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Deterministic or random?

Two sequences of numbers in [0, 1]:

.6416, .9198, .2951, .8320, .5590, .9861, .0550, .2078, .6584, .8996,
.3612, .9230, .2844, .8141, .6054, . . .

.9129, .5257, .4475, .9815, .4134, .9930, .1576, .8825, .3391, .0659,
.1195, .5742, .1507, .5534, .0828, . . .

Are they random? Are they deterministic?
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Deterministic or random?

Two sequences of numbers in [0, 1]:

.6416, .9198, .2951, .8320, .5590, .9861, .0550, .2078, .6584, .8996,
.3612, .9230, .2844, .8141, .6054, . . .

.9129, .5257, .4475, .9815, .4134, .9930, .1576, .8825, .3391, .0659,
.1195, .5742, .1507, .5534, .0828, . . .

Are they random? Are they deterministic?

Let f(x) = 4x(1 − x). Then

f(.6146) = .9198,

f(.9198) = .2951,

f(.2951) = .8320,

. . .
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Order patterns of a map

f : [0, 1] → [0, 1], f(x) = 4x(1 − x)
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Order patterns of a map

f : [0, 1] → [0, 1], f(x) = 4x(1 − x)
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Given x ∈ [0, 1], consider the sequence

[x, f(x), f(f(x)), . . . , f (k−1)(x)].

For x = 0.8 and k = 4, we get [0.8,
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Order patterns of a map

f : [0, 1] → [0, 1], f(x) = 4x(1 − x)
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Given x ∈ [0, 1], consider the sequence

[x, f(x), f(f(x)), . . . , f (k−1)(x)].

For x = 0.8 and k = 4, we get [0.8, 0.64,
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Order patterns of a map

f : [0, 1] → [0, 1], f(x) = 4x(1 − x)
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Given x ∈ [0, 1], consider the sequence

[x, f(x), f(f(x)), . . . , f (k−1)(x)].

For x = 0.8 and k = 4, we get [0.8, 0.64, 0.9216,
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Order patterns of a map

f : [0, 1] → [0, 1], f(x) = 4x(1 − x)
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Given x ∈ [0, 1], consider the sequence

[x, f(x), f(f(x)), . . . , f (k−1)(x)].

For x = 0.8 and k = 4, we get [0.8, 0.64, 0.9216, 0.2890]
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Order patterns of a map

f : [0, 1] → [0, 1], f(x) = 4x(1 − x)
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Given x ∈ [0, 1], consider the sequence

[x, f(x), f(f(x)), . . . , f (k−1)(x)].

For x = 0.8 and k = 4, we get [0.8, 0.64, 0.9216, 0.2890]
We say that x defines the order pattern [3, 2, 4, 1].
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Order patterns of a map

f : [0, 1] → [0, 1], f(x) = 4x(1 − x)
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Given x ∈ [0, 1], consider the sequence

[x, f(x), f(f(x)), . . . , f (k−1)(x)].

For x = 0.8 and k = 4, we get [0.8, 0.64, 0.9216, 0.2890]
We say that x defines the order pattern 3241.
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What patterns can appear?

Let k = 3.
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x = 0.1 defines the order pattern 123
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What patterns can appear?

Let k = 3.
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x = 0.1 defines the order pattern 123
x = 0.3 defines the order pattern 132
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What patterns can appear?

Let k = 3.
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x = 0.1 defines the order pattern 123
x = 0.3 defines the order pattern 132
x = 0.6 defines the order pattern 231
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What patterns can appear?

Let k = 3.
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x = 0.1 defines the order pattern 123
x = 0.3 defines the order pattern 132
x = 0.6 defines the order pattern 231
x = 0.8 defines the order pattern 213
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What patterns can appear?

Let k = 3.
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x = 0.1 defines the order pattern 123
x = 0.3 defines the order pattern 132
x = 0.6 defines the order pattern 231
x = 0.8 defines the order pattern 213
x = 0.95 defines the order pattern 312
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What patterns can appear?

Let k = 3.
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x = 0.1 defines the order pattern 123
x = 0.3 defines the order pattern 132
x = 0.6 defines the order pattern 231
x = 0.8 defines the order pattern 213
x = 0.95 defines the order pattern 312

How about the pattern 321?
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Forbidden patterns

The pattern 321 does not appear for any x.
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f(x) f(f(x))

123 132 231 213 312

We say that 321 is a forbidden pattern of f .
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Notation

I ⊂ R closed interval, f : I → I, x ∈ I.

We say that x defines the order pattern π ∈ Sk if

(x, f(x), f(f(x)), . . . , f (k−1)(x)) ∼ (π1, π2, . . . , πk),

where (a1, . . . , ak) ∼ (b1, . . . , bj) means that ai < aj iff bi < bj .
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Notation

I ⊂ R closed interval, f : I → I, x ∈ I.

We say that x defines the order pattern π ∈ Sk if

(x, f(x), f(f(x)), . . . , f (k−1)(x)) ∼ (π1, π2, . . . , πk),

where (a1, . . . , ak) ∼ (b1, . . . , bj) means that ai < aj iff bi < bj .

Given π ∈ Sk, let
Iπ = {x ∈ I : x defines π}.

Let

Allowk(f) = {π ∈ Sk : Iπ 6= ∅}, Forbk(f) = Sk \ Allowk(f).

Allow(f) =
⋃

k≥1

Allowk(f), Forb(f) =
⋃

k≥1

Forbk(f).

Forb(f) is the set of forbidden patterns of f .
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Maps have forbidden patterns

Theorem. If f : I → I is a piecewise monotone map, then

Forb(f) 6= ∅.
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Maps have forbidden patterns

Theorem. If f : I → I is a piecewise monotone map, then

Forb(f) 6= ∅.

Piecewise monotone: there is a finite partition of I into intervals such
that f is continuous and strictly monotone on each interval.
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Maps have forbidden patterns

Theorem. If f : I → I is a piecewise monotone map, then

Forb(f) 6= ∅.

Piecewise monotone: there is a finite partition of I into intervals such
that f is continuous and strictly monotone on each interval.

This follows from a result of [Bandt, Keller, Pompe]:

|Allowk(f)| ∝ ek htop(f),

where htop(f) is the topological entropy of f .
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Topological entropy

P partition of I into intervals on which f is strictly monotone.

P(n) partition of I into all sets of the form
P1 ∩ f−1(P2) ∩ · · · ∩ f−(n−1)(Pn) with P1, . . . , Pn ∈ P.

Then the topological entropy of f is

htop(f) = lim
n→∞

1

n
log |P(n)|.

This limit exists when f is piecewise monotone.
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Topological entropy

P partition of I into intervals on which f is strictly monotone.

P(n) partition of I into all sets of the form
P1 ∩ f−1(P2) ∩ · · · ∩ f−(n−1)(Pn) with P1, . . . , Pn ∈ P.

Then the topological entropy of f is

htop(f) = lim
n→∞

1

n
log |P(n)|.

This limit exists when f is piecewise monotone.

It follows that

|Allowk(f)| ∝ ek htop(f) << k! = |Sk|,

so f has forbidden patterns.
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Comparison with random sequences

Consider a sequence x1, x2, . . . , xN produced by a black box, with
0 ≤ xi ≤ 1.

If the sequence is of the form xi+1 = f(xi), for some piecewise
monotone map f , then it must have missing patterns (if N large
enough).

For example, the pattern 321 is missing from
.6416, .9198, .2951, .8320, .5590, .9861, .0550, .2078, .6584, .8996, .3612,

.9230, .2844, .8141, .6054, . . . .
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Comparison with random sequences

Consider a sequence x1, x2, . . . , xN produced by a black box, with
0 ≤ xi ≤ 1.

If the sequence is of the form xi+1 = f(xi), for some piecewise
monotone map f , then it must have missing patterns (if N large
enough).

For example, the pattern 321 is missing from
.6416, .9198, .2951, .8320, .5590, .9861, .0550, .2078, .6584, .8996, .3612,

.9230, .2844, .8141, .6054, . . . .

Besides, the number of missing patterns of length k is at least
k! − Ck, for some constant C.
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Comparison with random sequences

Consider a sequence x1, x2, . . . , xN produced by a black box, with
0 ≤ xi ≤ 1.

If the sequence is of the form xi+1 = f(xi), for some piecewise
monotone map f , then it must have missing patterns (if N large
enough).

For example, the pattern 321 is missing from
.6416, .9198, .2951, .8320, .5590, .9861, .0550, .2078, .6584, .8996, .3612,

.9230, .2844, .8141, .6054, . . . .

Besides, the number of missing patterns of length k is at least
k! − Ck, for some constant C.

On the other hand, if the sequence was generated by N i.i.d.
random variables, then the probability that any fixed pattern π is
missing goes to 0 exponentially as N grows.
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Consecutive patterns in permutations

σ = σ1σ2 · · ·σn ∈ Sn, π1π2 · · ·πk ∈ Sk

Definition. σ contains π as a consecutive pattern if there exists i such

that

σiσi+1 . . . σi+k−1 ∼ π1π2 . . . πk
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Consecutive patterns in permutations

σ = σ1σ2 · · ·σn ∈ Sn, π1π2 · · ·πk ∈ Sk

Definition. σ contains π as a consecutive pattern if there exists i such

that

σiσi+1 . . . σi+k−1 ∼ π1π2 . . . πk

Example. 4153726 contains 3241, but it avoids 123.
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Consecutive patterns in permutations

σ = σ1σ2 · · ·σn ∈ Sn, π1π2 · · ·πk ∈ Sk

Definition. σ contains π as a consecutive pattern if there exists i such

that

σiσi+1 . . . σi+k−1 ∼ π1π2 . . . πk

Example. 4153726 contains 3241, but it avoids 123.

Contn(π) = {σ ∈ Sn : σ contains π as a consecutive pattern}

Avn(π) = {σ ∈ Sn : σ avoids π as a consecutive pattern}

Av(π) =
⋃

n≥1

Avn(π)
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Enumeration of permutations avoiding consecutive patterns

E., Noy:

Formulas for the generating functions for the number of
permutations avoiding a pattern of the form

π = 12 · · · k or

π = 12 · · · (a − 1)a · · · · · · · · · · · · · · · · · · · · ·
︸ ︷︷ ︸

perm. of {a+2,a+3,...,k}

(a + 1).
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Enumeration of permutations avoiding consecutive patterns

E., Noy:

Formulas for the generating functions for the number of
permutations avoiding a pattern of the form

π = 12 · · · k or

π = 12 · · · (a − 1)a · · · · · · · · · · · · · · · · · · · · ·
︸ ︷︷ ︸

perm. of {a+2,a+3,...,k}

(a + 1).

For any π ∈ Sk with k ≥ 3 , there exist constants 0 < c, d < 1
such that

cnn! ≤ |Avn(π)| ≤ dnn!

for all n ≥ k.
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Enumeration of permutations avoiding consecutive patterns

E., Noy:

Formulas for the generating functions for the number of
permutations avoiding a pattern of the form

π = 12 · · · k or

π = 12 · · · (a − 1)a · · · · · · · · · · · · · · · · · · · · ·
︸ ︷︷ ︸

perm. of {a+2,a+3,...,k}

(a + 1).

For any π ∈ Sk with k ≥ 3 , there exist constants 0 < c, d < 1
such that

cnn! ≤ |Avn(π)| ≤ dnn!

for all n ≥ k.

Kitaev:

Formulas for the number of permutations avoiding multiple
consecutive patterns of length 3.

Discrete Math Day, Middlebury College, 9/15/07 – p.11



Allow(f) is closed under consecutive pattern containment

σ ∈ Allow(f)

σ contains τ as a consecutive pattern

}

⇒ τ ∈ Allow(f).
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Allow(f) is closed under consecutive pattern containment

σ ∈ Allow(f)

σ contains τ as a consecutive pattern

}

⇒ τ ∈ Allow(f).

π ∈ Forbk(f)

n ≥ k

}

⇒ Contn(π) ⊆ Forbn(f).

Equivalently,

Allown(f) ⊆ Avn(π).
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Allow(f) is closed under consecutive pattern containment

σ ∈ Allow(f)

σ contains τ as a consecutive pattern

}

⇒ τ ∈ Allow(f).

π ∈ Forbk(f)

n ≥ k

}

⇒ Contn(π) ⊆ Forbn(f).

Equivalently,

Allown(f) ⊆ Avn(π).

We are interested in the minimal elements of Forb(f), i.e., those not
containing any smaller pattern in Forb(f).
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Root forbidden patterns

The minimal patterns in Forb(f) are called root (forbidden) patterns.

Root(f) = all root patterns, Rootk(f) = root patterns of length k.
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Root forbidden patterns

The minimal patterns in Forb(f) are called root (forbidden) patterns.

Root(f) = all root patterns, Rootk(f) = root patterns of length k.

Note that
Allow(f) = Av(Root(f)).
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Root forbidden patterns

The minimal patterns in Forb(f) are called root (forbidden) patterns.

Root(f) = all root patterns, Rootk(f) = root patterns of length k.

Note that
Allow(f) = Av(Root(f)).

Example: For f(x) = 4x(1 − x),

Root2(f) = ∅

Root3(f) = {321}

Root4(f) = {1423,2134,2143,3142,4231}
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Root forbidden patterns

The minimal patterns in Forb(f) are called root (forbidden) patterns.

Root(f) = all root patterns, Rootk(f) = root patterns of length k.

Note that
Allow(f) = Av(Root(f)).

Example: For f(x) = 4x(1 − x),

Root2(f) = ∅

Root3(f) = {321}

Root4(f) = {1423,2134,2143,3142,4231}

Forb4(f) =
{1423, 1432,2134,2143, 2431,3142, 3214, 3421, 4213,4231, 4312, 4321}
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Poset of permutations under consec. pattern containment

We can consider the infinite poset of all permutations where
π ≤ σ ⇔ σ contains π as a consecutive pattern.

4231

1

12 21

123 132 213 231 312 321

1234 1243 1324 1342 1423 1432 2134 2143 2314 243124132341 3124 3214 3412 4123 4213 4312 43213142 3241 3421 4132
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Poset of permutations under consec. pattern containment

We can consider the infinite poset of all permutations where
π ≤ σ ⇔ σ contains π as a consecutive pattern.
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More examples

g1(x) = x2
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More examples

g1(x) = x2
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Root(g1) = {12}

Allown(g1) = Avn(12) = {n . . . 21}
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More examples

g2(x) = 1 − x2
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More examples

g2(x) = 1 − x2
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Root(g2) = {123,132,312,321}

Allow3(g2) = {213, 231}

Allow4(g2) = {3241, 2314}

Allow5(g2) = {32415, 34251}
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More examples

g2(x) = 1 − x2
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Root(g2) = {123,132,312,321}

Allow3(g2) = {213, 231}

Allow4(g2) = {3241, 2314}

Allow5(g2) = {32415, 34251}
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More examples

g3(x) = 4x3 − 6x2 + 3x
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More examples

g3(x) = 4x3 − 6x2 + 3x

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

x

Root(g3) = {132,213,231,321}

Allown(g3) = {12 . . . n, n . . . 21}
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More examples

g3(x) = 4x3 − 6x2 + 3x
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Root(g3) = {132,213,231,321}

Allown(g3) = {12 . . . n, n . . . 21}
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One-sided shifts

Let
h10 : [0, 1] −→ [0, 1]

x 7→ 10x mod 1

0.a1a2a3 . . . 7→ 0.a2a3a4 . . .

For example, h10(0.837435 . . . ) = 0.37435 . . .
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One-sided shifts

Let
h10 : [0, 1] −→ [0, 1]

x 7→ 10x mod 1

0.a1a2a3 . . . 7→ 0.a2a3a4 . . .

For example, h10(0.837435 . . . ) = 0.37435 . . .

This is a piecewise linear map, so it has forbidden order patterns.
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One-sided shifts

Let
h10 : [0, 1] −→ [0, 1]

x 7→ 10x mod 1

0.a1a2a3 . . . 7→ 0.a2a3a4 . . .

For example, h10(0.837435 . . . ) = 0.37435 . . .

This is a piecewise linear map, so it has forbidden order patterns.

We can think of it as a map

h̃10 : {0, 1, . . . , 9}∗ −→ {0, 1, . . . , 9}∗

(a1, a2, a3, . . . ) 7→ (a2, a3, a4, . . . )
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One-sided shifts

Let
h10 : [0, 1] −→ [0, 1]

x 7→ 10x mod 1

0.a1a2a3 . . . 7→ 0.a2a3a4 . . .

For example, h10(0.837435 . . . ) = 0.37435 . . .

This is a piecewise linear map, so it has forbidden order patterns.

We can think of it as a map

h̃N : {0, 1, . . . , N − 1}∗ −→ {0, 1, . . . , N − 1}∗

(a1, a2, a3, . . . ) 7→ (a2, a3, a4, . . . )

For N ≥ 2, h̃N is called the (one-sided) shift on N symbols, and

hN : x 7→ Nx mod 1

is called the sawtooth map.
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Sawtooth map

h2 : [0, 1] → [0, 1]
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Sawtooth map

h5 : [0, 1] → [0, 1]
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Forbidden patterns in shift systems

Order patterns in
Order patterns in ! h̃N : {0, 1, . . . , N − 1}∗ → {0, 1, . . . , N − 1}∗

hN : [0, 1] → [0, 1] using the lexicographic order
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Forbidden patterns in shift systems

Order patterns in
Order patterns in ! h̃N : {0, 1, . . . , N − 1}∗ → {0, 1, . . . , N − 1}∗

hN : [0, 1] → [0, 1] using the lexicographic order

Example. For h̃3 and k = 7, the point x = (2, 1, 0, 2, 2, 1, 2, 2, 1, 0, . . . ) defines
the pattern 4217536.

(2, 1, 0, 2, 2, 1, 2, 2, 1, 0, . . . )
h̃3
7→ (1, 0, 2, 2, 1, 2, 2, 1, 0, . . . )

h̃3
7→ (0, 2, 2, 1, 2, 2, 1, 0, . . . )

h̃3
7→

h̃3
7→ (2, 2, 1, 2, 2, 1, 0, . . . )

h̃3
7→ (2, 1, 2, 2, 1, 0, . . . )

h̃3
7→ (1, 2, 2, 1, 0, . . . )

h̃3
7→ (2, 2, 1, 0, . . . )
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Forbidden patterns in shift systems

Order patterns in
Order patterns in ! h̃N : {0, 1, . . . , N − 1}∗ → {0, 1, . . . , N − 1}∗

hN : [0, 1] → [0, 1] using the lexicographic order

Example. For h̃3 and k = 7, the point x = (2, 1, 0, 2, 2, 1, 2, 2, 1, 0, . . . ) defines
the pattern 4217536.

(2, 1, 0, 2, 2, 1, 2, 2, 1, 0, . . . )
h̃3
7→ (1, 0, 2, 2, 1, 2, 2, 1, 0, . . . )

h̃3
7→ (0, 2, 2, 1, 2, 2, 1, 0, . . . )

h̃3
7→

h̃3
7→ (2, 2, 1, 2, 2, 1, 0, . . . )

h̃3
7→ (2, 1, 2, 2, 1, 0, . . . )

h̃3
7→ (1, 2, 2, 1, 0, . . . )

h̃3
7→ (2, 2, 1, 0, . . . )

Theorem.

hN has no forbidden patterns of length k for any k ≤ N + 1.
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Forbidden patterns in shift systems

Order patterns in
Order patterns in ! h̃N : {0, 1, . . . , N − 1}∗ → {0, 1, . . . , N − 1}∗

hN : [0, 1] → [0, 1] using the lexicographic order

Example. For h̃3 and k = 7, the point x = (2, 1, 0, 2, 2, 1, 2, 2, 1, 0, . . . ) defines
the pattern 4217536.

(2, 1, 0, 2, 2, 1, 2, 2, 1, 0, . . . )
h̃3
7→ (1, 0, 2, 2, 1, 2, 2, 1, 0, . . . )

h̃3
7→ (0, 2, 2, 1, 2, 2, 1, 0, . . . )

h̃3
7→

h̃3
7→ (2, 2, 1, 2, 2, 1, 0, . . . )

h̃3
7→ (2, 1, 2, 2, 1, 0, . . . )

h̃3
7→ (1, 2, 2, 1, 0, . . . )

h̃3
7→ (2, 2, 1, 0, . . . )

Theorem.

hN has no forbidden patterns of length k for any k ≤ N + 1.

hN has forbidden patterns of length k for any k ≥ N + 2.
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Forbidden patterns in shift systems

Theorem.

hN has no forbidden patterns of length k for any k ≤ N + 1.

hN has forbidden patterns of length k for any k ≥ N + 2.
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Forbidden patterns in shift systems

Theorem.

hN has no forbidden patterns of length k for any k ≤ N + 1.

hN has root forbidden patterns of length k for any k ≥ N + 2.
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Forbidden patterns in shift systems

Theorem.

hN has no forbidden patterns of length k for any k ≤ N + 1.

hN has root forbidden patterns of length k for any k ≥ N + 2.

Example. The smallest forbidden patterns of h4 are

{615243, 324156, 342516,

162534, 453621, 435261}.
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Forbidden patterns in shift systems

Theorem.

hN has no forbidden patterns of length k for any k ≤ N + 1.

hN has root forbidden patterns of length k for any k ≥ N + 2.

Example. The smallest forbidden patterns of h4 are

{615243, 324156, 342516,

162534, 453621, 435261}.

Conjecture. For all N ≥ 2, hN has exactly 6 forbidden patterns of length

N + 2.
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Maps without forbidden patterns

The condition of piecewise monotonicity is essential:

Proposition. There are maps f : [0, 1] → [0, 1] with no forbidden patterns.
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Maps without forbidden patterns

Proposition. There are maps f : [0, 1] → [0, 1] with no forbidden patterns.

Proof:

Decompose [0, 1] into infinitely many intervals, e.g.,

[0, 1] =
⋃

N≥2

IN , where IN =

[
1

2N−1
,

1

2N−2

)

.
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Maps without forbidden patterns

Proposition. There are maps f : [0, 1] → [0, 1] with no forbidden patterns.

Proof:

Decompose [0, 1] into infinitely many intervals, e.g.,

[0, 1] =
⋃

N≥2

IN , where IN =

[
1

2N−1
,

1

2N−2

)

.

Define on each IN a properly scaled version of hN from IN to IN .
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Open questions

What are the root forbidden patterns of hN?

How many are there of each length k ≥ N + 2?
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Open questions

What are the root forbidden patterns of hN?

How many are there of each length k ≥ N + 2?

What are the root forbidden patterns of f : x 7→ 4x(1 − x)?

How many are there of each length?

Root(f) = {321, 1423, 2134, 2143, 3142, 4231,

14523, 23415, 23514, 31245, 31254, 41253, 41352, 45132, 52341, . . . }
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Open questions

What are the root forbidden patterns of hN?

How many are there of each length k ≥ N + 2?

What are the root forbidden patterns of f : x 7→ 4x(1 − x)?

How many are there of each length?

Root(f) = {321, 1423, 2134, 2143, 3142, 4231,

14523, 23415, 23514, 31245, 31254, 41253, 41352, 45132, 52341, . . . }

For what maps f can we describe Root(f) (or Forb(f), or
Allow(f))?
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Open questions

What are the root forbidden patterns of hN?

How many are there of each length k ≥ N + 2?

What are the root forbidden patterns of f : x 7→ 4x(1 − x)?

How many are there of each length?

Root(f) = {321, 1423, 2134, 2143, 3142, 4231,

14523, 23415, 23514, 31245, 31254, 41253, 41352, 45132, 52341, . . . }

For what maps f can we describe Root(f) (or Forb(f), or
Allow(f))?

Characterize the maps f for which Root(f) is finite.
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Open questions

What are the root forbidden patterns of hN?

How many are there of each length k ≥ N + 2?

What are the root forbidden patterns of f : x 7→ 4x(1 − x)?

How many are there of each length?

Root(f) = {321, 1423, 2134, 2143, 3142, 4231,

14523, 23415, 23514, 31245, 31254, 41253, 41352, 45132, 52341, . . . }

For what maps f can we describe Root(f) (or Forb(f), or
Allow(f))?

Characterize the maps f for which Root(f) is finite.

Is there an efficient algorithm to find Root(f), given f in some
suitable class?

How about to find the length of the smallest forbidden pattern?
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Open questions

For what sets Σ of patterns does there exist a map f such that
Root(f) = Σ?
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Open questions

For what sets Σ of patterns does there exist a map f such that
Root(f) = Σ?

Note: Σ must be such that Avn(Σ) < Cn for some constant C,
since Avn(Σ) = Allown(f).

For example, if Σ = {π}, where π has length at least 3, then
there is no f such that Allow(f) = Av(π), because
Avn(π) > λnn! for some 0 < λ < 1.

On the other hand, we know that |Avn(132, 231)| = 2n−1.
Is there an f such that Root(f) = {132, 231}?
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Open questions

For what sets Σ of patterns does there exist a map f such that
Root(f) = Σ?

Note: Σ must be such that Avn(Σ) < Cn for some constant C,
since Avn(Σ) = Allown(f).

For example, if Σ = {π}, where π has length at least 3, then
there is no f such that Allow(f) = Av(π), because
Avn(π) > λnn! for some 0 < λ < 1.

On the other hand, we know that |Avn(132, 231)| = 2n−1.
Is there an f such that Root(f) = {132, 231}?

What else can we say about the structure or the asymptotic
growth of Allow(f) or Forb(f)?
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Announcement

Discrete Mathematics Day

Saturday, October 27, 2007

Dartmouth College

Hanover, NH

http://math.dartmouth.edu/∼dmd

Speakers:

Jim Propp , University of Massachusetts at Lowell

Vera Sos , Mathematical Institute of the Hungarian Academy of
Sciences, Budapest

Mikkel Thorup , AT&T Labs Research

Lauren Williams , Harvard University

Josephine Yu , MIT
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