Schur-positive grid classes

Sergi Elizalde

Dartmouth College

Joint work with Yuval Roichman

Combinatorics Graduate Student Conference, Apr 1-3, 2016

Pattern avoidance

Two sequences $a_{1} \ldots a_{k}$ and $b_{1} \ldots b_{k}$ are order-isomorphic if

$$
a_{i}<a_{j} \Longleftrightarrow b_{i}<b_{j}
$$

Example: 634 and 312 are order-isomorphic.

Pattern avoidance

Two sequences $a_{1} \ldots a_{k}$ and $b_{1} \ldots b_{k}$ are order-isomorphic if

$$
a_{i}<a_{j} \Longleftrightarrow b_{i}<b_{j}
$$

Example: 634 and 312 are order-isomorphic.
Given two permutations $\pi \in \mathcal{S}_{n}$ and $\sigma \in \mathcal{S}_{k}$, π contains σ if some subsequence of π is order-isomorphic to σ.

Example: 216354 contains 312.

Pattern avoidance

Two sequences $a_{1} \ldots a_{k}$ and $b_{1} \ldots b_{k}$ are order-isomorphic if

$$
a_{i}<a_{j} \Longleftrightarrow b_{i}<b_{j}
$$

Example: 634 and 312 are order-isomorphic.
Given two permutations $\pi \in \mathcal{S}_{n}$ and $\sigma \in \mathcal{S}_{k}$, π contains σ if some subsequence of π is order-isomorphic to σ.

Example: 216354 contains 312.
Given a set of permutations B, π avoids B if π does not contain any $\sigma \in B$.

Pattern avoidance

Two sequences $a_{1} \ldots a_{k}$ and $b_{1} \ldots b_{k}$ are order-isomorphic if

$$
a_{i}<a_{j} \Longleftrightarrow b_{i}<b_{j}
$$

Example: 634 and 312 are order-isomorphic.
Given two permutations $\pi \in \mathcal{S}_{n}$ and $\sigma \in \mathcal{S}_{k}$, π contains σ if some subsequence of π is order-isomorphic to σ.

Example: 216354 contains 312.
Given a set of permutations B, π avoids B if π does not contain any $\sigma \in B$.

Let

$$
\mathcal{S}_{n}(B)=\left\{\pi \in \mathcal{S}_{n}: \pi \text { avoids } B\right\} .
$$

Statistics on permutations

For $\pi \in \mathcal{S}_{n}$, define its

- descent set

$$
\operatorname{Des}(\pi)=\{i: \pi(i)>\pi(i+1)\}
$$

Statistics on permutations

For $\pi \in \mathcal{S}_{n}$, define its

- descent set

$$
\operatorname{Des}(\pi)=\{i: \pi(i)>\pi(i+1)\}
$$

- inversion number

$$
\operatorname{inv}(\pi)=\#\{i<j: \pi(i)>\pi(j)\} .
$$

Statistics on permutations

For $\pi \in \mathcal{S}_{n}$, define its

- descent set

$$
\operatorname{Des}(\pi)=\{i: \pi(i)>\pi(i+1)\}
$$

- inversion number

$$
\operatorname{inv}(\pi)=\#\{i<j: \pi(i)>\pi(j)\}
$$

Example: For $\pi=51432$,

$$
\operatorname{Des}(\pi)=\{1,3,4\}, \quad \operatorname{inv}(\pi)=4+2+1=7
$$

Standard Young tableaux

$\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ is a partition of n if $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq 0$ and $\lambda_{1}+\lambda_{2}+\cdots=n$. We write $\lambda \vdash n$.

Example: $(4,2,1) \vdash 7$

Standard Young tableaux

$\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ is a partition of n if $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq 0$ and $\lambda_{1}+\lambda_{2}+\cdots=n$. We write $\lambda \vdash n$.

Example: $(4,2,1) \vdash 7$
λ can be represented as

Standard Young tableaux

$\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ is a partition of n if $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq 0$ and $\lambda_{1}+\lambda_{2}+\cdots=n$. We write $\lambda \vdash n$.

Example: $(4,2,1) \vdash 7$
λ can be represented as

A Standard Young tableau of shape λ is a filling of this shape with the numbers $1, \ldots, n$ with increasing rows and columns:

Example: $\quad T=$| 1 | 2 | 4 | 7 |
| :--- | :--- | :--- | :--- |
| 3 | 6 | | |
| 5 | | | |

Standard Young tableaux

$\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ is a partition of n if $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq 0$ and $\lambda_{1}+\lambda_{2}+\cdots=n$. We write $\lambda \vdash n$.

Example: $(4,2,1) \vdash 7$
λ can be represented as

A Standard Young tableau of shape λ is a filling of this shape with the numbers $1, \ldots, n$ with increasing rows and columns:

Example: $\quad T=$| 1 | 2 | 4 | 7 |
| :--- | :--- | :--- | :--- |
| 3 | 6 | | |
| 5 | | | |

$$
\operatorname{Des}(T)=\{2,4\}
$$

Its descent set is $\operatorname{Des}(T)=\{i: i+1$ is in a lower row than $i\}$.

Standard and semistandard Young tableaux

Let $\operatorname{SYT}(\lambda)$ be the set of all standard Young tableaux of shape λ.

Standard and semistandard Young tableaux

Let $\operatorname{SYT}(\lambda)$ be the set of all standard Young tableaux of shape λ.

$$
\operatorname{SYT}(3,2)=\left\{\begin{array}{lll|}
\hline 1 & 2 & 3 \\
\hline 4 & 5 &
\end{array}, \begin{array}{|l|l|l|}
\hline 1 & 2 & 4 \\
\hline 3 & 5 &
\end{array}, \begin{array}{|l|l|l}
1 & 2 & 5 \\
\hline 3 & 4 &
\end{array}, \begin{array}{|l|l|l|}
\hline 1 & 3 & 4 \\
\hline 2 & 5 & \\
\hline
\end{array}, \begin{array}{|l|l|l|}
\hline 1 & 3 & 5 \\
\hline 2 & 4 & \\
\hline
\end{array}\right\}
$$

Standard and semistandard Young tableaux

Let $\operatorname{SYT}(\lambda)$ be the set of all standard Young tableaux of shape λ.

Allowing the entries to be any positive entries (possibly repeated) and the rows to be weakly increasing, we obtain the set SSYT (λ) of semistandard Young tableaux of shape λ.

Standard and semistandard Young tableaux

Let $\operatorname{SYT}(\lambda)$ be the set of all standard Young tableaux of shape λ.

$$
\operatorname{SYT}(3,2)=\left\{\begin{array}{|l|l|l}
1 & 2 & 3 \\
\hline 4 & 5 &
\end{array}, \begin{array}{|l|l|l|l|l|l|}
\hline 1 & 2 & 4 \\
\hline 3 & 5 &
\end{array}, \begin{array}{|l|l|l|l|l|l|}
\hline 1 & 2 & 5 \\
\hline 3 & 4 &
\end{array}, \begin{array}{|l|l|l|l|l|}
\hline 1 & 3 & 4 \\
\hline 2 & 5 & \\
\hline
\end{array}, \begin{array}{|l|l|l|}
\hline 2 & 4 & 5 \\
\hline
\end{array}\right\}
$$

Allowing the entries to be any positive entries (possibly repeated) and the rows to be weakly increasing, we obtain the set SSYT (λ) of semistandard Young tableaux of shape λ.

$$
\operatorname{SSYT}(3,2)=\left\{\begin{array}{lll|}
\hline 1 & 1 & 1 \\
\hline 2 & 2 &
\end{array}, \begin{array}{|l|l|l}
1 & 1 & 2 \\
\hline & 2 & 2
\end{array}, \begin{array}{|l|l|l}
1 & 2 & 2 \\
\hline & 3 & 3
\end{array}, \begin{array}{|l|l|l}
1 & 2 & 3 \\
\hline 2 & 3 & \\
\hline
\end{array}, \ldots, \begin{array}{|l|l|l|}
\hline 2 & 4 & 5 \\
\hline 3 & 5 & \\
\hline
\end{array}, \ldots\right.
$$

Symmetric functions

A symmetric function is a formal power series $f\left(x_{1}, x_{2}, \ldots\right)$ of bounded degree that is invariant under any permutation of the (infinitely many) variables x_{1}, x_{2}, \ldots.

Symmetric functions

A symmetric function is a formal power series $f\left(x_{1}, x_{2}, \ldots\right)$ of bounded degree that is invariant under any permutation of the (infinitely many) variables x_{1}, x_{2}, \ldots.

Examples

$$
\begin{aligned}
& f=\sum_{i \neq j} x_{i}^{3} x_{j}=x_{1}^{3} x_{2}+x_{2}^{3} x_{1}+x_{1}^{3} x_{3}+x_{3}^{3} x_{1}+x_{2}^{3} x_{3}+x_{3}^{3} x_{2}+\ldots \\
& g=2 \sum_{i} x_{i}^{2}+\sum_{i<j} x_{i} x_{j}=2 x_{1}^{2}+2 x_{2}^{2}+\cdots+x_{1} x_{2}+x_{1} x_{3}+\ldots
\end{aligned}
$$

Symmetric functions

A symmetric function is a formal power series $f\left(x_{1}, x_{2}, \ldots\right)$ of bounded degree that is invariant under any permutation of the (infinitely many) variables x_{1}, x_{2}, \ldots.

Examples

$$
\begin{aligned}
& f=\sum_{i \neq j} x_{i}^{3} x_{j}=x_{1}^{3} x_{2}+x_{2}^{3} x_{1}+x_{1}^{3} x_{3}+x_{3}^{3} x_{1}+x_{2}^{3} x_{3}+x_{3}^{3} x_{2}+\ldots \\
& g=2 \sum_{i} x_{i}^{2}+\sum_{i<j} x_{i} x_{j}=2 x_{1}^{2}+2 x_{2}^{2}+\cdots+x_{1} x_{2}+x_{1} x_{3}+\ldots
\end{aligned}
$$

The set of homogeneous symmetric functions of degree k forms a vector space over \mathbb{Q}, denoted by Λ_{k}.

Schur functions

For $\lambda \vdash k$, define the Schur function

$$
s_{\lambda}=\sum_{T \in \operatorname{SSYT}(\lambda)} \prod_{i} x_{i}^{\text {number of is in } T} .
$$

Schur functions

For $\lambda \vdash k$, define the Schur function

$$
s_{\lambda}=\sum_{T \in \operatorname{SSYT}(\lambda)} \prod_{i} x_{i}^{\text {number of is in } T}
$$

Example

Schur functions

For $\lambda \vdash k$, define the Schur function

$$
s_{\lambda}=\sum_{T \in \operatorname{SSYT}(\lambda)} \prod_{i} x_{i}^{\text {number of is in } T}
$$

Example

$$
\begin{aligned}
& s_{2,1}=x_{1}^{2} x_{2}+x_{1} x_{2}^{2}+x_{1}^{2} x_{3}+x_{1} x_{3}^{2}+x_{2}^{2} x_{3}+x_{2} x_{3}^{2}+2 x_{1} x_{2} x_{3}+\ldots
\end{aligned}
$$

Schur functions

For $\lambda \vdash k$, define the Schur function

$$
s_{\lambda}=\sum_{T \in \operatorname{SSYT}(\lambda)} \prod_{i} x_{i}^{\text {number of is in } T}
$$

Example

$$
s_{2,1}=x_{1}^{2} x_{2}+x_{1} x_{2}^{2}+x_{1}^{2} x_{3}+x_{1} x_{3}^{2}+x_{2}^{2} x_{3}+x_{2} x_{3}^{2}+2 x_{1} x_{2} x_{3}+\ldots
$$

Theorem
Schur functions are symmetric, and $\left\{s_{\lambda}: \lambda \vdash k\right\}$ is a basis for Λ_{k}.

Schur-positivity

A symmetric function is Schur-positive if all the coefficients in its expansion in the Schur basis are nonnegative.

Schur-positivity

A symmetric function is Schur-positive if all the coefficients in its expansion in the Schur basis are nonnegative.

Example: Given $\lambda \vdash k$ and $\mu \vdash \ell$, consider the product

$$
s_{\lambda} s_{\mu}=\sum_{\nu} c_{\lambda, \mu}^{\nu} s_{\nu}
$$

Schur-positivity

A symmetric function is Schur-positive if all the coefficients in its expansion in the Schur basis are nonnegative.

Example: Given $\lambda \vdash k$ and $\mu \vdash \ell$, consider the product

$$
s_{\lambda} s_{\mu}=\sum_{\nu} c_{\lambda, \mu}^{\nu} s_{\nu} .
$$

The Littlewood-Richardson rule gives a combinatorial interpretation of the coefficients $c_{\lambda, \mu}^{\nu}$, showing that $s_{\lambda} s_{\mu}$ is Schur-positive.

Quasi-symmetric functions

A quasi-symmetric function is a formal power series $f\left(x_{1}, x_{2}, \ldots\right)$ of bounded degree where, for every fixed $\alpha_{1}, \ldots, \alpha_{k}$, the coefficient of $x_{i_{1}}^{\alpha_{1}} \ldots x_{i_{k}}^{\alpha_{k}}$ is the same for any increasing indices $i_{1}<\cdots<i_{k}$.

Quasi-symmetric functions

A quasi-symmetric function is a formal power series $f\left(x_{1}, x_{2}, \ldots\right)$ of bounded degree where, for every fixed $\alpha_{1}, \ldots, \alpha_{k}$, the coefficient of $x_{i_{1}}^{\alpha_{1}} \ldots x_{i_{k}}^{\alpha_{k}}$ is the same for any increasing indices $i_{1}<\cdots<i_{k}$. Example: $f=\sum_{i<j} x_{i}^{2} x_{j}$ is quasisymmetric but not symmetric.

Quasi-symmetric functions

A quasi-symmetric function is a formal power series $f\left(x_{1}, x_{2}, \ldots\right)$ of bounded degree where, for every fixed $\alpha_{1}, \ldots, \alpha_{k}$, the coefficient of $x_{i_{1}}^{\alpha_{1}} \ldots x_{i_{k}}^{\alpha_{k}}$ is the same for any increasing indices $i_{1}<\cdots<i_{k}$. Example: $f=\sum_{i<j} x_{i}^{2} x_{j}$ is quasisymmetric but not symmetric.

For $\pi \in \mathcal{S}_{n}$, define the quasisymmetric function

$$
F_{\pi}=\sum_{\substack{i_{1} \leq i_{i} \leq \ldots \leq i_{n} \\ i_{j}<i_{j}+1 \\ \text { if } j \in \operatorname{Des}(\pi)}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{n}} .
$$

Quasi-symmetric functions

A quasi-symmetric function is a formal power series $f\left(x_{1}, x_{2}, \ldots\right)$ of bounded degree where, for every fixed $\alpha_{1}, \ldots, \alpha_{k}$, the coefficient of $x_{i_{1}}^{\alpha_{1}} \ldots x_{i_{k}}^{\alpha_{k}}$ is the same for any increasing indices $i_{1}<\cdots<i_{k}$.
Example: $f=\sum_{i<j} x_{i}^{2} x_{j}$ is quasisymmetric but not symmetric.
For $\pi \in \mathcal{S}_{n}$, define the quasisymmetric function

$$
F_{\pi}=\sum_{\substack{i_{1} \leq i_{i} \leq \ldots \leq i_{n} \\ i_{j}<i_{j}+1 \\ \text { if } j \in \operatorname{Des}(\pi)}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{n}} .
$$

Example: $\pi=132, \operatorname{Des}(\pi)=\{2\}$.

$$
F_{132}=x_{1} x_{1} x_{2}+x_{1} x_{1} x_{3}+x_{1} x_{2} x_{3}+x_{2} x_{2} x_{3}+\ldots .
$$

Quasi-symmetric functions

For $A \subseteq \mathcal{S}_{n}$, let

$$
\mathcal{Q}(A)=\sum_{\pi \in A} F_{\pi} .
$$

Quasi-symmetric functions

For $A \subseteq \mathcal{S}_{n}$, let

$$
\mathcal{Q}(A)=\sum_{\pi \in A} F_{\pi} .
$$

Question 1 (Gessel, Reutenauer '93):
For which $A \subseteq \mathcal{S}_{n}$ is $\mathcal{Q}(A)$ symmetric?

Quasi-symmetric functions

For $A \subseteq \mathcal{S}_{n}$, let

$$
\mathcal{Q}(A)=\sum_{\pi \in A} F_{\pi} .
$$

Question 1 (Gessel, Reutenauer '93):
For which $A \subseteq \mathcal{S}_{n}$ is $\mathcal{Q}(A)$ symmetric?
Question 2 (Adin, Roichman '13):
For which $A \subseteq \mathcal{S}_{n}$ is $\mathcal{Q}(A)$ Schur-positive?

Quasi-symmetric functions

For $A \subseteq \mathcal{S}_{n}$, let

$$
\mathcal{Q}(A)=\sum_{\pi \in A} F_{\pi}
$$

Question 1 (Gessel, Reutenauer '93):
For which $A \subseteq \mathcal{S}_{n}$ is $\mathcal{Q}(A)$ symmetric?
Question 2 (Adin, Roichman '13):
For which $A \subseteq \mathcal{S}_{n}$ is $\mathcal{Q}(A)$ Schur-positive?
For simplicity, we'll say " A is Schur-positive" instead of " $\mathcal{Q}(A)$ is Schur-positive".

Quasi-symmetric functions

For $A \subseteq \mathcal{S}_{n}$, let

$$
\mathcal{Q}(A)=\sum_{\pi \in A} F_{\pi}
$$

Question 1 (Gessel, Reutenauer '93):
For which $A \subseteq \mathcal{S}_{n}$ is $\mathcal{Q}(A)$ symmetric?
Question 2 (Adin, Roichman '13):
For which $A \subseteq \mathcal{S}_{n}$ is $\mathcal{Q}(A)$ Schur-positive?
For simplicity, we'll say " A is Schur-positive" instead of " $\mathcal{Q}(A)$ is Schur-positive".

We define $\mathcal{Q}(A)$ similarly if A is a multiset.

Known Schur-positive sets

Theorem (Gessel '84)
$\mathcal{Q}\left(\mathcal{S}_{n}\right)=\sum_{\lambda \vdash n}|\operatorname{SYT}(\lambda)| s_{\lambda}$.

Known Schur-positive sets

Theorem (Gessel '84)

$$
\mathcal{Q}\left(\mathcal{S}_{n}\right)=\sum_{\lambda \vdash n}|\operatorname{SYT}(\lambda)| s_{\lambda} .
$$

Theorem (Gessel '84)
Subsets of \mathcal{S}_{n} closed under Knuth relations are Schur-positive.

Known Schur-positive sets

Theorem (Gessel '84)
$\mathcal{Q}\left(\mathcal{S}_{n}\right)=\sum_{\lambda \vdash n}|S Y T(\lambda)| s_{\lambda}$.
Theorem (Gessel '84)
Subsets of \mathcal{S}_{n} closed under Knuth relations are Schur-positive.
The proof uses that if $\pi \stackrel{R S K}{\longrightarrow}(P, Q)$, then $\operatorname{Des}(\pi)=\operatorname{Des}(Q)$.

Known Schur-positive sets

Theorem (Gessel '84)
$\mathcal{Q}\left(\mathcal{S}_{n}\right)=\sum_{\lambda \vdash n}|S Y T(\lambda)| s_{\lambda}$.
Theorem (Gessel '84)
Subsets of \mathcal{S}_{n} closed under Knuth relations are Schur-positive.
The proof uses that if $\pi \stackrel{R S K}{\longrightarrow}(P, Q)$, then $\operatorname{Des}(\pi)=\operatorname{Des}(Q)$.
For $J \subseteq\{1, \ldots, n-1\}$, define the inverse descent class

$$
\mathrm{D}_{\jmath}^{-1}=\left\{\pi \in \mathcal{S}_{n}: \operatorname{Des}\left(\pi^{-1}\right)=J\right\} .
$$

Known Schur-positive sets

Theorem (Gessel '84)
$\mathcal{Q}\left(\mathcal{S}_{n}\right)=\sum_{\lambda \vdash n}|\operatorname{SYT}(\lambda)| s_{\lambda}$.
Theorem (Gessel '84)
Subsets of \mathcal{S}_{n} closed under Knuth relations are Schur-positive.
The proof uses that if $\pi \stackrel{R S K}{\longrightarrow}(P, Q)$, then $\operatorname{Des}(\pi)=\operatorname{Des}(Q)$.
For $J \subseteq\{1, \ldots, n-1\}$, define the inverse descent class

$$
\mathrm{D}_{\jmath}^{-1}=\left\{\pi \in \mathcal{S}_{n}: \operatorname{Des}\left(\pi^{-1}\right)=J\right\} .
$$

Corollary
D_{J}^{-1} is Schur-positive.

Know Schur-positive sets

Theorem (Gessel, Reutenauer '93)
Subsets of \mathcal{S}_{n} closed under conjugation are Schur-positive.

Know Schur-positive sets

Theorem (Gessel, Reutenauer '93)
Subsets of \mathcal{S}_{n} closed under conjugation are Schur-positive.
Corollary

- The set of involutions in \mathcal{S}_{n} is Schur-positive.

Know Schur-positive sets

Theorem (Gessel, Reutenauer '93)
Subsets of \mathcal{S}_{n} closed under conjugation are Schur-positive.
Corollary

- The set of involutions in \mathcal{S}_{n} is Schur-positive.
- The set of derangements in \mathcal{S}_{n} is Schur-positive.

Know Schur-positive sets

Theorem (Gessel, Reutenauer '93)
Subsets of \mathcal{S}_{n} closed under conjugation are Schur-positive.
Corollary

- The set of involutions in \mathcal{S}_{n} is Schur-positive.
- The set of derangements in \mathcal{S}_{n} is Schur-positive.

Theorem (Adin, Roichman '15)
For every k, the set $\left\{\pi \in \mathcal{S}_{n}: \operatorname{inv}(\pi)=k\right\}$ is Schur-positive.

Arc permutations

A permutation $\pi \in \mathcal{S}_{n}$ is an arc permutation if every prefix of π forms an interval in \mathbb{Z}_{n}. Let $\mathcal{A}_{n}=$ set of arc permutations in \mathcal{S}_{n}.

Arc permutations

A permutation $\pi \in \mathcal{S}_{n}$ is an arc permutation if every prefix of π forms an interval in \mathbb{Z}_{n}. Let $\mathcal{A}_{n}=$ set of arc permutations in \mathcal{S}_{n}.
Example: $546132 \in \mathcal{A}_{6}, \quad 541632 \notin \mathcal{A}_{6}$.

Arc permutations

A permutation $\pi \in \mathcal{S}_{n}$ is an arc permutation if every prefix of π forms an interval in \mathbb{Z}_{n}. Let $\mathcal{A}_{n}=$ set of arc permutations in \mathcal{S}_{n}.
Example: $546132 \in \mathcal{A}_{6}, \quad 541632 \notin \mathcal{A}_{6}$.
Proposition

$$
\mathcal{A}_{n}=\mathcal{S}_{n}(1324,1342,2413,2431,3124,3142,4213,4231)
$$

Arc permutations

A permutation $\pi \in \mathcal{S}_{n}$ is an arc permutation if every prefix of π forms an interval in \mathbb{Z}_{n}. Let $\mathcal{A}_{n}=$ set of arc permutations in \mathcal{S}_{n}.
Example: $546132 \in \mathcal{A}_{6}, 541632 \notin \mathcal{A}_{6}$.
Proposition
$\mathcal{A}_{n}=\mathcal{S}_{n}(1324,1342,2413,2431,3124,3142,4213,4231)$
Theorem There is a bijection between \mathcal{A}_{n} and the set of SYT of certain shapes that preserves the descent set.

Arc permutations

A permutation $\pi \in \mathcal{S}_{n}$ is an arc permutation if every prefix of π forms an interval in \mathbb{Z}_{n}. Let $\mathcal{A}_{n}=$ set of arc permutations in \mathcal{S}_{n}.
Example: $546132 \in \mathcal{A}_{6}, \quad 541632 \notin \mathcal{A}_{6}$.
Proposition
$\mathcal{A}_{n}=\mathcal{S}_{n}(1324,1342,2413,2431,3124,3142,4213,4231)$
Theorem There is a bijection between \mathcal{A}_{n} and the set of SYT of certain shapes that preserves the descent set.

Corollary
\mathcal{A}_{n} is Schur-positive and

$$
\mathcal{Q}\left(\mathcal{A}_{n}\right)=s_{n}+s_{1^{n}}+\sum_{k=2}^{n-2} s_{n-k, 2,1^{k-2}}+2 \sum_{k=1}^{n-2} s_{n-k, 1^{k}}
$$

Geometric grid classes

For a $\{0,1,-1\}$-matrix M, let $\Gamma(M)$ be the set of line segments of slope ± 1 whose locations are determined by the entries of M.

Geometric grid classes

For a $\{0,1,-1\}$-matrix M, let $\Gamma(M)$ be the set of line segments of slope ± 1 whose locations are determined by the entries of M.

Example:

$$
M=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0 \\
1 & -1
\end{array}\right)
$$

Geometric grid classes

For a $\{0,1,-1\}$-matrix M, let $\Gamma(M)$ be the set of line segments of slope ± 1 whose locations are determined by the entries of M.

Example:
$M=\left(\begin{array}{cc}0 & 1 \\ -1 & 0 \\ 1 & -1\end{array}\right)$

Define the geometric grid class

$$
\mathcal{G}_{n}(M)=\left\{\pi \in \mathcal{S}_{n}: \pi \text { can be drawn on } \Gamma(M)\right\}
$$

Geometric grid classes

For a $\{0,1,-1\}$-matrix M, let $\Gamma(M)$ be the set of line segments of slope ± 1 whose locations are determined by the entries of M.

Example:
$M=\left(\begin{array}{cc}0 & 1 \\ -1 & 0 \\ 1 & -1\end{array}\right)$

Define the geometric grid class

$$
\mathcal{G}_{n}(M)=\left\{\pi \in \mathcal{S}_{n}: \pi \text { can be drawn on } \Gamma(M)\right\}
$$

Example: $4532617 \in \mathcal{G}_{7}\binom{1}{-1}$.

Geometric grid classes

For a $\{0,1,-1\}$-matrix M, let $\Gamma(M)$ be the set of line segments of slope ± 1 whose locations are determined by the entries of M.

Example:
$M=\left(\begin{array}{cc}0 & 1 \\ -1 & 0 \\ 1 & -1\end{array}\right)$

Define the geometric grid class

$$
\mathcal{G}_{n}(M)=\left\{\pi \in \mathcal{S}_{n}: \pi \text { can be drawn on } \Gamma(M)\right\}
$$

Example: $4532617 \in \mathcal{G}_{7}\binom{1}{-1}$.

Grid classes and pattern avoidance

Theorem (Albert, Atkinson, Bouvel, Ruškuc, Vatter '13)
Every geometric grid class can be characterized by avoidance of a finite set of patterns.

Grid classes and pattern avoidance

Theorem (Albert, Atkinson, Bouvel, Ruškuc, Vatter '13)
Every geometric grid class can be characterized by avoidance of a finite set of patterns.

Example:
$\mathcal{G}_{n}\binom{1}{1}=\mathcal{S}_{n}(321,2143,2413)$.

Arc permutations as grid classes

Arc permutations can be expressed as a union of two (geometric) grid classes:

$$
\mathcal{A}_{n}=\mathcal{G}_{n}\left(\begin{array}{cc}
1 & 0 \\
-1 & 0 \\
0 & -1 \\
0 & 1
\end{array}\right) \cup \mathcal{G}_{n}\left(\begin{array}{cc}
0 & -1 \\
0 & 1 \\
1 & 0 \\
-1 & 0
\end{array}\right)
$$

Elementary examples of Schur-positive grid classes

One-Column grid classes

Proposition

Every one-column grid class is Schur-positive.

Elementary examples of Schur-positive grid classes

 One-Column grid classes
Proposition

Every one-column grid class is Schur-positive.
Example:

$$
\text { Let } \mathcal{H}_{n}=\mathcal{G}_{n}\left(\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right)
$$

$$
\mathcal{Q}\left(\mathcal{H}_{5}\right)=s_{5}+2 s_{4,1}+2 s_{3,2}+3 s_{3,1,1}+4 s_{2,2,1}+4 s_{2,1,1,1}+s_{1,1,1,1,1}
$$

Elementary examples

Co-layered permutations
Let \mathcal{L}_{n}^{k} be the grid class determined by the $k \times k$ identity matrix.
Example:
$\mathcal{L}_{n}^{k}=\mathcal{G}_{n}\left(\operatorname{Id}_{3}\right)$

Elementary examples

Co-layered permutations
Let \mathcal{L}_{n}^{k} be the grid class determined by the $k \times k$ identity matrix.
Example:
$\mathcal{L}_{n}^{k}=\mathcal{G}_{n}\left(\operatorname{Id}_{3}\right)$

Proposition \mathcal{L}_{n}^{k} is Schur-positive and

$$
\mathcal{Q}\left(\mathcal{L}_{n}^{k}\right)=\sum_{r=0}^{k-1} s_{n-r, 1^{r}}
$$

Elementary examples

Co-layered permutations
Let \mathcal{L}_{n}^{k} be the grid class determined by the $k \times k$ identity matrix.
Example:
$\mathcal{L}_{n}^{k}=\mathcal{G}_{n}\left(\operatorname{Id}_{3}\right)$

Proposition \mathcal{L}_{n}^{k} is Schur-positive and

$$
\mathcal{Q}\left(\mathcal{L}_{n}^{k}\right)=\sum_{r=0}^{k-1} s_{n-r, 1^{r}}
$$

Example: $\mathcal{L}_{4}^{2}=\{1234,4 \cdot 123,34 \cdot 12,234 \cdot 1\}$.

Elementary examples

Co-layered permutations
Let \mathcal{L}_{n}^{k} be the grid class determined by the $k \times k$ identity matrix.
Example:
$\mathcal{L}_{n}^{k}=\mathcal{G}_{n}\left(\operatorname{Id}_{3}\right)$

Proposition \mathcal{L}_{n}^{k} is Schur-positive and

$$
\mathcal{Q}\left(\mathcal{L}_{n}^{k}\right)=\sum_{r=0}^{k-1} s_{n-r, 1^{r}}
$$

Example: $\mathcal{L}_{4}^{2}=\{1234,4 \cdot 123,34 \cdot 12,234 \cdot 1\}$.

$$
\mathcal{Q}\left(\mathcal{L}_{4}^{2}\right)=s_{4}+s_{3,1} .
$$

Main theorem

Given $A, B \in \mathcal{S}_{n}$, let $A B$ be the multiset of permutations obtained as products $\pi \sigma$ where $\pi \in A$ and $\sigma \in B$.

Main theorem

Given $A, B \in \mathcal{S}_{n}$, let $A B$ be the multiset of permutations obtained as products $\pi \sigma$ where $\pi \in A$ and $\sigma \in B$.

Theorem
For every Schur-positive set $A \subseteq \mathcal{S}_{n}$ and every $J \subseteq[n-1]$, the multiset

$$
A D_{\jmath}^{-1}
$$

is Schur-positive.

Main theorem

Given $A, B \in \mathcal{S}_{n}$, let $A B$ be the multiset of permutations obtained as products $\pi \sigma$ where $\pi \in A$ and $\sigma \in B$.

Theorem
For every Schur-positive set $A \subseteq \mathcal{S}_{n}$ and every $J \subseteq[n-1]$, the multiset

$$
A D_{J}^{-1}
$$

is Schur-positive.
In fact,

$$
\mathcal{Q}\left(A D_{J}^{-1}\right)=\mathcal{Q}(A) * \mathcal{Q}\left(D_{J}^{-1}\right)
$$

where $*$ denotes the Kronecker product.

Application: vertical rotations

Let $c \in \mathcal{S}_{n}$ be the n-cycle $c=(1,2, \ldots, n)$, and let $C_{n}=\langle c\rangle=\left\{c^{k}: 0 \leq k<n\right\}$ be the subgroup it generates.

Application: vertical rotations

Let $c \in \mathcal{S}_{n}$ be the n-cycle $c=(1,2, \ldots, n)$, and let $C_{n}=\langle c\rangle=\left\{c^{k}: 0 \leq k<n\right\}$ be the subgroup it generates.

For $A \subseteq \mathcal{S}_{n}, \quad C_{n} A$ is the multiset of vertical rotations of elements in A.

Application: vertical rotations

Let $c \in \mathcal{S}_{n}$ be the n-cycle $c=(1,2, \ldots, n)$, and let $C_{n}=\langle c\rangle=\left\{c^{k}: 0 \leq k<n\right\}$ be the subgroup it generates.

For $A \subseteq \mathcal{S}_{n}, \quad C_{n} A$ is the multiset of vertical rotations of elements in A.

Observation: $C_{n}=\mathcal{L}_{n}^{2}$.

Application: vertical rotations

Let $c \in \mathcal{S}_{n}$ be the n-cycle $c=(1,2, \ldots, n)$, and let $C_{n}=\langle c\rangle=\left\{c^{k}: 0 \leq k<n\right\}$ be the subgroup it generates.

For $A \subseteq \mathcal{S}_{n}, \quad C_{n} A$ is the multiset of vertical rotations of elements in A.

Observation: $C_{n}=\mathcal{L}_{n}^{2}$.

Corollary

- For $J \subseteq[n-1]$, the multiset $C_{n} D_{J}^{-1}$ is Schur-positive.

Application: vertical rotations

Let $c \in \mathcal{S}_{n}$ be the n-cycle $c=(1,2, \ldots, n)$, and let $C_{n}=\langle c\rangle=\left\{c^{k}: 0 \leq k<n\right\}$ be the subgroup it generates.

For $A \subseteq \mathcal{S}_{n}, \quad C_{n} A$ is the multiset of vertical rotations of elements in A.

Observation: $C_{n}=\mathcal{L}_{n}^{2}$.

Corollary

- For $J \subseteq[n-1]$, the multiset $C_{n} D_{J}^{-1}$ is Schur-positive.
- For a one-column grid class \mathcal{H}_{n}, the multiset $C_{n} \mathcal{H}_{n}$ is Schur-positive.

Arc permutations revisited

Corollary

\mathcal{A}_{n} is Schur-positive.

Arc permutations revisited

Corollary

\mathcal{A}_{n} is Schur-positive.

Proof Idea

Arc permutations revisited

Corollary

\mathcal{A}_{n} is Schur-positive.

Proof Idea

Arc permutations revisited

Corollary

\mathcal{A}_{n} is Schur-positive.
Proof Idea

Horizontal rotations

We can view \mathcal{S}_{n-1} as a subset of \mathcal{S}_{n} by fixing the last entry n.

Horizontal rotations

We can view \mathcal{S}_{n-1} as a subset of \mathcal{S}_{n} by fixing the last entry n. If $A \subseteq \mathcal{S}_{n-1}$, then $A C_{n} \subseteq \mathcal{S}_{n}$ is the set of horizontal rotations of elements in A.

Horizontal rotations

We can view \mathcal{S}_{n-1} as a subset of \mathcal{S}_{n} by fixing the last entry n. If $A \subseteq \mathcal{S}_{n-1}$, then $A C_{n} \subseteq \mathcal{S}_{n}$ is the set of horizontal rotations of elements in A.

Theorem
For every Schur-positive set $A \subseteq \mathcal{S}_{n-1}, A C_{n}$ is Schur-positive.

Horizontal rotations

We can view \mathcal{S}_{n-1} as a subset of \mathcal{S}_{n} by fixing the last entry n. If $A \subseteq \mathcal{S}_{n-1}$, then $A C_{n} \subseteq \mathcal{S}_{n}$ is the set of horizontal rotations of elements in A.

Theorem
For every Schur-positive set $A \subseteq \mathcal{S}_{n-1}, A C_{n}$ is Schur-positive.

In fact, $\mathcal{Q}\left(A C_{n}\right)=\mathcal{Q}(A) s_{1}$.
Equivalently, if A "corresponds" to an \mathcal{S}_{n-1}-representation ρ, then $A C_{n}$ "corresponds" to the \mathcal{S}_{n}-representation $\rho \uparrow^{\mathcal{S}_{n}}$.

Horizontal rotations

Let M_{k} be the $2 k \times 2$ matrix whose odd rows are $(1,0)$ and whose even rows are $(0,1)$.

Horizontal rotations

Let M_{k} be the $2 k \times 2$ matrix whose odd rows are $(1,0)$ and whose even rows are $(0,1)$.

Corollary

$\mathcal{Q}\left(\mathcal{G}_{n}\left(M_{k}\right)\right)$ is Schur-positive for all k.

Stacking operations

Given matrices M_{1} and M_{2}, one of which has one column, let $\Gamma\binom{M_{1}}{M_{2}}$ be the grid obtained by stacking $\Gamma\left(M_{1}\right)$ atop $\Gamma\left(M_{2}\right)$, and $\mathcal{G}_{n}\binom{M_{1}}{M_{2}}$ the corresponding grid class.

Stacking operations

Given matrices M_{1} and M_{2}, one of which has one column, let $\Gamma\binom{M_{1}}{M_{2}}$ be the grid obtained by stacking $\Gamma\left(M_{1}\right)$ atop $\Gamma\left(M_{2}\right)$, and $\mathcal{G}_{n}\binom{M_{1}}{M_{2}}$ the corresponding grid class.
Example

Stacking operations

Given matrices M_{1} and M_{2}, one of which has one column, let $\Gamma\binom{M_{1}}{M_{2}}$ be the grid obtained by stacking $\Gamma\left(M_{1}\right)$ atop $\Gamma\left(M_{2}\right)$, and $\mathcal{G}_{n}\binom{M_{1}}{M_{2}}$ the corresponding grid class.
Example

Proposition The above two grids are Schur-positive.

Stacking operations

Given matrices M_{1} and M_{2}, one of which has one column, let $\Gamma\binom{M_{1}}{M_{2}}$ be the grid obtained by stacking $\Gamma\left(M_{1}\right)$ atop $\Gamma\left(M_{2}\right)$, and $\mathcal{G}_{n}\binom{M_{1}}{M_{2}}$ the corresponding grid class.
Example

Proposition The above two grids are Schur-positive.
Question: If M_{1} has one column and $\mathcal{G}\left(M_{2}\right)$ is Schur-positive, is $\mathcal{G}_{n}\binom{M_{1}}{M_{2}}$ necessarily Schur-positive?

Open questions

Conjecture

For every one-column grid class \mathcal{H}_{n}, the set underlying the multiset $C_{n} \mathcal{H}_{n}$ is Schur-positive.

Open questions

Conjecture
For every one-column grid class \mathcal{H}_{n}, the set underlying the multiset $C_{n} \mathcal{H}_{n}$ is Schur-positive.

Conjecture
For every Schur-positive set $A \subseteq \mathcal{S}_{n}$ and every $J \subseteq[n-1]$,

$$
\mathcal{Q}\left(D_{J}^{-1} A\right)=\mathcal{Q}\left(A D_{J}^{-1}\right)
$$

Open questions

Conjecture

For every one-column grid class \mathcal{H}_{n}, the set underlying the multiset $C_{n} \mathcal{H}_{n}$ is Schur-positive.

Conjecture
For every Schur-positive set $A \subseteq \mathcal{S}_{n}$ and every $J \subseteq[n-1]$,

$$
\mathcal{Q}\left(D_{J}^{-1} A\right)=\mathcal{Q}\left(A D_{J}^{-1}\right)
$$

Since our main theorem states that $D_{J}^{-1} A$ is a fine multiset, it would follow that $A D_{J}^{-1}$ is fine as well.

Open questions

Conjecture

For every one-column grid class \mathcal{H}_{n}, the set underlying the multiset $C_{n} \mathcal{H}_{n}$ is Schur-positive.

Conjecture
For every Schur-positive set $A \subseteq \mathcal{S}_{n}$ and every $J \subseteq[n-1]$,

$$
\mathcal{Q}\left(D_{J}^{-1} A\right)=\mathcal{Q}\left(A D_{J}^{-1}\right)
$$

Since our main theorem states that $D_{J}^{-1} A$ is a fine multiset, it would follow that $A D_{J}^{-1}$ is fine as well.

Question: Which pairs of Knuth classes $A, B \subseteq \mathcal{S}_{n}$ satisfy $\mathcal{Q}(A B)=\mathcal{Q}(A) * \mathcal{Q}(B)$?

Thanks

