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Paths with steps N,E
The bijection

Dyck paths

P

T

B

t(P) = 3 b(P) = 2

For P ∈ Dn (Dyck paths with 2n steps), let

t(P) = # of E steps in common with T

= �height� of the last �peak�

b(P) = # of E steps in common with B

= number of returns

Theorem (Deutsch '98)

The joint distribution of the pair (t, b) over Dn is symmetric, i.e.,∑
P∈Dn

x t(P)yb(P) =
∑
P∈Dn

xb(P)y t(P).

Proof 1 (Deutsch): Recursive bijection. Proof 2: Generating fcts.

Both proofs rely on the recursive structure of Dyck paths.
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Paths with steps N,E
The bijection

A generalization to arbitrary boundaries

P

T

B

O

F

t(P) = 4 b(P) = 3

T and B paths from O to F with steps

N and E , with T weakly above B

P ∈ P(T ,B) = set of paths from O to F

weakly between T and B

t(P) =# of E steps in common with T

(top contacts of P)

b(P) =# of E steps in common with B

(bottom contacts of P)

Theorem
The joint distribution of (t, b) over P(T ,B) is symmetric, i.e.,∑

P∈P(T ,B)

x t(P)yb(P) =
∑

P∈P(T ,B)

xb(P)y t(P).
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The bijection

Example

x3 x2 x

x2 x 1

xy y y2

x2y xy y

xy2 y2 y3∑
P∈P(T ,B)

x
t(P)

y
b(P) = x

3 + x
2
y + xy

2 + y
3 + 2x

2 + 2xy + 2y
2 + 2x + 2y + 1
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Paths with steps N,E
The bijection

Proof

The known proofs for Dyck paths do not seem to generalize to

arbitrary boundaries.

We give an involution

Φ : P(T ,B)→ P(T ,B)

with the property t(Φ(P)) = b(P) and b(Φ(P)) = t(P).

Idea: Given P ∈ P(T ,B) with t(P) > b(P), turn some of its top

contacts into bottom contacts, one at a time.
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Paths with steps N,E
The bijection

Example

We de�ne the involution Φ by iterating a map φ, which turns one

top contact into one bottom contact.

P

7→
φ

φ(P)

7→
φ

φ2(P) = Φ(P)

(t, b) = (4, 2) (t, b) = (3, 3) (t, b) = (2, 4)
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Paths with steps N,E
The bijection

From paths to words

To de�ne φ(P), we �rst �nd the top contact that will be changed

into a bottom contact.

1. Record top and bottom contacts of P as a word w over {t,b}:

P

w = bttbtt
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Paths with steps N,E
The bijection

From paths to words

2. Having built w, select a top contact as follows:

I Draw a path with a step (1, 1) for each t, and a step (1,−1)
for each b.

I Match t's and b's that �face� each other in the path.

I Seleft the leftmost unmatched t as the top contact that will

be changed.

w = bttbtbbbttbttbtbtt
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Paths with steps N,E
The bijection

The map φ

Given P ∈ P(T ,B), de�ne φ(P) as follows:

I Record top and bottom contacts of P as a word w over {t,b}.

I Find leftmost unmatched t; let E be the corresponding step.

I Write P = XYEZ , where Y touches B only at its left

endpoint.

I Let φ(P) = XEYZ .

P
w = bttbtt

bbtbtt

Sergi Elizalde Bijections for lattice paths between two boundaries



Top and bottom contacts
Variations and generalizations

Applications

Paths with steps N,E
The bijection

The map φ

Given P ∈ P(T ,B), de�ne φ(P) as follows:

I Record top and bottom contacts of P as a word w over {t,b}.
I Find leftmost unmatched t; let E be the corresponding step.

I Write P = XYEZ , where Y touches B only at its left

endpoint.

I Let φ(P) = XEYZ .

P

E
w = bttbtt
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Paths with steps N,E
The bijection

The map φ

Given P ∈ P(T ,B), de�ne φ(P) as follows:

I Record top and bottom contacts of P as a word w over {t,b}.
I Find leftmost unmatched t; let E be the corresponding step.

I Write P = XYEZ , where Y touches B only at its left

endpoint.

I Let φ(P) = XEYZ .

P

E

Y
X

Z
w = bttbtt

bbtbtt
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Paths with steps N,E
The bijection

The map φ

Given P ∈ P(T ,B), de�ne φ(P) as follows:

I Record top and bottom contacts of P as a word w over {t,b}.
I Find leftmost unmatched t; let E be the corresponding step.

I Write P = XYEZ , where Y touches B only at its left

endpoint.

I Let φ(P) = XEYZ .

E Y
X

Z

φ(P)
w = bttbtt

bbtbtt
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Paths with steps N,E
The bijection

The involution Φ

For P ∈ P(T ,B) with t(P) = e and b(P) = f , de�ne

Φ(P) = φe−f (P).

Theorem
Φ is an involution on P(T ,B) that satis�es t(Φ(P)) = b(P) and

b(Φ(P)) = t(P).

P

7→
φ

φ(P)

7→
φ

φ2(P) = Φ(P)

(t, b) = (4, 2) (t, b) = (3, 3) (t, b) = (2, 4)
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Paths with steps N,E , S
Left and right contacts
Another generalization of the main theorem

A generalization to paths with S steps

P

T

B

O

F P̃(T ,B) = set of paths from O to F

with steps N, E and S

weakly between T and B .

For P ∈ P̃(T ,B), de�ne t(P) and

b(P) as before.

The descent set of P is the set of

x-coordinates where S steps occur.

Theorem
There is an involution P̃(T ,B)→ P̃(T ,B) that switches the

statistics (t, b) and preserves the descent set.
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Left and right contacts
Another generalization of the main theorem

A generalization: examples

The map φ for paths with S steps:

φ7→

φ7→
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Paths with steps N,E , S
Left and right contacts
Another generalization of the main theorem

A related theorem

P

T

B

For P ∈ P(T ,B), let

`(P) = # of N steps in common with T

r(P) = # of N steps in common with B

Example: t(P) = 4, b(P) = 3, `(P) = 2, r(P) = 1.

Theorem
The pairs (b, `) and (t, r) have the same joint distribution over

P(T ,B), i.e., ∑
P∈P(T ,B)

xb(P)y `(P) =
∑

P∈P(T ,B)

x t(P)y r(P).

We do not know of a bijective proof similar to the previous one.
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Left and right contacts
Another generalization of the main theorem

Proof idea

Both ∑
P∈P(T ,B)

xb(P)y `(P)
and

∑
P∈P(T ,B)

x t(P)y r(P)

equal the Tutte polynomial of a lattice path matroid, as de�ned by

Bonin�De Mier�Noy '03.

The statistics b and ` (t and r) are internal and external activities

with respect to di�erent linear orderings of the ground set.

Sergi Elizalde Bijections for lattice paths between two boundaries



Top and bottom contacts
Variations and generalizations

Applications
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Left and right contacts
Another generalization of the main theorem

k-fans of paths

P1P2

P0 = T

P3 = B

h0 = 4 h1 = 4 h2 = 6

P1,P2, . . . ,Pk ∈ P(T ,B),
Pi weakly above Pi+1 for all i .

Let P0 = T , Pk+1 = B .

For 0 ≤ i ≤ k , let

hi =# of E steps where

Pi and Pi+1 conincide

Theorem
The distribution of (h0, h1, . . . , hk) over k-fans of paths as above is

symmetric.
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Flagged SSTY
k-triangulations

Connection to �agged SSYT

Let T = NN . . .NEE . . .E .

u1 = 2
u2 = 2
u3 = 1
u4 = 1

hi = # E steps in Pi ∩ Pi+1

h0 = 4 h1 = 3 h2 = 3 h3 = 3

uj = # of unused E steps at level j

λ = (6, 4, 3, 3, 1)

T and B form the shape of a Young diagram of a partition λ.

Def: A SSYT of shape λ is called k-�agged if the entries in row r

are ≤ k + r for each r .

1 1 2 2 3 4
2 3 3 4
4 5 6
5 6 7
8

≤ 4
≤ 5
≤ 6
≤ 7
≤ 8

weight = (#1s,#2s, . . . )

= (2, 3, 3, 3, 2, 2, 1, 1)
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Flagged SSTY
k-triangulations

Connection to �agged SSYT

Theorem
There is an explicit bijection between

I k-fans of paths in P(T ,B) with statistics hi and uj , and

I k-�agged SSYT of shape λ and weight
(λ1 − h0, λ1 − h1, . . . , λ1 − hk , u1, u2, . . . , ur ).

u1 = 2

u2 = 2

u3 = 1

u4 = 1

7→
Ψ

h0 = 4 h1 = 3 h2 = 3 h3 = 3

1 1 2 2 3 4
2 3 3 4
4 5 6
5 6 7
8

≤ 4
≤ 5
≤ 6
≤ 7
≤ 8

λ1 = 6

weight = (2, 3, 3, 3, 2, 2, 1, 1)

The bijection uses a variation of jeu de taquin.
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Flagged SSTY
k-triangulations

Connection to k-triangulations

Theorem (conjectured by C. Nicolás '09)

The joint distribution of the degrees of k + 1 consecutive vertices in

a k-triangulation of a convex n-gon equals the distribution of

(h0, h1, . . . , hk) over k-fans of Dyck paths of semilength n − 2k.

The proof uses the previous theorem in the special case of Dyck

paths, together with a bijection of Serrano�Stump between

k-triangulations and k-�agged SSYT.

h0 = 1

h1 = 2

h2 = 2 7→
S-S 1 1 2

3 4
4

7→
Ψ−1
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