteq S_n$ satisfy Q(AB) = Q(A) * Q(B)?

Permutations and tableaux Main theorem Schur-positivity Vertical rotations Grid classes Products of Grid Classes Stacking grids

Thanks

Sergi Elizalde Schur-positive grid classes