The number of numerical semigroups of a given genus

Sergi Elizalde
Dartmouth College

SIAM Conference on Discrete Mathematics
Minisymposium on Enumerative Combinatorics
Austin, June 2010

The coin problem

Given coins of denominations $c_{1}, c_{2}, \ldots, c_{m}$,

- what is the largest amount that cannot be obtained?
(Frobenius problem)
- how many positive amounts cannot be obtained?

The coin problem

Given coins of denominations $c_{1}, c_{2}, \ldots, c_{m}$,

- what is the largest amount that cannot be obtained?
(Frobenius problem)
- how many positive amounts cannot be obtained?

Example:

With two coins of denominations 3 and 5, one can obtain

$$
0,3,5,6,8,9,10, \ldots
$$

The coin problem

Given coins of denominations $c_{1}, c_{2}, \ldots, c_{m}$,

- what is the largest amount that cannot be obtained?
(Frobenius problem)
- how many positive amounts cannot be obtained?

Example:

With two coins of denominations 3 and 5, one can obtain

$$
0,3,5,6,8,9,10, \ldots
$$

Such a set is called a numerical semigroup.

Definitions

A numerical semigroup is a set $\Lambda \subseteq \mathbb{N}_{0}=\{0,1,2, \ldots\}$ satisfying:

- $0 \in \Lambda$,
- Λ is closed under addition,
- $\mathbb{N}_{0} \backslash \Lambda$ is finite.

Definitions

A numerical semigroup is a set $\Lambda \subseteq \mathbb{N}_{0}=\{0,1,2, \ldots\}$ satisfying:

- $0 \in \Lambda$,
- Λ is closed under addition,
- $\mathbb{N}_{0} \backslash \Lambda$ is finite.

The elements in $\mathbb{N}_{0} \backslash \Lambda$ are called gaps.
The genus of Λ is the number of gaps, denoted g.
The Frobenius number of Λ is the largest gap, denoted f.

Definitions

A numerical semigroup is a set $\Lambda \subseteq \mathbb{N}_{0}=\{0,1,2, \ldots\}$ satisfying:

- $0 \in \Lambda$,
- Λ is closed under addition,
- $\mathbb{N}_{0} \backslash \Lambda$ is finite.

The elements in $\mathbb{N}_{0} \backslash \Lambda$ are called gaps.
The genus of Λ is the number of gaps, denoted g.
The Frobenius number of Λ is the largest gap, denoted f.
Example:
$\Lambda=\{0,4,6,8,9,10,11, \ldots\} \quad f=7, g=5$

Let n_{g} be the number of numerical semigroups of genus g.
$g=1: \quad\{0,2,3,4, \ldots\}$
$g=2: \quad\{0,2,4,5,6, \ldots\} \quad\{0,3,4,5,6, \ldots\}$
$g=3: \quad\{0,2,4,6,7,8, \ldots\} \quad\{0,3,4,6,7,8, \ldots\}$ $\{0,3,5,6,7,8, \ldots\} \quad\{0,4,5,6,7,8, \ldots\}$

g	1	2	3	4	5	6	7	8	9	10	11	12	13
n_{g}	1	2	4	7	12	23	39	67	118	204	343	592	1001

Minimal generators

Every numerical semigroup Λ with $g \geq 1$ has a unique minimal set of generators $\mu_{1}, \mu_{2}, \ldots, \mu_{m}$.

Minimal generators

Every numerical semigroup Λ with $g \geq 1$ has a unique minimal set of generators $\mu_{1}, \mu_{2}, \ldots, \mu_{m}$.

If $\mu_{1}<\cdots<\mu_{r}<f<\underbrace{\mu_{r+1}<\cdots<\mu_{m}}_{\text {effective generators }}$, we write

$$
\Lambda=\left\langle\mu_{1}, \ldots, \mu_{r} \mid \mu_{r+1}, \ldots, \mu_{m}\right\rangle .
$$

Minimal generators

Every numerical semigroup Λ with $g \geq 1$ has a unique minimal set of generators $\mu_{1}, \mu_{2}, \ldots, \mu_{m}$.

If $\mu_{1}<\cdots<\mu_{r}<f<\underbrace{\mu_{r+1}<\cdots<\mu_{m}}_{\text {effective generators }}$, we write

$$
\Lambda=\left\langle\mu_{1}, \ldots, \mu_{r} \mid \mu_{r+1}, \ldots, \mu_{m}\right\rangle
$$

$\Lambda \cup\{f\}$ is a numerical semigroup of genus $g-1$.

Minimal generators

Every numerical semigroup Λ with $g \geq 1$ has a unique minimal set of generators $\mu_{1}, \mu_{2}, \ldots, \mu_{m}$.

If $\mu_{1}<\cdots<\mu_{r}<f<\underbrace{\mu_{r+1}<\cdots<\mu_{m}}_{\text {effective generators }}$, we write

$$
\Lambda=\left\langle\mu_{1}, \ldots, \mu_{r} \mid \mu_{r+1}, \ldots, \mu_{m}\right\rangle
$$

$\Lambda \cup\{f\}$ is a numerical semigroup of genus $g-1$.
Example:

$$
\begin{aligned}
& \{0,4,6,8,9,10,11, \ldots\}=\langle 4,6 \mid 9,11\rangle \\
& \{0,4,6,7,8,9,10,11, \ldots\}=\langle 4 \mid 6,7,9\rangle
\end{aligned}
$$

The tree \mathcal{T} of numerical semigroups

Consider the tree \mathcal{T} with root $\{0,2,3,4, \ldots\}=\langle\mid 2,3\rangle$ where

- the parent of each Λ is $\Lambda \cup\{f\}$,
- the children of each $\Lambda=\left\langle\mu_{1}, \ldots, \mu_{r} \mid \mu_{r+1}, \ldots, \mu_{r+e}\right\rangle$ are $\Lambda \backslash\left\{\mu_{r+i}\right\}$, with $1 \leq i \leq e$.

The tree \mathcal{T} of numerical semigroups

The number of nodes at level g is n_{g}. We will bound n_{g} by approximating this tree with simpler trees, keeping track of the number of effective generators of each node.

Ordinary semigroups

$$
O_{g}=\{0, g+1, g+2, g+3, \ldots\}=\langle\mid g+1, g+2, \ldots, 2 g+1\rangle
$$

is the ordinary semigroup of genus g.
It has $g+1$ effective generators.

Ordinary semigroups

$$
O_{g}=\{0, g+1, g+2, g+3, \ldots\}=\langle\mid g+1, g+2, \ldots, 2 g+1\rangle
$$

is the ordinary semigroup of genus g.
It has $g+1$ effective generators.
The $g+1$ children of O_{g} have $0,1,2, \ldots, g-2, g, g+2$ effective generators respectively (the last child being O_{g+1}).

Ordinary semigroups

$$
O_{g}=\{0, g+1, g+2, g+3, \ldots\}=\langle\mid g+1, g+2, \ldots, 2 g+1\rangle
$$

is the ordinary semigroup of genus g.
It has $g+1$ effective generators.
The $g+1$ children of O_{g} have $0,1,2, \ldots, g-2, g, g+2$ effective generators respectively (the last child being O_{g+1}).

We write this as

$$
\overline{(g+1)} \longrightarrow(0)(1) \ldots(g-2)(g) \overline{(g+2)},
$$

Ordinary semigroups

$$
O_{g}=\{0, g+1, g+2, g+3, \ldots\}=\langle\mid g+1, g+2, \ldots, 2 g+1\rangle
$$

is the ordinary semigroup of genus g.
It has $g+1$ effective generators.
The $g+1$ children of O_{g} have $0,1,2, \ldots, g-2, g, g+2$ effective generators respectively (the last child being O_{g+1}).

We write this as

$$
\overline{(g+1)} \longrightarrow(0)(1) \ldots(g-2)(g) \overline{(g+2)}
$$

or equivalently as

$$
\overline{(e)} \longrightarrow(0)(1) \ldots(e-3)(e-1) \overline{(e+1)}
$$

Non-ordinary semigroups

Let $\Lambda=\left\langle\mu_{1}, \ldots, \mu_{r} \mid \mu_{r+1}, \ldots, \mu_{r+e}\right\rangle$ be a non-ordinary semigroup. Then, for $1 \leq i \leq e$,

$$
\Lambda \backslash\left\{\mu_{r+i}\right\}=\left\{\begin{array}{l}
\langle\mu_{1}, \ldots, \mu_{r+i-1} \mid \underbrace{\mu_{r+i+1}, \ldots, \mu_{r+e}}_{e-i \text { effective gen. }}\rangle \text { or } \\
\left\langle\mu_{1}, \ldots, \mu_{r+i-1}\right| \underbrace{\left.\mu_{r+i+1}, \ldots, \mu_{r+e}, \mu_{1}+\mu_{r+i}\right\rangle .}_{e-i+1 \text { effective gen. }} .
\end{array}\right.
$$

Non-ordinary semigroups

Let $\Lambda=\left\langle\mu_{1}, \ldots, \mu_{r} \mid \mu_{r+1}, \ldots, \mu_{r+e}\right\rangle$ be a non-ordinary semigroup. Then, for $1 \leq i \leq e$,

$$
\Lambda \backslash\left\{\mu_{r+i}\right\}=\left\{\begin{array}{l}
\langle\mu_{1}, \ldots, \mu_{r+i-1} \mid \underbrace{\mu_{r+i+1}, \ldots, \mu_{r+e}}_{e-i \text { effective gen. }}\rangle \text { or } \\
\left\langle\mu_{1}, \ldots, \mu_{r+i-1}\right| \underbrace{\left.\mu_{r+i+1}, \ldots, \mu_{r+e}, \mu_{1}+\mu_{r+i}\right\rangle}_{e-i+1 \text { effective gen. }} .
\end{array}\right.
$$

Ex: The children of $\langle 4 \mid 6,7,9\rangle$ are $\langle 4,6,7 \mid\rangle,\langle 4,6 \mid 9,11\rangle,\langle 4 \mid 7,9,10\rangle$.

Non-ordinary semigroups

Let $\Lambda=\left\langle\mu_{1}, \ldots, \mu_{r} \mid \mu_{r+1}, \ldots, \mu_{r+e}\right\rangle$ be a non-ordinary semigroup. Then, for $1 \leq i \leq e$,

$$
\Lambda \backslash\left\{\mu_{r+i}\right\}=\left\{\begin{array}{l}
\langle\mu_{1}, \ldots, \mu_{r+i-1} \mid \underbrace{\mu_{r+i+1}, \ldots, \mu_{r+e}}_{e-i \text { effective gen. }}\rangle \text { or } \\
\left\langle\mu_{1}, \ldots, \mu_{r+i-1}\right| \underbrace{\left.\mu_{r+i+1}, \ldots, \mu_{r+e}, \mu_{1}+\mu_{r+i}\right\rangle}_{e-i+1 \text { effective gen. }} .
\end{array}\right.
$$

Ex: The children of $\langle 4 \mid 6,7,9\rangle$ are $\langle 4,6,7 \mid\rangle,\langle 4,6 \mid 9,11\rangle,\langle 4 \mid 7,9,10\rangle$.

$$
(3) \longrightarrow(0)(2)(3)
$$

Non-ordinary semigroups

Let $\Lambda=\left\langle\mu_{1}, \ldots, \mu_{r} \mid \mu_{r+1}, \ldots, \mu_{r+e}\right\rangle$ be a non-ordinary semigroup. Then, for $1 \leq i \leq e$,

$$
\Lambda \backslash\left\{\mu_{r+i}\right\}=\left\{\begin{array}{l}
\langle\mu_{1}, \ldots, \mu_{r+i-1} \mid \underbrace{\mu_{r+i+1}, \ldots, \mu_{r+e}}_{e-i \text { effective gen. }}\rangle \text { or } \\
\left\langle\mu_{1}, \ldots, \mu_{r+i-1}\right| \underbrace{\left.\mu_{r+i+1}, \ldots, \mu_{r+e}, \mu_{1}+\mu_{r+i}\right\rangle}_{e-i+1 \text { effective gen. }} .
\end{array}\right.
$$

Ex: The children of $\langle 4 \mid 6,7,9\rangle$ are $\langle 4,6,7 \mid\rangle,\langle 4,6 \mid 9,11\rangle,\langle 4 \mid 7,9,10\rangle$.
$(3) \longrightarrow(0)(2)(3)$
In general, $\quad(e) \longrightarrow\left(j_{1}\right)\left(j_{2}\right) \ldots\left(j_{e}\right), \quad$ where $j_{i} \in\{i-1, i\}$.

A lower bound

Consider the generating tree with root $\overline{(2)}$ and succession rules
$\overline{(e)} \longrightarrow$
$(0)(1) \ldots(e-3)(e-1) \overline{(e+1)}$,
$(e) \longrightarrow$
$(0)(1) \ldots(e-1)$.

(0)
(0) (0)
(1)
(2)

A lower bound

Consider the generating tree with root $\overline{(2)}$ and succession rules

$$
\begin{aligned}
& \overline{(e)} \longrightarrow(0)(1) \ldots(e-3)(e-1) \overline{(e+1)}, \\
& (e) \longrightarrow(0)(1) \ldots(e-1)
\end{aligned}
$$

This tree can be embedded in \mathcal{T}, so its number of nodes at level g is a lower bound on n_{g}.

A lower bound

Consider the generating tree with root $\overline{(2)}$ and succession rules

$$
\begin{aligned}
& \overline{(e)} \longrightarrow(0)(1) \ldots(e-3)(e-1) \overline{(e+1)}, \\
& (e) \longrightarrow(0)(1) \ldots(e-1)
\end{aligned}
$$

This tree can be embedded in \mathcal{T}, so its number of nodes at level g is a lower bound on n_{g}.
From the succession rules, the generating function for the number of nodes at each level is
$\frac{t\left(1+t+t^{2}\right)}{1-t-t^{2}}=t+2 t^{2}+4 t^{3}+6 t^{4}+10 t^{5}+\cdots=t+\sum_{g \geq 2} 2 F_{g} t^{g}$.
So, for $g \geq 2$,

$$
n_{g} \geq 2 F_{g}
$$

An upper bound

Consider the generating tree with root $\overline{(2)}$ and succession rules
$(e) \longrightarrow$
$(0)(1) \ldots(e-3)(e-1) \overline{(e+1)}$,
$(e) \longrightarrow$
(1)(2) ... (e).

An upper bound

Consider the generating tree with root $\overline{(2)}$ and succession rules

$$
\begin{aligned}
& \overline{(e)} \longrightarrow(0)(1) \ldots(e-3)(e-1) \overline{(e+1)}, \\
& (e) \longrightarrow(1)(2) \ldots(e)
\end{aligned}
$$

\mathcal{T} can be embedded in this tree, so its number of nodes at level g is an upper bound on n_{g}.

An upper bound

Consider the generating tree with root $\overline{(2)}$ and succession rules

$$
\begin{aligned}
& \overline{(e)} \longrightarrow(0)(1) \ldots(e-3)(e-1) \overline{(e+1)}, \\
& (e) \longrightarrow(1)(2) \ldots(e)
\end{aligned}
$$

\mathcal{T} can be embedded in this tree, so its number of nodes at level g is an upper bound on n_{g}.
From the succession rules, the generating function for the number of nodes at each level is

$$
\frac{t\left(1-t-t^{3}\right)}{(1-t)(1-2 t)}=t+2 t^{2}+4 t^{3}+7 t^{4}+13 t^{5}+\ldots
$$

So, for $g \geq 3$,

$$
n_{g} \leq 1+3 \cdot 2^{g-3}
$$

A better lower bound

Consider the semigroups with only one generator less than f :

A better lower bound

Consider the semigroups with only one generator less than f :

A better lower bound

Consider the semigroups with only one generator less than f :

$$
\begin{aligned}
P_{g, i}=\langle g+1| g+i, g+i+1 & , \ldots, \overline{d(g+1)}, \ldots, 2 g+i\rangle \\
& \vee P_{g, 3} \text { is a child of } O_{g} \\
& \vee P_{g, i+1} \text { is a child of } P_{g, i} \\
& \vee P_{g, i} \text { has } g \text { effective generators. }
\end{aligned}
$$

We write $\quad(g) \longrightarrow\left(j_{1}\right)\left(j_{2}\right) \ldots\left(j_{g-1}\right)(g) \quad$ where $j_{i} \in\{i-1, i\}$.

A better lower bound

Consider the semigroups with only one generator less than f :

$$
\begin{aligned}
P_{g, i}=\langle g+1| g+i, g+i+1 & , \ldots, \overline{d(g+1)}, \ldots, 2 g+i\rangle \\
& \bullet P_{g, 3} \text { is a child of } O_{g} \\
& \vee P_{g, i+1} \text { is a child of } P_{g, i} \\
& \bullet P_{g, i} \text { has } g \text { effective generators. }
\end{aligned}
$$

We write $\widetilde{(g)} \longrightarrow\left(j_{1}\right)\left(j_{2}\right) \ldots\left(j_{g-1}\right) \widetilde{(g)} \quad$ where $j_{i} \in\{i-1, i\}$.
The succession rules for the new tree are

$$
\begin{aligned}
& \overline{(e)} \longrightarrow(0)(1) \ldots(e-3) \widetilde{(e-1)} \overline{(e+1)}, \\
& \widetilde{(e)} \longrightarrow(0)(1) \ldots(e-2)(\widetilde{e)}, \\
& (e) \longrightarrow(0)(1) \ldots(e-1) .
\end{aligned}
$$

A better lower bound

Consider the semigroups with only one generator less than f :

$$
\begin{aligned}
P_{g, i}=\langle g+1| g+i, g+i+1 & , \ldots, \overline{d(g+1)}, \ldots, 2 g+i\rangle \\
& \bullet P_{g, 3} \text { is a child of } O_{g} \\
& \vee P_{g, i+1} \text { is a child of } P_{g, i} \\
& \bullet P_{g, i} \text { has } g \text { effective generators. }
\end{aligned}
$$

We write $\widetilde{(g)} \longrightarrow\left(j_{1}\right)\left(j_{2}\right) \ldots\left(j_{g-1}\right) \widetilde{(g)} \quad$ where $j_{i} \in\{i-1, i\}$.
The succession rules for the new tree are

$$
\begin{aligned}
& \overline{(e)} \longrightarrow(0)(1) \ldots(e-3)(\widetilde{e-1}) \overline{(e+1)}, \\
& \widetilde{(e)} \longrightarrow(0)(1) \ldots(e-2)(\widetilde{e)}, \\
& (e) \longrightarrow(0)(1) \ldots(e-1) .
\end{aligned}
$$

Counting the nodes gives an improved lower bound:
$n_{g} \geq F_{g+2}-1 \geq 2 F_{g}$.

An even better lower bound

Idea: Use a second label to keep track of the number of strong generators of each semigroup. An effective gen. $\mu \in \Lambda$ is called strong if $\mu+\mu_{1}$ is a generator of $\Lambda \backslash\{\mu\}$.

An even better lower bound

Idea: Use a second label to keep track of the number of strong generators of each semigroup. An effective gen. $\mu \in \Lambda$ is called strong if $\mu+\mu_{1}$ is a generator of $\Lambda \backslash\{\mu\}$.

We bound the number of strong gen. in terms on the number of strong gen. of the parent. The succession rules become

$$
\begin{aligned}
\overline{(e)} & \longrightarrow(0,0)(1,0) \ldots(e-3,0)(\overline{e-1})_{2}(e+1) \\
\widetilde{(e)_{k}} & \longrightarrow(0,0)(1,0) \ldots(e-\sigma-1,0)(e-\sigma+1,0)(e-\sigma+2,1) \ldots(e-1, \sigma-2) \widetilde{(e)_{k+1}}, \\
(e, s) & \longrightarrow(0,0)(1,0) \ldots(e-s-1,0)(e-s+1,0)(e-s+2,1) \ldots(e, s-1) .
\end{aligned}
$$

where

$$
\sigma=\sigma(e, k):= \begin{cases}k & \text { if } 2 \leq k \leq\lceil e / 2\rceil, \\ k-1 & \text { if }\lceil e / 2\rceil<k \leq e, \quad\left(\# \text { of strong gen. of } P_{e, k+1}\right) \\ e & \text { if } k>e .\end{cases}
$$

An even better lower bound

An even better lower bound

The coefficients of its corresponding generating function

$$
\frac{t\left(1-t^{2}-2 t^{3}-3 t^{4}+t^{5}+2 t^{6}+3 t^{7}+3 t^{8}+t^{9}\right)}{(1+t)(1-t)\left(1-t-t^{2}\right)\left(1-t-t^{3}\right)\left(1-t^{3}-2 t^{4}-2 t^{5}-t^{6}\right)}
$$

give a better lower bound on n_{g}.

A better upper bound

Idea: use a second label to keep track of the number of healthy generators of each semigroup. An effective gen. $\mu \in \Lambda$ is called healthy if $\mu+\mu_{1} \leq 2 g+3$. Strong generators are always healthy.

A better upper bound

Idea: use a second label to keep track of the number of healthy generators of each semigroup. An effective gen. $\mu \in \Lambda$ is called healthy if $\mu+\mu_{1} \leq 2 g+3$. Strong generators are always healthy.

We bound the number of healthy gen. in terms on the number of effective and healthy gen. of the parent. The succession rules become

$$
\begin{aligned}
\overline{(e)} \longrightarrow & (0,0)(1,0) \ldots(e-4,0)(e-3, \min \{1, e-3\})(e-1, \min \{2, e-1\}) \overline{(e+1)}, \\
(e, h) \longrightarrow & (0,0)(1,0) \ldots(e-h-2,0)(e-h-1, \min \{1, e-h-1\}) \\
& (e-h+1, \min \{2, e-h+1\})(e-h+2, \min \{3, e-h+2\}) \ldots(e, \min \{h+1, e\}) .
\end{aligned}
$$

A better upper bound

A better upper bound

The coefficients of its corresponding generating function

$$
t \frac{2-3 t+t^{2}-4 t^{3}+3 t^{4}-2 t^{5}+t\left(1-t-t^{3}\right) \sqrt{(1+2 t) /(1-2 t)}}{2\left(1-3 t+3 t^{2}-3 t^{3}+4 t^{4}-3 t^{5}+2 t^{6}\right)}
$$

give the best known upper bound on n_{g}.

Numerical semigroups Easy bounds on n_{g} Improved bounds on n_{g}

Better lower bounds
A better upper bound
Table of bounds
Open problems

g	$2 F_{g}$	$F_{g+2}-1$	lower bound	$\mathbf{n g}_{\mathbf{g}}$	upper bound	$1+3 \cdot 2^{g-3}$		
1		1	1	1	1			
2	2	2	2	2	2			
3	4	4	4	4	4	4		
4	6	7	7	7	7	7		
5	10	12	12	12	13	13		
6	16	20	22	23	24	25		
7	26	33	37	39	44	49		
8	42	54	62	67	81	97		
9	68	88	104	118	151	193		
10	110	143	175	204	280	385		
11	178	232	291	343	525	769		
12	288	376	482	592	984	1537		
13	466	609	796	1001	1859	3073		
14	754	986	1315	1693	3511	6145		
15	1220	1596	2166	2857	6682	12289		
16	1974	2583	3559	4806	12709	24577		
17	3194	4180	5838	8045	24334	49153		
18	5168	6764	9569	13467	46565	98305		
19	8362	10945	15665	22464	89626	196609		
20	13530	17710	25612	37396	172381	393217		
21	21892	28656	41831	62194	333262	786433		
22	35422	46367	68270	103246	643733	1572865		
23	57314	75024	111337	170963	1249147	3145729		
24	92736	121392	181438	282828	2421592	6291457		
25	150050	196417	295480	467224	4713715	12582913		
26	242786	317810	480938	770832	9165792	25165825		
27	392836	514228	782408	1270267	17888456	50331649		
28	635622	832039	1272250	2091030	34873456	100663297		
29	1028458	1346268	2067870	3437839	68212220	201326593		
30	1664080	2178308	3359757	5646773	133269997	402653185		
31	2692538	3524577	5456862	9266788	261167821	805306369 =	,	
32	4356618	5702886	8860132	15195070	511211652	1610612737	三	¢

Open problems

- $\lim _{g \rightarrow \infty} \frac{n_{g+1}}{n_{g}}=\frac{1+\sqrt{5}}{2} \quad$ (conjectured by Maria Bras-Amorós),

Open problems

- $\lim _{g \rightarrow \infty} \frac{n_{g+1}}{n_{g}}=\frac{1+\sqrt{5}}{2} \quad$ (conjectured by Maria Bras-Amorós),
- $n_{g+1} \geq n_{g} \quad$ for all g,

Open problems

- $\lim _{g \rightarrow \infty} \frac{n_{g+1}}{n_{g}}=\frac{1+\sqrt{5}}{2} \quad$ (conjectured by Maria Bras-Amorós),
- $n_{g+1} \geq n_{g} \quad$ for all g,
- $n_{g+2} \geq n_{g}+n_{g+1} \quad$ for all g.

Eighth International Conference on

Permutation Patterns, PP 2010

August 9-13, Dartmouth College, Hanover, NH

Invited speakers:

- Nik Ruškuc, University of St Andrews
- Richard Stanley, MIT
http://math.dartmouth.edu/~pp2010

