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Deterministic or random?

Two sequences of numbers in [0, 1]:

6416, .9198, .2951, .8320, .5590, .9861, .0550, .2078, .6584, .8996,
3612, .9230, .2844, 8141, .6054, . ..

9129, 5257, 4475, 9815, .4134, .9930, .1576, .8825, .3391, .0659,
1195, 5742, .1507, .5534, .0828, ...

Are they random? Are they deterministic?
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Deterministic or random?

Two sequences of numbers in [0, 1]:

6416, .9198, .2951, .8320, .5590, .9861, .0550, .2078, .6584, .8996,
3612, .9230, .2844, 8141, .6054, . ..

9129, 5257, 4475, 9815, .4134, .9930, .1576, .8825, .3391, .0659,
1195, 5742, .1507, .5534, .0828, ...

Are they random? Are they deterministic?

Let f(x) =4z(1 — z). Then

F(.6146) = .9198,
F(.9198) = .2951,
£(.2951) = .8320,
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Order patterns of a map

f:10,1] — [0,1], f(x)=4z(1 —x)
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Order patterns of a map

f:10,1] —[0,1], f(x)=4z(1—x)

0.8

0.6

0.4+

0.2

Given x € [0, 1], consider the sequence
[, f(2), f(f(@)), ..., fED ()],
For z = 0.8 and k = 4, we get [0.8,
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Order patterns of a map

f:10,1] —[0,1], f(x)=4z(1—x)

0.8

0.6

0.4+

0.2

Given x € [0, 1], consider the sequence
[, f(2), f(f(@)), ..., fED ()],
For z = 0.8 and k = 4, we get (0.8, 0.64,
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Order patterns of a map

f:10,1] —[0,1], f(x)=4z(1—x)

.
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Given x € [0, 1], consider the sequence
[, f(2), f(f(@)), ..., fED ()],
For z = 0.8 and k = 4, we get (0.8, 0.64, 0.9216,
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Order patterns of a map

f:10,1] —[0,1], f(x)=4z(1—x)
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Given x € [0, 1], consider the sequence
[, f(2), f(f(@)), ..., fED ()],
For x = 0.8 and k = 4, we get [0.8, 0.64, 0.9216, 0.2890]
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Order patterns of a map

f:10,1] —[0,1], f(x)=4z(1—x)

e

0.6

0.4+

0.2

Given x € [0, 1], consider the sequence
[, f(2), f(f(@)), ..., fED ()],

For x = 0.8 and k = 4, we get [0.8, 0.64, 0.9216, 0.2890]
We say that = defines the order pattern [3,2,4,1].

Discrete Math Day, Middlebury College, 9/15/07 — p.3



Order patterns of a map

f:10,1] —[0,1], f(x)=4z(1—x)

e

0.6

0.4+

0.2

Given x € [0, 1], consider the sequence
[, f(2), f(f(@)), ..., fED ()],

For x = 0.8 and k = 4, we get [0.8, 0.64, 0.9216, 0.2890]
We say that x defines the order pattern 3241.
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What patterns can appear?

Let &£ = 3.

0.81

0.6

0.4+

0.24

0 - 0.2 T 04 0.6 0.8 - 1

x = 0.1 defines the order pattern 123
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What patterns can appear?

Let &£ = 3.

0.81

[pZax

0.6

0.4+

0.24

0 0.2 - 0.4 " 06 08 1

x = 0.1 defines the order pattern 123
x = 0.3 defines the order pattern 132
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What patterns can appear?

Let &£ = 3.

0.81

0.6

0.4+

0.24

0 T 02 0.4 0.6 0.8 R

x = 0.1 defines the order pattern 123
x = 0.3 defines the order pattern 132
x = 0.6 defines the order pattern 231
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Let &£ = 3.

What patterns can appear?

0.81

0.6

0.4+

0.24

0.2 0.4 06 0.8

r=0.1
x =0.3
x = 0.0
r =0.8

defines the order pattern
defines the order pattern
defines the order pattern
defines the order pattern

123
132
231
213
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What patterns can appear?

Let &£ = 3.

0.81

0.6

0.4+

0.24

0 0.2 0.4 0.6 0.8

x = 0.1 defines the order pattern 123
x = 0.3 defines the order pattern 132
x = 0.6 defines the order pattern 231
x = 0.8 defines the order pattern 213
x = 0.95 defines the order pattern 312
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What patterns can appear?

Let &£ = 3.

0.81
0.6
0.4+

0.24

0

0.2 0.4 0.6 0.8

r=0.1
x =0.3
x = 0.0
r =0.8
r = 0.95

defines the order pattern
defines the order pattern
defines the order pattern
defines the order pattern
defines the order pattern

How about the pattern 3217

123
132
231
213
312
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Forbidden patterns

The pattern 321 does not appear for any z.

We say that 321 is a forbidden pattern of f.
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Notation

I C R closed interval, f:I—1, x e l.

We say that x defines the order pattern = € S, if

(:B,f(:lj)7f(f(aj)),...,f(k_l)(x)) ~ (7T177T27'°'77Tk)7

where (a1, ...,ax) ~ (b1,...,b;) means that a; < a; iff b; < b;.
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Notation

I C R closed interval, f:I—1, x e l.

We say that x defines the order pattern = € S, if

(, (), F(f(2)s-- o fED (@)~ (mma,em),
where (a1, ...,ax) ~ (b1,...,b;) means that a; < a; iff b; < b;.
Given 7 € S;, let

I. ={x € I: x defines r}.
Let

Allowy (f) ={m € S : I, # 0}, Forby(f) = Sk \ Allowg(f).

Allow(f) = | J Allowy(f),  Forb(f) = |_J Forbk(f).

E>1 k>1

Forb(f) is the set of forbidden patterns of f.
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Maps have forbidden patterns

Theorem. If f : I — I is a piecewise monotone map, then

Forb(f) # 0.
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Maps have forbidden patterns

Theorem. If f : I — I is a piecewise monotone map, then

Forb(f) # 0.

Piecewise monotone: there is a finite partition of I into intervals such
that f is continuous and strictly monotone on each interval.
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Maps have forbidden patterns

Theorem. If f : I — I is a piecewise monotone map, then

Forb(f) # 0.

Piecewise monotone: there is a finite partition of I into intervals such
that f is continuous and strictly monotone on each interval.

This follows from a result of [Bandt, Keller, Pompe]:

[Allowy, (f)] o e¥for(F)
where hiop(f) is the of f.
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Topological entropy

P partition of I into intervals on which f is strictly monotone.

P partition of I into all sets of the form

PN f_l(PQ) AREERE f_(n_l)(Pn) with P, ...

Then the of fis

1

htop(f) = lim —log ’P(n)|-

n—oo M

This limit exists when f is piecewise monotone.

, P €P.
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Topological entropy

P partition of I into intervals on which f is strictly monotone.

P™)  partition of I into all sets of the form
PN f~YP)N---Nnf~=1(P,) with P,,..., P, € P.

Then the of fis

.1 n
hiop(f) = Tim = log [P™)].

n—oo M

This limit exists when f is piecewise monotone.
It follows that

|Allowy, (f)] o e Mor(f) << kI = |Sy],

so f has forbidden patterns.
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Comparison with random sequences

Consider a sequence z1, zo, ..., x N produced by a black box, with

® |[f the sequence is of the form x; 1 = f(x;), for some piecewise
monotone map f, then it must have missing patterns (if V large

enough).

For example, the pattern 321 is missing from
6416, .9198, .2951, .8320, .5590, .9861, .0550, .2078, .6584, .8996, .3612,
19230, .2844, .8141, .6054, .. ..
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Comparison with random sequences

Consider a sequence z1, zo, ..., x N produced by a black box, with

® |[f the sequence is of the form x; 1 = f(x;), for some piecewise
monotone map f, then it must have missing patterns (if V large
enough).

For example, the pattern 321 is missing from
6416, .9198, .2951, .8320, .5590, .9861, .0550, .2078, .6584, .8996, .3612,
19230, .2844, .8141, .6054, .. ..

Besides, the number of missing patterns of length £ is at least
k! — C*, for some constant C.
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Comparison with random sequences

Consider a sequence z1, zo, ..., x N produced by a black box, with

® |[f the sequence is of the form x; 1 = f(x;), for some piecewise
monotone map f, then it must have missing patterns (if V large
enough).

For example, the pattern 321 is missing from
6416, .9198, .2951, .8320, .5590, .9861, .0550, .2078, .6584, .8996, .3612,
19230, .2844, .8141, .6054, .. ..

Besides, the number of missing patterns of length £ is at least
k! — C*, for some constant C.

® On the other hand, if the sequence was generated by N i.i.d.
random variables, then the probability that any fixed pattern = is
missing goes to 0 exponentially as NV grows.
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Consecutive patterns in permutations

o=0109 0, €S8, MW Ty T € Sk

Definition. ¢ contains 7 as a consecutive pattern if there exists ¢ such
that

0;0441--.-034k—-1 ~  TT9...Tk
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Consecutive patterns in permutations

o=0109 0, €S8, MW Ty T € Sk

Definition. ¢ contains 7 as a consecutive pattern if there exists ¢ such
that

0;0441--.-034k—-1 ~  TT9...Tk

Example. 4153726 contains 3241, but it avoids 123.
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Consecutive patterns in permutations

o=0109 0, €S8, MW Ty T € Sk

Definition. ¢ contains 7 as a consecutive pattern if there exists ¢ such
that

0;0441--.-034k—-1 ~  TT9...Tk

Example. 4153726 contains 3241, but it avoids 123.

Cont,(w) = {0 €S, : o contains 7 as a consecutive pattern}

Av,(w) = {0 €S8, : o avoids 7 as a consecutive pattern}

Av(m) = U Av,, ()

n>1
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Enumeration of permutations avoiding consecutive patterns

E., Noy:

® Formulas for the generating functions for the number of
permutations avoiding a pattern of the form

perm. of {a+2,a+3,....k}
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Enumeration of permutations avoiding consecutive patterns

E., Noy:

9

Formulas for the generating functions for the number of
permutations avoiding a pattern of the form

perm. of {a+2,a+3,....k}

For any = € S, with £ > 3, there exist constants 0 < ¢,d < 1
such that
c"n! < [Av,(m)| < d"n!

for all n > k.
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Enumeration of permutations avoiding consecutive patterns

E., Noy:

® Formulas for the generating functions for the number of
permutations avoiding a pattern of the form

perm. of {a+2,a+3,....k}

® Forany e S, with k£ > 3, there exist constants 0 < ¢,d < 1
such that
c"n! < [Av,(m)| < d"n!

for all n > k.

Kitaev:

® Formulas for the number of permutations avoiding multiple
consecutive patterns of length 3.
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Allow(f) is closed under consecutive pattern containment

o € Allow(f)

: - All .
o contains 7 as a consecutive pattern } = 7 € Allow(f)
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Allow(f) is closed under consecutive pattern containment

o € Allow(f)

: - All .
o contains 7 as a consecutive pattern } = 7 € Allow(f)

7 € Forbg(f)

0>k } =  Cont,(7) C Forb, (f).

Equivalently,

Allow,,(f) C Avy,(m).
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Allow(f) is closed under consecutive pattern containment

o € Allow(f)

: - All .
o contains 7 as a consecutive pattern } = 7 € Allow(f)

7 € Forbg(f)

0>k } =  Cont,(7) C Forb, (f).

Equivalently,

Allow,,(f) C Avy,(m).

We are interested in the minimal elements of Forb(f), i.e., those not
containing any smaller pattern in Forb( f).
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Root forbidden patterns

The minimal patterns in Forb(f) are called

Root(f) = all root patterns, Rooty (f) = root patterns of length k.
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Root forbidden patterns

The minimal patterns in Forb(f) are called

Root(f) = all root patterns, Rooty (f) = root patterns of length k.

Note that
Allow(f) = Av(Root(f)).
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Root forbidden patterns

The minimal patterns in Forb(f) are called

Root(f) = all root patterns, Rooty (f) = root patterns of length k.

Note that
Allow(f) = Av(Root(f)).

Example: For f(x) = 4z(1 — x),

Roots(f) = ()

Roots(f) = {321}

Roots(f) = {1423,2134,2143,3142,4231}
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Root forbidden patterns

The minimal patterns in Forb(f) are called

Root(f) = all root patterns, Rooty (f) = root patterns of length k.

Note that
Allow(f) = Av(Root(f)).

Example: For f(x) = 4z(1 — x),

Roots(f) = ()

Roots(f) = {321}

Rooty(f) = {1423,2134, 2143,3142, 4231}

FOI'b4(f) =
{1423,1432,2134,2143,2431, 3142, 3214, 3421, 4213, 4231,4312, 4321}
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Poset of permutations under consec. pattern containment

We can consider the infinite poset of all permutations where
T<o & o contains w as a consecutive pattern.

1234 1943 1324 1342 1423 1432 2134 9143 2314 9341 2413 9431 3124 3142 3214 3041 3412 3421 4123 4132 4213 4231 4312 4321
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Poset of permutations under consec. pattern containment

We can consider the infinite poset of all permutations where
T<o & o contains w as a consecutive pattern.

Forb(f)

Cont(m

)i
/ / Root(f)

Allow(f)
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More examples

0.8

0.6

0.4+

0.24
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More examples

0.81

0.6

0.4+

0.24

0.2

0.4

0.6

058

Root(g1) = {12}

Allow,,(g1) = Av,(12) = {n..

.21}
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More examples

0.8

0.6

0.4+

0.24
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g2(x)=1—=x

More examples

0.81

0.6

0.4+

0.24

0.6

058

Root(gz) = {123,132, 312, 321}
Allows(g2) = {213,231}
Allowy(g2) = {3241, 2314}
Allows(go) = {32415, 34251}
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g2(x)=1—=x

More examples

0.81

0.6

0.4+

0.24

0.6

058

Root(gz) = {123,132, 312, 321}
Allows(g2) = {213,231}
Allowy(g2) = {3241, 2314}
Allows(go) = {32415, 34251}
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g3()

413 — 622 + 3z

More examples

0.8

0.6

0.4+

0.24

0.2

0.4

0.6

058
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More examples

g3(x) = 423 — 622 + 3x
0.81
0.6
0.4

Root(g3) = {132, 213,231, 321}

Allow,,(g3) = {12...n,n..

21}
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More examples

g3(x) = 423 — 622 + 3x
0.81
0.6
0.4

Root(g3) = {132, 213,231, 321}

Allow,,(g3) = {12...n,n..

21}
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One-sided shifts

Let
th . [O, 1] — [O, 1]
x b 10x mod 1
O.a1asas . .. —  0.asasaq . ..

For example, 5h10(0.837435...) =0.37435...
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One-sided shifts

Let
hio : 0, 1] — 0, 1]
x b 10x mod 1
O.a1asas . .. —  0.asasaq . ..

For example, 5h10(0.837435...) =0.37435...

This is a piecewise linear map, so it has forbidden order patterns.
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One-sided shifts

Let
hio : 0, 1] — 0, 1]
x b 10x mod 1
O.a1asas . .. —  0.asasaq . ..

For example, 510(0.837435...) =0.37435...
This is a piecewise linear map, so it has forbidden order patterns.

We can think of it as a map
hio: {0,1,...,9%* —  {0,1,...,9}*

(a1,a9,as,...) +—  (ag,as3,a4,...)
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One-sided shifts

Let
hio : 0, 1] — 0, 1]
x b 10x mod 1
O.a1asas . .. —  0.asasaq . ..

For example, 5h10(0.837435...) =0.37435...
This is a piecewise linear map, so it has forbidden order patterns.

We can think of it as a map
hy: {0,1,...,.N—-1} — {0,1,...,N—1}*

(a1,a9,as,...) — (a2, a3, aq,...)

For N > 2, hy is called the (one-sided) shift on N symbols, and

hy :x+— Nx mod 1

Is called the sawtooth map.
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hs :10,1] — [0, 1]

Sawtooth map

0.8

0.6

0.4

0.2

0.2

0.4

0.6

0.8
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h5 . [O, 1] — [O, 1]

Sawtooth map

[

0.8

0.6

0.4

0.2

0.2

0.4

0.6

0.8
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Forbidden patterns in shift systems

Order patterns in
Order patternsin = «» hy :{0,1,..., N —-1}* - {0,1,..., N — 1}*
hy :[0,1] — [0, 1] using the lexicographic order
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Forbidden patterns in shift systems

Order patterns in
Order patternsin = «» hy :{0,1,..., N —-1}* - {0,1,..., N — 1}*
hy :[0,1] — [0, 1] using the lexicographic order

Example. For /3 and k = 7, the point = (2,1,0,2,2,1,2,2,1,0,...) defines
the pattern 4217536.

(2,1,0,2,2,1,2,2,1,0,...) *4 (1,0,2,2,1,2,2,1,0,...) *% (0,2,2,1,2,2,1,0,...) L3

[4.(2,2,1,2,2,1,0,...) 1% (2,1,2,2,1,0,...) &% (1,2,2,1,0,...) 1% (2,2,1,0,...)
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Forbidden patterns in shift systems

Order patterns in
Order patternsin = «» hy :{0,1,..., N —-1}* - {0,1,..., N — 1}*
hy :[0,1] — [0, 1] using the lexicographic order

Example. For /3 and k = 7, the point = (2,1,0,2,2,1,2,2,1,0,...) defines
the pattern 4217536.

(2,1,0,2,2,1,2,2,1,0,...) *4 (1,0,2,2,1,2,2,1,0,...) *% (0,2,2,1,2,2,1,0,...) L3

[4.(2,2,1,2,2,1,0,...) 1% (2,1,2,2,1,0,...) &% (1,2,2,1,0,...) 1% (2,2,1,0,...)
Theorem.

® /iy has no forbidden patterns of length k£ forany £ < N + 1.
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Forbidden patterns in shift systems

Order patterns in
Order patternsin = «» hy :{0,1,..., N —-1}* - {0,1,..., N — 1}*
hy :[0,1] — [0, 1] using the lexicographic order

Example. For /3 and k = 7, the point = (2,1,0,2,2,1,2,2,1,0,...) defines
the pattern 4217536.

(2,1,0,2,2,1,2,2,1,0,...) *4 (1,0,2,2,1,2,2,1,0,...) *% (0,2,2,1,2,2,1,0,...) L3

[4.(2,2,1,2,2,1,0,...) 1% (2,1,2,2,1,0,...) &% (1,2,2,1,0,...) 1% (2,2,1,0,...)
Theorem.

® /iy has no forbidden patterns of length k£ forany £ < N + 1.

® |y has forbidden patterns of length k forany £ > N + 2.
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Forbidden patterns in shift systems

Theorem.

® /i has no forbidden patterns of length k£ forany £ < N + 1.

® /iy has forbidden patterns of length £ forany £ > N + 2.
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Forbidden patterns in shift systems

Theorem.

® /i has no forbidden patterns of length k£ forany £ < N + 1.

® /i has root forbidden patterns of length k for any & > N + 2.
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Forbidden patterns in shift systems

Theorem.

® /i has no forbidden patterns of length k£ forany £ < N + 1.

® /i has root forbidden patterns of length k for any & > N + 2.

Example. The smallest forbidden patterns of /4 are

(615243, 324156, 342516,
162534, 453621, 435261}
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Forbidden patterns in shift systems

Theorem.

® /i has no forbidden patterns of length k£ forany £ < N + 1.

® /i has root forbidden patterns of length k for any & > N + 2.

Example. The smallest forbidden patterns of /4 are

(615243, 324156, 342516,
162534, 453621, 435261}

Conjecture. For all N > 2, hy has exactly 6 forbidden patterns of length
N + 2.
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Maps without forbidden patterns

The condition of piecewise monotonicity is essential:

Proposition. There are maps f : [0, 1] — |0, 1] with no forbidden patterns.
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Maps without forbidden patterns

Proposition. There are maps f : [0, 1] — |0, 1] with no forbidden patterns.

Proof:
® Decompose |0, 1] into infinitely many intervals, e.g.,

1 1
0,1]= | J In, where Iy = [21\7—17 2N—2)'
N>2
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Maps without forbidden patterns

Proposition. There are maps f : [0, 1] — |0, 1] with no forbidden patterns.

Proof:
® Decompose |0, 1] into infinitely many intervals, e.g.,

1 1
0,1]= | J In, where Iy = [21\7—17 2N—2>'
N>2

® Define on each Iy a properly scaled version of A from Iy to Iy.

1
0.8
0.6
0.4 //
0.4 0.6
X

,W/ /

0.8 1
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Open questions

® What are the root forbidden patterns of /i ?

How many are there of each length k > N + 2?
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Open questions

® What are the root forbidden patterns of /i ?

How many are there of each length k > N + 2?

® What are the root forbidden patterns of f : x — 4x(1 — x)?

How many are there of each length?

Root(f) = {321, 1423,2134,2143,3142, 4231,
14523, 23415, 23514, 31245, 31254, 41253, 41352, 45132, 52341, ... }
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Open questions

® What are the root forbidden patterns of /i ?

How many are there of each length k > N + 2?

® What are the root forbidden patterns of f : x — 4x(1 — x)?

How many are there of each length?

Root(f) = {321, 1423,2134,2143,3142, 4231,
14523, 23415, 23514, 31245, 31254, 41253, 41352, 45132, 52341, ... }

® For what maps f can we describe Root(f) (or Forb(f), or
Allow(f))?
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Open questions

What are the root forbidden patterns of /1y ?

How many are there of each length k > N + 2?

What are the root forbidden patterns of f : x — 4x(1 — x)?

How many are there of each length?

Root(f) = {321, 1423,2134,2143,3142, 4231,
14523, 23415, 23514, 31245, 31254, 41253, 41352, 45132, 52341, ... }

For what maps f can we describe Root(f) (or Forb(f), or
Allow(f))?

Characterize the maps f for which Root(f) is finite.
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Open questions

What are the root forbidden patterns of /1y ?

How many are there of each length k > N + 2?

What are the root forbidden patterns of f : x — 4x(1 — x)?
How many are there of each length?

Root(f) = {321, 1423,2134,2143,3142, 4231,
14523, 23415, 23514, 31245, 31254, 41253, 41352, 45132, 52341, ... }

For what maps f can we describe Root(f) (or Forb(f), or
Allow(f))?

Characterize the maps f for which Root(f) is finite.

Is there an efficient algorithm to find Root(f), given f in some
suitable class?

How about to find the length of the smallest forbidden pattern?
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Open questions

® For what sets X of patterns does there exist a map f such that
Root(f) = X?
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Open questions

® For what sets X of patterns does there exist a map f such that
Root(f) = X?

Note: > must be such that Av,,(3) < C™ for some constant C,
since Av,,(X) = Allow,,(f).

For example, if 3 = {x}, where 7 has length at least 3, then
there is no f such that Allow(f) = Av(x), because
Av,(m) > \"n! forsome 0 < A < 1.

On the other hand, we know that [Av,,(132,231)] = 2"~ 1,
Is there an f such that Root(f) = {132,231}7?
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Open questions

® For what sets X of patterns does there exist a map f such that
Root(f) = X?

Note: > must be such that Av,,(3) < C™ for some constant C,
since Av,,(X) = Allow,,(f).

For example, if 3 = {x}, where 7 has length at least 3, then
there is no f such that Allow(f) = Av(x), because
Av,(m) > \"n! forsome 0 < A < 1.

On the other hand, we know that [Av,,(132,231)] = 2"~ 1,
Is there an f such that Root(f) = {132,231}7?

® What else can we say about the structure or the asymptotic
growth of Allow(f) or Forb(f)?
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Announcement

Discrete Mathematics Day
Saturday, October 27, 2007

http:// mat h. dart nout h. edu/ ~dnd

Speakers:

® Jim Propp , University of Massachusetts at Lowell

® Vera Sos, Mathematical Institute of the Hungarian Academy of
Sciences, Budapest

® Mikkel Thorup , AT&T Labs Research
Lauren Williams , Harvard University
®» Josephine Yu , MIT

°
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