Forbidden patterns in telling random from deterministic time series

Sergi Elizalde
sergi.elizalde@dartmouth.edu
Dartmouth College

Joint work with José M. Amigó and Matt Kennel

Deterministic or random?

Two sequences of numbers in $[0,1]$:
.6416, . $9198, .2951, .8320, .5590, .9861, .0550, .2078, .6584, .8996$, $.3612, .9230, .2844, .8141, .6054, \ldots$
.9129, .5257, .4475, .9815, .4134, .9930, .1576, .8825, .3391, . 0659 , $.1195, .5742, .1507, .5534, .0828, \ldots$

Are they random? Are they deterministic?

Deterministic or random?

Two sequences of numbers in $[0,1]$:

```
.6416, .9198, .2951, .8320, .5590, .9861, .0550, .2078, .6584, .8996,
    .3612,.9230,.2844,.8141,.6054,\ldots
.9129, .5257, .4475, .9815, .4134, .9930, .1576, .8825, .3391, .0659,
    .1195,.5742,.1507, .5534, .0828,\ldots
```

Are they random? Are they deterministic?

Let $f(x)=4 x(1-x)$. Then
$f(.6146)=.9198$,
$f(.9198)=.2951$,
$f(.2951)=.8320$,

Order patterns of a map

$$
f:[0,1] \rightarrow[0,1], \quad f(x)=4 x(1-x)
$$

Order patterns of a map

$$
f:[0,1] \rightarrow[0,1], \quad f(x)=4 x(1-x)
$$

Given $x \in[0,1]$, consider the sequence

$$
\left[x, f(x), f(f(x)), \ldots, f^{(k-1)}(x)\right] .
$$

For $x=0.8$ and $k=4$, we get $[0.8$,

Order patterns of a map

$$
f:[0,1] \rightarrow[0,1], \quad f(x)=4 x(1-x)
$$

Given $x \in[0,1]$, consider the sequence

$$
\left[x, f(x), f(f(x)), \ldots, f^{(k-1)}(x)\right] .
$$

For $x=0.8$ and $k=4$, we get $[0.8,0.64$,

Order patterns of a map

$$
f:[0,1] \rightarrow[0,1], \quad f(x)=4 x(1-x)
$$

Given $x \in[0,1]$, consider the sequence

$$
\left[x, f(x), f(f(x)), \ldots, f^{(k-1)}(x)\right] .
$$

For $x=0.8$ and $k=4$, we get $[0.8,0.64,0.9216$,

Order patterns of a map

$$
f:[0,1] \rightarrow[0,1], \quad f(x)=4 x(1-x)
$$

Given $x \in[0,1]$, consider the sequence

$$
\left[x, f(x), f(f(x)), \ldots, f^{(k-1)}(x)\right] .
$$

For $x=0.8$ and $k=4$, we get $[0.8,0.64,0.9216,0.2890]$

Order patterns of a map

$$
f:[0,1] \rightarrow[0,1], \quad f(x)=4 x(1-x)
$$

Given $x \in[0,1]$, consider the sequence

$$
\left[x, f(x), f(f(x)), \ldots, f^{(k-1)}(x)\right] .
$$

For $x=0.8$ and $k=4$, we get $[0.8,0.64,0.9216,0.2890]$
We say that x defines the order pattern $[3,2,4,1]$.

Order patterns of a map

$$
f:[0,1] \rightarrow[0,1], \quad f(x)=4 x(1-x)
$$

Given $x \in[0,1]$, consider the sequence

$$
\left[x, f(x), f(f(x)), \ldots, f^{(k-1)}(x)\right] .
$$

For $x=0.8$ and $k=4$, we get $[0.8,0.64,0.9216,0.2890]$
We say that x defines the order pattern 3241.

What patterns can appear?

Let $k=3$.

$x=0.1 \quad$ defines the order pattern $\quad 123$

What patterns can appear?

Let $k=3$.

$x=0.1 \quad$ defines the order pattern $\quad 123$
$x=0.3 \quad$ defines the order pattern 132

What patterns can appear?

Let $k=3$.

$x=0.1 \quad$ defines the order pattern $\quad 123$
$x=0.3 \quad$ defines the order pattern 132
$x=0.6 \quad$ defines the order pattern $\quad 231$

What patterns can appear?

Let $k=3$.

$x=0.1 \quad$ defines the order pattern 123
$x=0.3 \quad$ defines the order pattern 132
$x=0.6 \quad$ defines the order pattern 231
$x=0.8 \quad$ defines the order pattern 213

What patterns can appear?

Let $k=3$.

$x=0.1 \quad$ defines the order pattern 123
$x=0.3 \quad$ defines the order pattern 132
$x=0.6 \quad$ defines the order pattern 231
$x=0.8 \quad$ defines the order pattern 213
$x=0.95$ defines the order pattern 312

What patterns can appear?

Let $k=3$.

$x=0.1 \quad$ defines the order pattern 123
$x=0.3 \quad$ defines the order pattern 132
$x=0.6 \quad$ defines the order pattern 231
$x=0.8 \quad$ defines the order pattern 213
$x=0.95$ defines the order pattern 312
How about the pattern 321 ?

Forbidden patterns

The pattern 321 does not appear for any x.

We say that 321 is a forbidden pattern of f.

Notation

$I \subset \mathbb{R}$ closed interval, $\quad f: I \rightarrow I, \quad x \in I$.
We say that x defines the order pattern $\pi \in \mathcal{S}_{k}$ if

$$
\left(x, f(x), f(f(x)), \ldots, f^{(k-1)}(x)\right) \quad \sim \quad\left(\pi_{1}, \pi_{2}, \ldots, \pi_{k}\right),
$$

where $\left(a_{1}, \ldots, a_{k}\right) \sim\left(b_{1}, \ldots, b_{j}\right)$ means that $a_{i}<a_{j}$ iff $b_{i}<b_{j}$.

Notation

$I \subset \mathbb{R}$ closed interval, $\quad f: I \rightarrow I, \quad x \in I$.
We say that x defines the order pattern $\pi \in \mathcal{S}_{k}$ if

$$
\left(x, f(x), f(f(x)), \ldots, f^{(k-1)}(x)\right) \quad \sim \quad\left(\pi_{1}, \pi_{2}, \ldots, \pi_{k}\right),
$$

where $\left(a_{1}, \ldots, a_{k}\right) \sim\left(b_{1}, \ldots, b_{j}\right)$ means that $a_{i}<a_{j}$ iff $b_{i}<b_{j}$.
Given $\pi \in \mathcal{S}_{k}$, let

$$
I_{\pi}=\{x \in I: x \text { defines } \pi\} .
$$

Let

$$
\begin{gathered}
\operatorname{Allow}_{k}(f)=\left\{\pi \in \mathcal{S}_{k}: I_{\pi} \neq \emptyset\right\}, \quad \operatorname{Forb}_{k}(f)=\mathcal{S}_{k} \backslash \operatorname{Allow}_{k}(f) . \\
\operatorname{Allow}(f)=\bigcup_{k \geq 1} \operatorname{Allow}_{k}(f), \quad \operatorname{Forb}(f)=\bigcup_{k \geq 1} \operatorname{Forb}_{k}(f) .
\end{gathered}
$$

Forb (f) is the set of forbidden patterns of f.

Maps have forbidden patterns

Theorem. If $f: I \rightarrow I$ is a piecewise monotone map, then

$$
\operatorname{Forb}(f) \neq \emptyset
$$

Maps have forbidden patterns

Theorem. If $f: I \rightarrow I$ is a piecewise monotone map, then

$$
\operatorname{Forb}(f) \neq \emptyset
$$

Piecewise monotone: there is a finite partition of I into intervals such that f is continuous and strictly monotone on each interval.

Maps have forbidden patterns

Theorem. If $f: I \rightarrow I$ is a piecewise monotone map, then

$$
\operatorname{Forb}(f) \neq \emptyset
$$

Piecewise monotone: there is a finite partition of I into intervals such that f is continuous and strictly monotone on each interval.

This follows from a result of [Bandt, Keller, Pompe]:

$$
\left|\operatorname{Allow}_{k}(f)\right| \propto e^{k h_{\mathrm{top}}(f)}
$$

where $h_{\text {top }}(f)$ is the topological entropy of f.

Topological entropy

$\mathcal{P} \quad$ partition of I into intervals on which f is strictly monotone.
$\mathcal{P}^{(n)} \quad$ partition of I into all sets of the form

$$
P_{1} \cap f^{-1}\left(P_{2}\right) \cap \cdots \cap f^{-(n-1)}\left(P_{n}\right) \text { with } P_{1}, \ldots, P_{n} \in \mathcal{P} \text {. }
$$

Then the topological entropy of f is

$$
h_{\text {top }}(f)=\lim _{n \rightarrow \infty} \frac{1}{n} \log \left|\mathcal{P}^{(n)}\right| .
$$

This limit exists when f is piecewise monotone.

Topological entropy

$\mathcal{P} \quad$ partition of I into intervals on which f is strictly monotone.
$\mathcal{P}^{(n)} \quad$ partition of I into all sets of the form

$$
P_{1} \cap f^{-1}\left(P_{2}\right) \cap \cdots \cap f^{-(n-1)}\left(P_{n}\right) \text { with } P_{1}, \ldots, P_{n} \in \mathcal{P} \text {. }
$$

Then the topological entropy of f is

$$
h_{\text {top }}(f)=\lim _{n \rightarrow \infty} \frac{1}{n} \log \left|\mathcal{P}^{(n)}\right| .
$$

This limit exists when f is piecewise monotone.
It follows that

$$
\left|\operatorname{Allow}_{k}(f)\right| \propto e^{k h_{\text {top }}(f)} \ll k!=\left|\mathcal{S}_{k}\right|
$$

so f has forbidden patterns.

Comparison with random sequences

Consider a sequence $x_{1}, x_{2}, \ldots, x_{N}$ produced by a black box, with $0 \leq x_{i} \leq 1$.

- If the sequence is of the form $x_{i+1}=f\left(x_{i}\right)$, for some piecewise monotone map f, then it must have missing patterns (if N large enough).

For example, the pattern 321 is missing from
.6416, . $9198, .2951, .8320, .5590, .9861, .0550, .2078, .6584, .8996, .3612$, $.9230, .2844, .8141, .6054, \ldots$

Comparison with random sequences

Consider a sequence $x_{1}, x_{2}, \ldots, x_{N}$ produced by a black box, with $0 \leq x_{i} \leq 1$.

- If the sequence is of the form $x_{i+1}=f\left(x_{i}\right)$, for some piecewise monotone map f, then it must have missing patterns (if N large enough).

For example, the pattern 321 is missing from
.6416, . $9198, .2951, .8320, .5590, .9861, .0550, .2078, .6584, .8996, .3612$, $.9230, .2844, .8141, .6054, \ldots$

Besides, the number of missing patterns of length k is at least $k!-C^{k}$, for some constant C.

Comparison with random sequences

Consider a sequence $x_{1}, x_{2}, \ldots, x_{N}$ produced by a black box, with $0 \leq x_{i} \leq 1$.

- If the sequence is of the form $x_{i+1}=f\left(x_{i}\right)$, for some piecewise monotone map f, then it must have missing patterns (if N large enough).

For example, the pattern 321 is missing from
.6416, .9198, .2951, .8320, .5590, .9861, .0550, .2078, .6584, .8996, .3612, .9230, .2844, .8141, . $6054, \ldots$.

Besides, the number of missing patterns of length k is at least $k!-C^{k}$, for some constant C.

- On the other hand, if the sequence was generated by N i.i.d. random variables, then the probability that any fixed pattern π is missing goes to 0 exponentially as N grows.

Consecutive patterns in permutations

$\sigma=\sigma_{1} \sigma_{2} \cdots \sigma_{n} \in \mathcal{S}_{n}, \quad \pi_{1} \pi_{2} \cdots \pi_{k} \in \mathcal{S}_{k}$

Definition. σ contains π as a consecutive pattern if there exists i such that

$$
\sigma_{i} \sigma_{i+1} \ldots \sigma_{i+k-1} \sim \pi_{1} \pi_{2} \ldots \pi_{k}
$$

Consecutive patterns in permutations

$\sigma=\sigma_{1} \sigma_{2} \cdots \sigma_{n} \in \mathcal{S}_{n}, \quad \pi_{1} \pi_{2} \cdots \pi_{k} \in \mathcal{S}_{k}$

Definition. σ contains π as a consecutive pattern if there exists i such that

$$
\sigma_{i} \sigma_{i+1} \ldots \sigma_{i+k-1} \sim \pi_{1} \pi_{2} \ldots \pi_{k}
$$

Example. 4153726 contains 3241 , but it avoids 123 .

Consecutive patterns in permutations

$\sigma=\sigma_{1} \sigma_{2} \cdots \sigma_{n} \in \mathcal{S}_{n}, \quad \pi_{1} \pi_{2} \cdots \pi_{k} \in \mathcal{S}_{k}$

Definition. σ contains π as a consecutive pattern if there exists i such that

$$
\sigma_{i} \sigma_{i+1} \ldots \sigma_{i+k-1} \sim \pi_{1} \pi_{2} \ldots \pi_{k}
$$

Example. $41 \underline{53726}$ contains 3241 , but it avoids 123 .

$$
\begin{gathered}
\operatorname{Cont}_{n}(\pi)=\left\{\sigma \in \mathcal{S}_{n}: \sigma \text { contains } \pi \text { as a consecutive pattern }\right\} \\
\operatorname{Av}_{n}(\pi)=\left\{\sigma \in \mathcal{S}_{n}: \sigma \text { avoids } \pi \text { as a consecutive pattern }\right\} \\
\operatorname{Av}(\pi)=\bigcup_{n \geq 1} \operatorname{Av}_{n}(\pi)
\end{gathered}
$$

Enumeration of permutations avoiding consecutive patterns

E., Noy:

- Formulas for the generating functions for the number of permutations avoiding a pattern of the form

$$
\begin{gathered}
\pi=12 \cdots k \quad \text { or } \\
\pi=12 \cdots(a-1) a \underbrace{\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots}_{\text {perm. of }\{a+2, a+3, \ldots, k\}}(a+1) .
\end{gathered}
$$

Enumeration of permutations avoiding consecutive patterns

E., Noy:

- Formulas for the generating functions for the number of permutations avoiding a pattern of the form

$$
\begin{gathered}
\pi=12 \cdots k \quad \text { or } \\
\pi=12 \cdots(a-1) a \underbrace{\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots}_{\text {perm. of }\{a+2, a+3, \ldots, k\}}(a+1) .
\end{gathered}
$$

- For any $\pi \in \mathcal{S}_{k}$ with $k \geq 3$, there exist constants $0<c, d<1$ such that

$$
c^{n} n!\leq\left|\operatorname{Av}_{n}(\pi)\right| \leq d^{n} n!
$$

for all $n \geq k$.

Enumeration of permutations avoiding consecutive patterns

E., Noy:

- Formulas for the generating functions for the number of permutations avoiding a pattern of the form

$$
\begin{gathered}
\pi=12 \cdots k \quad \text { or } \\
\pi=12 \cdots(a-1) a \underbrace{\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots}_{\text {perm. of }\{a+2, a+3, \ldots, k\}}(a+1) .
\end{gathered}
$$

- For any $\pi \in \mathcal{S}_{k}$ with $k \geq 3$, there exist constants $0<c, d<1$ such that

$$
c^{n} n!\leq\left|\operatorname{Av}_{n}(\pi)\right| \leq d^{n} n!
$$

for all $n \geq k$.

Kitaev:

- Formulas for the number of permutations avoiding multiple consecutive patterns of length 3.

Allow (f) is closed under consecutive pattern containment

$\left.\begin{array}{c}\sigma \in \operatorname{Allow}(f) \\ \sigma \text { contains } \tau \text { as a consecutive pattern }\end{array}\right\} \Rightarrow \quad \tau \in \operatorname{Allow}(f)$.

Allow (f) is closed under consecutive pattern containment

$\left.\begin{array}{c}\sigma \in \operatorname{Allow}(f) \\ \sigma \text { contains } \tau \text { as a consecutive pattern }\end{array}\right\} \Rightarrow \quad \tau \in \operatorname{Allow}(f)$.

$$
\left.\begin{array}{c}
\pi \in \operatorname{Forb}_{k}(f) \\
n \geq k
\end{array}\right\} \Rightarrow \operatorname{Cont}_{n}(\pi) \subseteq \operatorname{Forb}_{n}(f)
$$

Equivalently,

$$
\operatorname{Allow}_{n}(f) \subseteq \operatorname{Av}_{n}(\pi)
$$

Allow (f) is closed under consecutive pattern containment

$\left.\begin{array}{c}\sigma \in \operatorname{Allow}(f) \\ \sigma \text { contains } \tau \text { as a consecutive pattern }\end{array}\right\} \Rightarrow \quad \tau \in \operatorname{Allow}(f)$.

$$
\left.\begin{array}{c}
\pi \in \operatorname{Forb}_{k}(f) \\
n \geq k
\end{array}\right\} \Rightarrow \operatorname{Cont}_{n}(\pi) \subseteq \operatorname{Forb}_{n}(f)
$$

Equivalently,

$$
\operatorname{Allow}_{n}(f) \subseteq \operatorname{Av}_{n}(\pi)
$$

We are interested in the minimal elements of $\operatorname{Forb}(f)$, i.e., those not containing any smaller pattern in $\operatorname{Forb}(f)$.

Root forbidden patterns

The minimal patterns in Forb (f) are called root (forbidden) patterns.
$\operatorname{Root}(f)=$ all root patterns, $\quad \operatorname{Root}_{k}(f)=$ root patterns of length k.

Root forbidden patterns

The minimal patterns in $\operatorname{Forb}(f)$ are called root (forbidden) patterns.
$\operatorname{Root}(f)=$ all root patterns, $\quad \operatorname{Root}_{k}(f)=$ root patterns of length k.
Note that

$$
\operatorname{Allow}(f)=\operatorname{Av}(\operatorname{Root}(f)) .
$$

Root forbidden patterns

The minimal patterns in $\operatorname{Forb}(f)$ are called root (forbidden) patterns.
$\operatorname{Root}(f)=$ all root patterns, $\quad \operatorname{Root}_{k}(f)=$ root patterns of length k.
Note that

$$
\operatorname{Allow}(f)=\operatorname{Av}(\operatorname{Root}(f)) .
$$

Example: For $f(x)=4 x(1-x)$,
$\operatorname{Root}_{2}(f)=\emptyset$
$\operatorname{Root}_{3}(f)=\{\mathbf{3 2 1}\}$
$\operatorname{Root}_{4}(f)=\{1423,2134,2143,3142,4231\}$

Root forbidden patterns

The minimal patterns in Forb (f) are called root (forbidden) patterns.
$\operatorname{Root}(f)=$ all root patterns, $\quad \operatorname{Root}_{k}(f)=$ root patterns of length k.
Note that

$$
\operatorname{Allow}(f)=\operatorname{Av}(\operatorname{Root}(f)) .
$$

Example: For $f(x)=4 x(1-x)$,
$\operatorname{Root}_{2}(f)=\emptyset$
$\operatorname{Root}_{3}(f)=\{\mathbf{3 2 1}\}$
$\operatorname{Root}_{4}(f)=\{1423,2134,2143,3142,4231\}$
$\operatorname{Forb}_{4}(f)=$
$\{\mathbf{1 4 2 3}, 1 \underline{432}, \mathbf{2 1 3 4}, \mathbf{2 1 4 3}, 2 \underline{431}, \mathbf{3 1 4 2}, \underline{3214}, 3 \underline{421}, \underline{4213}, \mathbf{4 2 3 1}, \underline{4312}, \underline{4321}\}$

Poset of permutations under consec. pattern containment

We can consider the infinite poset of all permutations where

$$
\pi \leq \sigma \quad \Leftrightarrow \quad \sigma \text { contains } \pi \text { as a consecutive pattern. }
$$

Poset of permutations under consec. pattern containment

We can consider the infinite poset of all permutations where $\pi \leq \sigma \quad \Leftrightarrow \quad \sigma$ contains π as a consecutive pattern.

More examples

$$
g_{1}(x)=x^{2}
$$

More examples

$$
g_{1}(x)=x^{2}
$$

$\operatorname{Root}\left(g_{1}\right)=\{\mathbf{1 2}\}$
$\operatorname{Allow}_{n}\left(g_{1}\right)=\operatorname{Av}_{n}(\mathbf{1 2})=\{n \ldots 21\}$

More examples

$$
g_{2}(x)=1-x^{2}
$$

More examples

$$
g_{2}(x)=1-x^{2}
$$

$\operatorname{Root}\left(g_{2}\right)=\{\mathbf{1 2 3}, \mathbf{1 3 2}, \mathbf{3 1 2}, \mathbf{3 2 1}\}$
Allow $_{3}\left(g_{2}\right)=\{213,231\}$
Allow $_{4}\left(g_{2}\right)=\{3241,2314\}$
Allow $_{5}\left(g_{2}\right)=\{32415,34251\}$

More examples

$$
g_{2}(x)=1-x^{2}
$$

$\operatorname{Root}\left(g_{2}\right)=\{\mathbf{1 2 3}, \mathbf{1 3 2}, \mathbf{3 1 2}, \mathbf{3 2 1}\}$
Allow $_{3}\left(g_{2}\right)=\{213,231\}$
Allow $_{4}\left(g_{2}\right)=\{3241,2314\}$
Allow $_{5}\left(g_{2}\right)=\{32415,34251\}$

More examples

$$
g_{3}(x)=4 x^{3}-6 x^{2}+3 x
$$

More examples

$$
g_{3}(x)=4 x^{3}-6 x^{2}+3 x
$$

$\operatorname{Root}\left(g_{3}\right)=\{132,213,231,321\}$
Allow $_{n}\left(g_{3}\right)=\{12 \ldots n, n \ldots 21\}$

More examples

$$
g_{3}(x)=4 x^{3}-6 x^{2}+3 x
$$

$\operatorname{Root}\left(g_{3}\right)=\{132,213,231,321\}$
Allow $_{n}\left(g_{3}\right)=\{12 \ldots n, n \ldots 21\}$

One-sided shifts

Let

$$
\begin{array}{ccc}
h_{10}: & {[0,1]} & \longrightarrow \\
x & \mapsto & 10 x \bmod 1 \\
& \longmapsto & 0 . a_{2} a_{3} a_{4} \ldots
\end{array}
$$

For example, $\quad h_{10}(0.837435 \ldots)=0.37435 \ldots$

One-sided shifts

Let

$$
\begin{array}{ccc}
h_{10}: & {[0,1]} & \longrightarrow \\
x & \mapsto & 10 x \bmod 1 \\
& \longmapsto & 0 . a_{2} a_{3} a_{4} \ldots
\end{array}
$$

For example, $\quad h_{10}(0.837435 \ldots)=0.37435 \ldots$
This is a piecewise linear map, so it has forbidden order patterns.

One-sided shifts

Let

$$
\begin{array}{ccc}
h_{10}: & {[0,1]} & \longrightarrow \\
x & \mapsto & 10 x \bmod 1 \\
& \longmapsto . a_{1} a_{2} a_{3} \ldots & \mapsto
\end{array} 0 . a_{2} a_{3} a_{4} \ldots .
$$

For example, $\quad h_{10}(0.837435 \ldots)=0.37435 \ldots$
This is a piecewise linear map, so it has forbidden order patterns.
We can think of it as a map

$$
\begin{aligned}
& \tilde{h}_{10}:\{0,1, \ldots, 9\}^{*} \longrightarrow\{0,1, \ldots, 9\}^{*} \\
& \left(a_{1}, a_{2}, a_{3}, \ldots\right) \quad \mapsto \quad\left(a_{2}, a_{3}, a_{4}, \ldots\right)
\end{aligned}
$$

One-sided shifts

Let

$$
\begin{array}{ccc}
h_{10}: & {[0,1]} & \longrightarrow \\
{[0,1]} \\
x & \mapsto & 10 x \bmod 1 \\
& 0 . a_{1} a_{2} a_{3} \ldots & \mapsto
\end{array} 0 . a_{2} a_{3} a_{4} \ldots
$$

For example, $\quad h_{10}(0.837435 \ldots)=0.37435 \ldots$
This is a piecewise linear map, so it has forbidden order patterns.
We can think of it as a map

$$
\begin{array}{rlll}
\tilde{h}_{N}:\{0,1, \ldots, N-1\}^{*} & \longrightarrow & \{0,1, \ldots, N-1\}^{*} \\
\left(a_{1}, a_{2}, a_{3}, \ldots\right) & \mapsto & \left(a_{2}, a_{3}, a_{4}, \ldots\right)
\end{array}
$$

For $N \geq 2, \tilde{h}_{N}$ is called the (one-sided) shift on N symbols, and

$$
h_{N}: x \mapsto N x \bmod 1
$$

is called the sawtooth map.

$$
h_{2}:[0,1] \rightarrow[0,1]
$$

$$
h_{5}:[0,1] \rightarrow[0,1]
$$

Forbidden patterns in shift systems

Order patterns in
Order patterns in \quad m $\quad \tilde{h}_{N}:\{0,1, \ldots, N-1\}^{*} \rightarrow\{0,1, \ldots, N-1\}^{*}$
$h_{N}:[0,1] \rightarrow[0,1]$ using the lexicographic order

Forbidden patterns in shift systems

Order patterns in

Order patterns in $\quad \leftrightarrow \quad \tilde{h}_{N}:\{0,1, \ldots, N-1\}^{*} \rightarrow\{0,1, \ldots, N-1\}^{*}$
$h_{N}:[0,1] \rightarrow[0,1]$
using the lexicographic order

Example. For \tilde{h}_{3} and $k=7$, the point $x=(2,1,0,2,2,1,2,2,1,0, \ldots)$ defines the pattern 4217536.

$$
\begin{aligned}
& (2,1,0,2,2,1,2,2,1,0, \ldots) \stackrel{\tilde{h}_{3}}{\mapsto}(1,0,2,2,1,2,2,1,0, \ldots) \stackrel{\tilde{h}_{3}}{\mapsto}(0,2,2,1,2,2,1,0, \ldots) \stackrel{\tilde{h}_{3}}{\mapsto} \\
& \quad \stackrel{\tilde{h}_{3}}{\mapsto}(2,2,1,2,2,1,0, \ldots) \stackrel{\tilde{h}_{3}}{\mapsto}(2,1,2,2,1,0, \ldots) \stackrel{\tilde{h}_{3}}{\mapsto}(1,2,2,1,0, \ldots) \stackrel{\tilde{h}_{3}}{\mapsto}(2,2,1,0, \ldots)
\end{aligned}
$$

Forbidden patterns in shift systems

Order patterns in

$$
\begin{gathered}
\text { Order patterns in } \quad \leftrightarrow \quad \tilde{h}_{N}:\{0,1, \ldots, N-1\}^{*} \rightarrow\{0,1, \ldots, N-1\}^{*} \\
h_{N}:[0,1] \rightarrow[0,1] \\
\text { using the lexicographic order }
\end{gathered}
$$

Example. For \tilde{h}_{3} and $k=7$, the point $x=(2,1,0,2,2,1,2,2,1,0, \ldots)$ defines the pattern 4217536.

$$
\begin{aligned}
(2,1,0,2,2,1,2,2,1,0, \ldots) & \stackrel{\tilde{h}_{3}}{\mapsto}(1,0,2,2,1,2,2,1,0, \ldots) \stackrel{\tilde{h}_{3}}{\mapsto}(0,2,2,1,2,2,1,0, \ldots) \stackrel{\tilde{h}_{3}}{\mapsto} \\
\quad \stackrel{\tilde{h}_{3}}{\mapsto}(2,2,1,2,2,1,0, \ldots) & \stackrel{\tilde{h}_{3}}{\mapsto}(2,1,2,2,1,0, \ldots) \stackrel{\tilde{h}_{3}}{\mapsto}(1,2,2,1,0, \ldots) \stackrel{\tilde{h}_{3}}{\mapsto}(2,2,1,0, \ldots)
\end{aligned}
$$

Theorem.

- h_{N} has no forbidden patterns of length k for any $k \leq N+1$.

Forbidden patterns in shift systems

Order patterns in
Order patterns in \quad m $\quad \tilde{h}_{N}:\{0,1, \ldots, N-1\}^{*} \rightarrow\{0,1, \ldots, N-1\}^{*}$

$$
h_{N}:[0,1] \rightarrow[0,1]
$$

Example. For \tilde{h}_{3} and $k=7$, the point $x=(2,1,0,2,2,1,2,2,1,0, \ldots)$ defines the pattern 4217536.

$$
\begin{aligned}
& (2,1,0,2,2,1,2,2,1,0, \ldots) \stackrel{\tilde{h}_{3}}{\mapsto}(1,0,2,2,1,2,2,1,0, \ldots) \stackrel{\tilde{h}_{3}}{\mapsto}(0,2,2,1,2,2,1,0, \ldots) \stackrel{\tilde{h}_{3}}{\mapsto} \\
& \quad \stackrel{\tilde{h}_{3}}{\mapsto}(2,2,1,2,2,1,0, \ldots) \stackrel{\tilde{h}_{3}}{\mapsto}(2,1,2,2,1,0, \ldots) \stackrel{\tilde{h}_{3}}{\mapsto}(1,2,2,1,0, \ldots) \stackrel{\tilde{h}_{3}}{\mapsto}(2,2,1,0, \ldots)
\end{aligned}
$$

Theorem.

- h_{N} has no forbidden patterns of length k for any $k \leq N+1$.
- h_{N} has forbidden patterns of length k for any $k \geq N+2$.

Forbidden patterns in shift systems

Theorem.

- h_{N} has no forbidden patterns of length k for any $k \leq N+1$.
- h_{N} has forbidden patterns of length k for any $k \geq N+2$.

Forbidden patterns in shift systems

Theorem.

- h_{N} has no forbidden patterns of length k for any $k \leq N+1$.
- h_{N} has root forbidden patterns of length k for any $k \geq N+2$.

Forbidden patterns in shift systems

Theorem.

- h_{N} has no forbidden patterns of length k for any $k \leq N+1$.
- h_{N} has root forbidden patterns of length k for any $k \geq N+2$.

Example. The smallest forbidden patterns of h_{4} are

$$
\begin{array}{r}
\{615243,324156,342516 \\
162534,453621,435261\}
\end{array}
$$

Forbidden patterns in shift systems

Theorem.

- h_{N} has no forbidden patterns of length k for any $k \leq N+1$.
- h_{N} has root forbidden patterns of length k for any $k \geq N+2$.

Example. The smallest forbidden patterns of h_{4} are

$$
\begin{array}{r}
\{615243,324156,342516 \\
162534,453621,435261\}
\end{array}
$$

Conjecture. For all $N \geq 2, h_{N}$ has exactly 6 forbidden patterns of length $N+2$.

Maps without forbidden patterns

The condition of piecewise monotonicity is essential:
Proposition. There are maps $f:[0,1] \rightarrow[0,1]$ with no forbidden patterns.

Maps without forbidden patterns

Proposition. There are maps $f:[0,1] \rightarrow[0,1]$ with no forbidden patterns.
Proof:

- Decompose $[0,1]$ into infinitely many intervals, e.g.,

$$
[0,1]=\bigcup_{N \geq 2} I_{N}, \quad \text { where } \quad I_{N}=\left[\frac{1}{2^{N-1}}, \frac{1}{2^{N-2}}\right)
$$

Maps without forbidden patterns

Proposition. There are maps $f:[0,1] \rightarrow[0,1]$ with no forbidden patterns.

Proof:

- Decompose $[0,1]$ into infinitely many intervals, e.g.,

$$
[0,1]=\bigcup_{N \geq 2} I_{N}, \quad \text { where } \quad I_{N}=\left[\frac{1}{2^{N-1}}, \frac{1}{2^{N-2}}\right)
$$

- Define on each I_{N} a properly scaled version of h_{N} from I_{N} to I_{N}.

Open questions

- What are the root forbidden patterns of h_{N} ?

How many are there of each length $k \geq N+2$?

Open questions

- What are the root forbidden patterns of h_{N} ?

How many are there of each length $k \geq N+2$?

- What are the root forbidden patterns of $f: x \mapsto 4 x(1-x)$?

How many are there of each length?
$\operatorname{Root}(f)=\{321, \quad 1423,2134,2143,3142,4231$, $14523,23415,23514,31245,31254,41253,41352,45132,52341, \ldots\}$

Open questions

- What are the root forbidden patterns of h_{N} ?

How many are there of each length $k \geq N+2$?

- What are the root forbidden patterns of $f: x \mapsto 4 x(1-x)$? How many are there of each length?

$$
\begin{aligned}
& \operatorname{Root}(f)=\{321, \quad 1423,2134,2143,3142,4231, \\
& \quad 14523,23415,23514,31245,31254,41253,41352,45132,52341, \ldots\}
\end{aligned}
$$

- For what maps f can we describe $\operatorname{Root}(f)$ (or $\operatorname{Forb}(f)$, or Allow (f))?

Open questions

- What are the root forbidden patterns of h_{N} ?

How many are there of each length $k \geq N+2$?

- What are the root forbidden patterns of $f: x \mapsto 4 x(1-x)$? How many are there of each length?

$$
\begin{aligned}
& \operatorname{Root}(f)=\{321, \quad 1423,2134,2143,3142,4231 \\
& \quad 14523,23415,23514,31245,31254,41253,41352,45132,52341, \ldots\}
\end{aligned}
$$

- For what maps f can we describe $\operatorname{Root}(f)$ (or $\operatorname{Forb}(f)$, or Allow (f))?
- Characterize the maps f for which $\operatorname{Root}(f)$ is finite.

Open questions

- What are the root forbidden patterns of h_{N} ?

How many are there of each length $k \geq N+2$?

- What are the root forbidden patterns of $f: x \mapsto 4 x(1-x)$? How many are there of each length?

$$
\begin{aligned}
& \operatorname{Root}(f)=\{321, \quad 1423,2134,2143,3142,4231 \\
& \quad 14523,23415,23514,31245,31254,41253,41352,45132,52341, \ldots\}
\end{aligned}
$$

- For what maps f can we describe $\operatorname{Root}(f)$ (or $\operatorname{Forb}(f)$, or Allow (f))?
- Characterize the maps f for which $\operatorname{Root}(f)$ is finite.
- Is there an efficient algorithm to find $\operatorname{Root}(f)$, given f in some suitable class?
How about to find the length of the smallest forbidden pattern?

Open questions

- For what sets Σ of patterns does there exist a map f such that $\operatorname{Root}(f)=\Sigma$?

Open questions

- For what sets Σ of patterns does there exist a map f such that $\operatorname{Root}(f)=\Sigma$?

Note: Σ must be such that $\operatorname{Av}_{n}(\Sigma)<C^{n}$ for some constant C, since $\operatorname{Av}_{n}(\Sigma)=\operatorname{Allow}_{n}(f)$.
For example, if $\Sigma=\{\pi\}$, where π has length at least 3 , then there is no f such that $\operatorname{Allow}(f)=\operatorname{Av}(\pi)$, because $\operatorname{Av}_{n}(\pi)>\lambda^{n} n$! for some $0<\lambda<1$.

On the other hand, we know that $\left|\operatorname{Av}_{n}(132,231)\right|=2^{n-1}$. Is there an f such that $\operatorname{Root}(f)=\{132,231\}$?

Open questions

- For what sets Σ of patterns does there exist a map f such that $\operatorname{Root}(f)=\Sigma$?

Note: Σ must be such that $\operatorname{Av}_{n}(\Sigma)<C^{n}$ for some constant C, since $\operatorname{Av}_{n}(\Sigma)=\operatorname{Allow}_{n}(f)$.
For example, if $\Sigma=\{\pi\}$, where π has length at least 3 , then there is no f such that $\operatorname{Allow}(f)=\operatorname{Av}(\pi)$, because $\operatorname{Av}_{n}(\pi)>\lambda^{n} n$! for some $0<\lambda<1$.
On the other hand, we know that $\left|\operatorname{Av}_{n}(132,231)\right|=2^{n-1}$. Is there an f such that $\operatorname{Root}(f)=\{132,231\}$?

- What else can we say about the structure or the asymptotic growth of Allow (f) or $\operatorname{Forb}(f)$?

Announcement

Discrete Mathematics Day

Saturday, October 27, 2007
Dartmouth College
Hanover, NH
http://math.dartmouth.edu/~dmd
Speakers:

- Jim Propp, University of Massachusetts at Lowell
- Vera Sos, Mathematical Institute of the Hungarian Academy of Sciences, Budapest
- Mikkel Thorup, AT\&T Labs Research
- Lauren Williams, Harvard University
- Josephine Yu, MIT

