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Abstract

We give an involution on the set of lattice paths from (0, 0) to (a, b) with steps N = (0, 1)
and E = (1, 0) that lie between two boundaries T and B, which proves that the statistics
‘number of E steps shared with T ’ and ‘number of E steps shared with B’ have a symmetric
joint distribution on this set. This generalizes a result of Deutsch for the case of Dyck paths.

1 Introduction

All the paths in this note are lattice paths in Z
2 with steps N = (0, 1) and E = (1, 0), unless

otherwise stated. Fix positive integers a, b, and let T and B be two paths from (0, 0) to (a, b). We
assume that T lies weakly above B (equivalently, B lies weakly below T ), by which we mean that
no point of T is strictly below and to the right of any point of B. Let P(T,B) be the set of paths
from (0, 0) to (a, b) that lie between T and B (that is, weakly below T and weakly above B). For
each path P ∈ P(T,B), define the statistics

t(P ) = number of E steps where P and T coincide,
b(P ) = number of E steps where P and B coincide.

The purpose of this note is to prove that the joint distribution of the statistics (t, b) is symmetric
over the set P(T,B), which can be stated as follows.

Theorem 1. For any given paths T and B as above,

∑

P∈P(T,B)

ut(P )vb(P ) =
∑

P∈P(T,B)

ub(P )vt(P ).

For example, if T = NNENEE and B = ENEENN , then the above polynomial is u3+u2v+
uv2+ v3+2u2+2uv+2v2+2u+2v+1. To prove Theorem 1, we give an involution ψ : P(T,B) →
P(T,B) with the property that for all P ∈ P(T,B), t(ψ(P )) = b(P ) and b(ψ(P )) = t(P ).

2 The involution

The involution ψ is defined by first splitting the path P into pieces, on which one applies a trans-
formation ϕ, which is in turn described in terms of a simple map f .
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2.1 Splitting the path

First of all, note that if T and B share vertices (lattice points) other than (0, 0) and (a, b), we can
split T and B into blocks, so that each block from T and the corresponding block from B agree
either everywhere or only on their first and last vertex. Since P passes though all the vertices that
T and B have in common, those vertices of P are unchanged by ψ. It is enough then to define ψ
on blocks of T and B that only agree on their first and last vertex. Thus, we will assume from now
on that T and B only intersect at (0, 0) and (a, b), and that n = a+ b ≥ 2.

Denote by α0, α1, . . . , αn the vertices of P in order from α0 = (0, 0) to αn = (a, b). For i < j,
denote by P [i, j] the fragment of P between αi and αj . For 0 < i < n, each vertex αi can be on
T or on B, but not on both. Let Z be set of pairs (i, j), with 0 < i < j < n, such that αi is
on T , αj is on B, and for i < ℓ < j, αℓ is on neither T nor B. If Z is not empty, suppose that
Z = {(i1, j1), . . . , (is−1, js−1)}, where i1 < · · · < is−1. Note that the intervals [ik, jk] are disjoint
for all k, and that the fragments Rk = P [ik, jk] have no E steps in common with neither T nor B.
With the convention j0 = 0 and is = n, let Qk = P [jk−1, ik] for 1 ≤ k ≤ s, so P can be broken
down as

P = Q1R1Q2R2Q3 . . . Rs−1Qs.

Defining t(Qk) (resp. b(Qk)) as the number of E steps where Qk and T (resp. Qk and B) coincide,
it is clear that t(P ) = t(Q1) + · · · + t(Qs) and b(P ) = b(Q1) + · · · + b(Qs). Figure 1 shows an
example of this decomposition.
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Figure 1: A path P lying between T and B. The dotted lines indicate the cuts at i1, j1, i2, j2. The
E steps in common with T and B are marked with u and v, respectively.

We construct ψ(P ) by leaving Rk unchanged for all k, and by applying a certain transformation
ϕ to each of the Qk, that is,

ψ(P ) = ϕ(Q1)R1 ϕ(Q2)R2 ϕ(Q3) . . . Rs−1 ϕ(Qs). (1)
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2.2 Definition of ϕ

Let Q(T,B) be the set of paths that start at a point on B (possibly (0, 0)), end at a point on T
(possibly (a, b)), lie between T and B, and, excluding (0, 0) and (a, b), have no intersection with
T preceding an intersection with B. We will define an involution ϕ on Q(T,B) that preserves the
first and last vertex, and satisfies t(ϕ(Q)) = b(Q) and b(ϕ(Q)) = t(Q). Note that, by construction,
Qk ∈ Q(T,B) for all k.

For Q ∈ Q(T,B), let t = t(Q) and b = b(Q) be the number of E steps that Q has in common
with T and with B, respectively. Note that the E steps shared with B are to the left of those
shared with T . We define

ϕ(Q) = f b−t(Q), (2)

where f and f−1 are defined in the next subsection.

2.3 Definition of f and f−1

Let Q ∈ Q(T,B) be such that b(Q) > 0. Then Q can be uniquely broken down as Q = XĒY Z,
where Ē is the rightmost E step where Q and B coincide, and the point between Y and Z is the
first vertex α 6= (0, 0) where Q and T intersect. Note that α exists because Q ends at a point on T .
Note also that Y begins and ends with a N step, whereas the step of T ending at α is an E step.
To construct f(Q), move Ē and put it right after Y , that is,

f(Q) = XY ĒZ.

Clearly, f(Q) lies weakly above B and, by the choice of α, f(Q) also lies weakly below T . The
fragment Y in Q intersects T only at the last point, and the fragment Y in f(Q) intersects B
only at the first point. In both Q and f(Q), Y has no E steps in common with either B or T .
Since Ē was a common step of Q and B that became a common step of f(Q) and T , we see that
t(f(Q)) = t(Q) + 1 and b(f(Q)) = b(Q) − 1. We remark that the last intersection of f(Q) with
B (not counting (a, b)) is the vertex between X and Y . Since X has no intersections with T (not
counting (0, 0)), we have that f(Q) ∈ Q(T,B). Examples of the map f are given in Figure 2.

The definition of f−1 is analogous to that of f if we rotate the paths T , B and Q by 180
degrees. We describe it here for convenience, and we argue that it is indeed the inverse of f . Let
now Q ∈ Q(T,B) be such that t(Q) > 0. Then Q can be uniquely broken down as Q = XY ĒZ,
where Ē is the leftmost E step where Q and T coincide, and the point between X and Y is the last
vertex β 6= (a, b) where Q and B intersect. To construct f−1(Q), move Ē and put it right before
Y , that is,

f−1(Q) = XĒY Z.

As before, we have that f−1(Q) ∈ Q(T,B).
To see that f−1 is indeed the inverse of f , note that when f is applied to Q = XĒY Z to produce

f(Q) = XY ĒZ, the moved step Ē becomes the leftmost E step where f(Q) and T coincide. Since
the last intersection of f(Q) with B (not counting (a, b)) is the vertex between X and Y , f−1

moves Ē back to its original position when applied to f(Q). So, if b(Q) > 0, then f−1(f(Q)) = Q.
Similarly, the step of Q moved when applying f−1 becomes the rightmost E step where f−1(Q) and
B coincide, which is moved back to its original position by f . So, if t(Q) > 0, then f(f−1(Q)) = Q.
It also follows that t(f−1(Q)) = t(Q)− 1 and b(f−1(Q)) = b(Q) + 1.
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Figure 2: The map ϕ applied to the pieces of the path in Figure 1.

From definition (2) and the properties of f and f−1, it is clear that ϕ(Q) ∈ Q(T,B) and
t(ϕ(Q)) = t + (b − t) = b and b(ϕ(Q)) = b − (b − t) = t. Thus, we see from definition (1) that
ψ(P ) lies between T and B and satisfies t(ψ(P )) = b(P ) and b(ψ(P )) = t(P ). Finally, we have
that ϕ(ϕ(Q)) = f t−b(f b−t(Q)) = Q, so ϕ is an involution. Since the spitting of ψ(P ) in order to
apply ψ occurs at the same points where the splitting of P took place, ψ is an involution as well.
The image under ψ of the path in Figure 1 is shown in Figure 3.

3 Connections to work in the literature

3.1 Dyck paths and generalizations

In the particular case that T = NmEm and B = (NE)m, P(T,B) is the set of Dyck paths of
semilength m. For P ∈ P(T,B), t(P ) is the number of E steps at the end of P , and b(P ) is the
number of returns to the diagonal y = x. When drawing Dyck paths as paths with steps U = (1, 1)
and D = (1,−1) starting at the origin and not going below the x-axis, these statistics correspond to
the height of the last peak and the number of returns to the x-axis, respectively. A bijective proof
of the fact that these statistics are equidistributed on Dyck paths was given by Deutsch [3], who
later also gave an involution [4] proving the symmetry of their joint distribution. Our involution
ψ, when restricted to the case of Dyck paths, is quite different from Deutsch’s involution, which is
defined recursively and does not seem to extend to the general case. Additionally, our map f can
be used to prove the following statement.
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Figure 3: The path ψ(P ), where P is the path in Figure 1.

Proposition 2. Fix positive integers a, b. Let T = N bEa, and let B be a path from (0, 0) to (a, b)
that intersects T only at these two points. Then, for all i, j ≥ 0, the coefficient of uivj in the

polynomial
∑

P∈P(T,B)

ut(P )vb(P )

depends only on i+ j.

Proof. When applying ψ to a path P ∈ P(T,B), P gets decomposed either as P = Q1 or as
P = Q1R1Q2. In the second case, Q1 consists only of N steps, so Q1R1 has no E steps in common
with either T or B. Let us define f(P ) = Q1R1f(Q2) in this case, which is also equivalent to
applying the definition of f from Section 2.3 directly to P (the definition works even if P /∈ Q(T,B)).
Similarly, let f−1(P ) = Q1R1f

−1(Q2). We now have a sequence of bijections

{P ∈ P(T,B) : t(P ) = 0, b(P ) = i+ j}
f

−→ {P ∈ P(T,B) : t(P ) = 1, b(P ) = i+ j − 1}
f

−→ · · ·

· · ·
f

−→ {P ∈ P(T,B) : t(P ) = i+ j, b(P ) = 0}

(see Figure 4), from where the statement follows.

When T = NmEm and B = (EN)m, the above proposition translates into the fact that the
number of Dyck paths of fixed semilength m + 1 with j + 1 returns whose last peak has height
i + 1 depends only on the sum i + j. In particular, it equals the number of paths P ∈ P(T,B)
with t(P ) = i + j and b(P ) = 0. By deleting the NEi+j at the end, such paths are in bijection
with paths from (0, 0) to (m− i− j,m− 1) not going under y = x, which are counted by the ballot
number

i+ j

2m− i− j

(

2m− i− j

m

)

.

Let us mention that for the case of Dyck paths, the symmetry of the joint distribution of the
pair (t, b) can also be proved using standard generating function techniques, based on the usual
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Figure 4: A sequence of bijections on paths with t(P ) + b(P ) = 4.

recursive decomposition of Dyck paths. However, these techniques fail in the general setting of
Theorem 1, hence the need for our bijective proof.

3.2 Lattice path matroids

In [2], Bonin, de Mier and Noy defined the following type of transversal matroids. As before, fix
two lattice paths T and B from (0, 0) to (a, b) with T weakly above B. For each P ∈ P(T,B),
let NP ⊆ [a+ b] be the set of positions of the N steps of P when viewed as a word in {N,E}a+b.
Then {NP : P ∈ P(T,B)} is the set of bases of a matroid M [T,B], called a lattice path matroid.
In the particular case that T = NmEm and B = (EN)m, M [T,B] was called a Catalan matroid

by Ardila [1]. In [2, Theorem 5.4], it is shown that the external activity of the basis NP with
respect to the order 1 < 2 < · · · < a+ b on the ground set is precisely b(P ). Similarly, t(B) is the
external activity of NP with respect to the order 1 > 2 > · · · > a + b. With this interpretation,
the equidistribution of the statistics t and b over P(T,B) follows from the fact that the Tutte
polynomial of M [T,B], when expressed as a sum of bases weighted by their internal and external
activities, is independent of the linear order on the ground set. On the other hand, the symmetry
of the joint distribution (t, b) stated in Theorem 1 does not appear to be a consequence of any
straightforward matroidal property.
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