Descent sets of cyclic permutations

Sergi Elizalde

Dartmouth College

AMS Fall Eastern Section Meeting Special Session on Algebraic Combinatorics

<ロ> (日) (日) (日) (日) (日)

Definitions

Main result Non-bijective proof Final remarks

Example

Permutations

$$[n] = \{1, 2, \ldots, n\}, \quad \pi \in \mathcal{S}_n$$

Sergi Elizalde Descent sets of cyclic permutations

・ロト ・回 ト ・ヨト ・ヨト

Example

Permutations

$$[n] = \{1, 2, \dots, n\}, \quad \pi \in S_n$$

$$\pi = \underbrace{2517364}_{\text{one line notation}} = \underbrace{(1, 2, 5, 3)(4, 7)(6)}_{\text{cycle notation}} = \underbrace{(5, 3, 1, 2)(6)(7, 4)}_{\text{cycle notation}}$$

<ロ> (四) (四) (三) (三) (三)

Example

Permutations

$$[n] = \{1, 2, \dots, n\}, \quad \pi \in S_n$$

$$\pi = \underbrace{2517364}_{\text{one line notation}} = \underbrace{(1, 2, 5, 3)(4, 7)(6)}_{\text{cycle notation}} = \underbrace{(5, 3, 1, 2)(6)(7, 4)}_{\text{cycle notation}}$$

$$\mathcal{C}_n \subset S_n \quad \text{cyclic permutations} \qquad |\mathcal{C}_n| = (n - 1)!$$

$$\mathcal{C}_3 = \{(1, 2, 3), (1, 3, 2)\} = \{231, 312\}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Example

Permutations

$$[n] = \{1, 2, \dots, n\}, \quad \pi \in S_n$$

$$\pi = \underbrace{2517364}_{\text{one line notation}} = \underbrace{(1, 2, 5, 3)(4, 7)(6)}_{\text{cycle notation}} = \underbrace{(5, 3, 1, 2)(6)(7, 4)}_{\text{cycle notation}}$$

$$\mathcal{C}_n \subset S_n \quad \text{cyclic permutations} \qquad |\mathcal{C}_n| = (n-1)!$$

$$\mathcal{C}_3 = \{(1,2,3), (1,3,2)\} = \{231,312\}$$

The *descent set* of $\pi \in S_n$ is

$$egin{aligned} D(\pi) &= \{i \,:\, 1 \leq i \leq n-1, \,\, \pi(i) > \pi(i+1) \}. \ D(25 \cdot 17 \cdot 36 \cdot 4) &= \{2,4,6\} \end{aligned}$$

イロト イヨト イヨト イヨト

Example

Origin

Descents of cyclic permutations come up when determining the smallest number of symbols needed to realize a permutation by shifts.

イロト イヨト イヨト イヨト

Example

Origin

Descents of cyclic permutations come up when determining the smallest number of symbols needed to realize a permutation by shifts.

E.g., the permutation 4217536 can be realized using three symbols:

2102212210	4)
102212210	2
02212210	1
2212210	7
212210	5
12210	3
2210	6

lexicographic order of the shifted sequences

Example

Origin

Descents of cyclic permutations come up when determining the smallest number of symbols needed to realize a permutation by shifts.

E.g., the permutation 4217536 can be realized using three symbols:

2102212210	4)
102212210	2
02212210	1
2212210	7
212210	5
12210	3
2210	<u>6</u> J

lexicographic order of the shifted sequences

The number of symbols needed is related to the descents of the cycle (4, 2, 1, 7, 5, 3, 6).

Definitions

Main result Non-bijective proof Final remarks

Example

Descent sets of 5-cycles

\mathcal{C}_5	
$(1, 2, 3, 4, 5) = 2345 \cdot 1$	
(2, 1, 3, 4, 5) = 3.145.2	
$(3, 2, 1, 4, 5) = 4 \cdot 125 \cdot 3$	
$(4, 3, 2, 1, 5) = 5 \cdot 1234$	
$(1, 3, 2, 4, 5) = 34 \cdot 25 \cdot 1$	
$(1, 4, 3, 2, 5) = 45 \cdot 23 \cdot 1$	
$(3, 1, 2, 4, 5) = 24 \cdot 15 \cdot 3$	
$(3, 1, 4, 2, 5) = 45 \cdot 123$	
$(4, 3, 1, 2, 5) = 25 \cdot 134$	
$(1, 2, 4, 3, 5) = 245 \cdot 3 \cdot 1$	
$(2, 4, 1, 3, 5) = 345 \cdot 12$	
$(4, 1, 2, 3, 5) = 235 \cdot 14$	

\mathcal{C}_5	
$(2,3,1,4,5) = 4 \cdot 3 \cdot 15 \cdot 2$	
$(2,4,3,1,5) = 5 \cdot 4 \cdot 13 \cdot 2$	
$(4, 2, 3, 1, 5) = 5 \cdot 3 \cdot 124$	
$(1, 4, 2, 3, 5) = 4 \cdot 35 \cdot 2 \cdot 1$	
$(2, 1, 4, 3, 5) = 4 \cdot 15 \cdot 3 \cdot 2$	
$(2, 3, 4, 1, 5) = 5 \cdot 34 \cdot 12$	
$(3, 4, 2, 1, 5) = 5 \cdot 14 \cdot 23$	
$(4, 2, 1, 3, 5) = 3 \cdot 15 \cdot 24$	
$(1, 3, 4, 2, 5) = 35 \cdot 4 \cdot 2 \cdot 1$	
$(3, 4, 1, 2, 5) = 25 \cdot 4 \cdot 13$	
$(4, 1, 3, 2, 5) = 35 \cdot 2 \cdot 14$	
$(3, 2, 4, 1, 5) = 5 \cdot 4 \cdot 2 \cdot 13$	

・ロン ・回 と ・ ヨ ・ ・ ヨ ・ ・

Definitions

Main result Non-bijective proof Final remarks

Example

Descent sets of 5-cycles

\mathcal{C}_5	\mathcal{S}_4
$(1, 2, 3, 4, 5) = 2345 \cdot 1$	1234
(2, 1, 3, 4, 5) = 3.145.2	2.134
$(3, 2, 1, 4, 5) = 4 \cdot 125 \cdot 3$	3.124
$(4, 3, 2, 1, 5) = 5 \cdot 1234$	4.123
$(1,3,2,4,5) = 34 \cdot 25 \cdot 1$	13.24
$(1, 4, 3, 2, 5) = 45 \cdot 23 \cdot 1$	14.23
$(3, 1, 2, 4, 5) = 24 \cdot 15 \cdot 3$	23.14
$(3, 1, 4, 2, 5) = 45 \cdot 123$	34.12
$(4, 3, 1, 2, 5) = 25 \cdot 134$	24.13
$(1, 2, 4, 3, 5) = 245 \cdot 3 \cdot 1$	124.3
$(2, 4, 1, 3, 5) = 345 \cdot 12$	134.2
$(4, 1, 2, 3, 5) = 235 \cdot 14$	234.1

\mathcal{C}_5	\mathcal{S}_4
$(2,3,1,4,5) = 4 \cdot 3 \cdot 15 \cdot 2$	3.2.14
$(2,4,3,1,5) = 5 \cdot 4 \cdot 13 \cdot 2$	4.2.13
$(4, 2, 3, 1, 5) = 5 \cdot 3 \cdot 124$	4.3.12
$(1, 4, 2, 3, 5) = 4 \cdot 35 \cdot 2 \cdot 1$	3.24.1
$(2, 1, 4, 3, 5) = 4 \cdot 15 \cdot 3 \cdot 2$	2.14.3
$(2,3,4,1,5) = 5 \cdot 34 \cdot 12$	4.23.1
$(3, 4, 2, 1, 5) = 5 \cdot 14 \cdot 23$	4.13.2
(4, 2, 1, 3, 5) = 3.15.24	3.14.2
$(1,3,4,2,5) = 35 \cdot 4 \cdot 2 \cdot 1$	14.3.2
$(3, 4, 1, 2, 5) = 25 \cdot 4 \cdot 13$	24.3.1
$(4, 1, 3, 2, 5) = 35 \cdot 2 \cdot 14$	34.2.1
$(3, 2, 4, 1, 5) = 5 \cdot 4 \cdot 2 \cdot 13$	4.3.2.1

・ロン ・回と ・ヨン・

æ

Sergi Elizalde

The bijection The inverse

Main theorem

Theorem

For every n there is a bijection $\varphi : C_{n+1} \to S_n$ such that if $\pi \in C_{n+1}$ and $\sigma = \varphi(\pi)$, then

$$D(\pi) \cap [n-1] = D(\sigma).$$

・ロン ・回と ・ヨン・

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$. First step

Given $\pi \in C_{n+1}$, write it in cycle form with n+1 at the end:

 $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21) \in \mathcal{C}_{21}$

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$. First step

Given $\pi \in \mathcal{C}_{n+1}$, write it in cycle form with n+1 at the end:

 $\pi = (\underline{11}, 4, \underline{10}, 1, 7, \underline{16}, 9, 3, 5, \underline{12}, \underline{20}, 2, 6, \underline{14}, \underline{18}, 8, \underline{13}, \underline{19}, \underline{15}, \underline{17}, \underline{21}) \in \mathcal{C}_{21}$

Delete n + 1 and split at the "left-to-right maxima":

 $\sigma = (\underline{11}, 4, 10, 1, 7)(\underline{16}, 9, 3, 5, 12)(\underline{20}, 2, 6, 14, 18, 8, 13, 19, 15, 17) \in \mathcal{S}_{20}.$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$. First step

Given $\pi \in C_{n+1}$, write it in cycle form with n+1 at the end:

 $\pi = (\underline{11}, 4, \underline{10}, 1, 7, \underline{16}, 9, 3, 5, \underline{12}, \underline{20}, 2, 6, \underline{14}, \underline{18}, 8, \underline{13}, \underline{19}, \underline{15}, \underline{17}, \underline{21}) \in \mathcal{C}_{21}$

Delete n + 1 and split at the "left-to-right maxima":

 $\sigma = (\underline{11}, 4, 10, 1, 7)(\underline{16}, 9, 3, 5, 12)(\underline{20}, 2, 6, 14, 18, 8, 13, 19, 15, 17) \in \mathcal{S}_{20}.$

This map $\pi \mapsto \sigma$ is a bijection

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$. First step

Given $\pi \in \mathcal{C}_{n+1}$, write it in cycle form with n+1 at the end:

 $\pi = (\underline{11}, 4, \underline{10}, 1, 7, \underline{16}, 9, 3, 5, \underline{12}, \underline{20}, 2, 6, \underline{14}, \underline{18}, 8, \underline{13}, \underline{19}, \underline{15}, \underline{17}, \underline{21}) \in \mathcal{C}_{21}$

Delete n + 1 and split at the "left-to-right maxima":

 $\sigma = (\underline{11}, 4, 10, 1, 7)(\underline{16}, 9, 3, 5, 12)(\underline{20}, 2, 6, 14, 18, 8, 13, 19, 15, 17) \in \mathcal{S}_{20}.$

This map $\pi \mapsto \sigma$ is a bijection, but unfortunately it does not always preserve the descent set:

 $\pi(7) = 16 > \pi(8) = 13$ but $\sigma(7) = 11 < \sigma(8) = 13$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$. First step

Given $\pi \in C_{n+1}$, write it in cycle form with n+1 at the end:

 $\pi = (\underline{11}, 4, \underline{10}, 1, 7, \underline{16}, 9, 3, 5, \underline{12}, \underline{20}, 2, 6, \underline{14}, \underline{18}, 8, \underline{13}, \underline{19}, \underline{15}, \underline{17}, \underline{21}) \in \mathcal{C}_{21}$

Delete n + 1 and split at the "left-to-right maxima":

 $\sigma = (\underline{11}, 4, 10, 1, 7)(\underline{16}, 9, 3, 5, 12)(\underline{20}, 2, 6, 14, 18, 8, 13, 19, 15, 17) \in \mathcal{S}_{20}.$

This map $\pi \mapsto \sigma$ is a bijection, but unfortunately it does not always preserve the descent set:

$$\pi(7) = 16 > \pi(8) = 13$$
 but $\sigma(7) = 11 < \sigma(8) = 13$.

We say that the pair $\{7, 8\}$ is *bad*. We will fix the bad pairs.

ヘロン 人間と 人間と 人間と

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$. Fixing bad pairs

$\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$ $\sigma = (11, 4, 10, 1, 7)(16, 9, 3, 5, 12)(20, 2, 6, 14, 18, 8, 13, 19, 15, 17)$

イロン イヨン イヨン イヨン

2

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$. Fixing bad pairs

For each but the last cycle of σ , from left to right:

 $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$ $\sigma = (11, 4, 10, 1, 7)(16, 9, 3, 5, 12)(20, 2, 6, 14, 18, 8, 13, 19, 15, 17)$

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$. Fixing bad pairs

For each but the last cycle of σ , from left to right:

z := rightmost entry of the cycle.

$$\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$$

$$\sigma = (11, 4, 10, 1, 7)(16, 9, 3, 5, 12)(20, 2, 6, 14, 18, 8, 13, 19, 15, 17)$$

$$z := 7.$$

・ロン ・回と ・ヨン ・ヨン

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$. Fixing bad pairs

For each but the last cycle of σ , from left to right:

z := rightmost entry of the cycle.
 If {z, z-1} or {z, z+1} are bad, let ε = ±1 be such that {z, z+ε} is bad and σ(z+ε) is largest.

$$\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$$

$$\sigma = (11, 4, 10, 1, 7)(16, 9, 3, 5, 12)(20, 2, 6, 14, 18, 8, 13, 19, 15, 17)$$

$$\{7, 6\} \text{ and } \{7, 8\} \text{ are bad; and } \sigma(6) = 14 > 13 = \sigma(8) \Rightarrow \varepsilon := -1.$$

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$. Fixing bad pairs

For each but the last cycle of σ , from left to right:

z := rightmost entry of the cycle.
 If {z, z-1} or {z, z+1} are bad, let ε = ±1 be such that {z, z+ε} is bad and σ(z+ε) is largest.

$$\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$$

$$\sigma = (11, 4, 10, 1, 7)(16, 9, 3, 5, 12)(20, 2, 6, 14, 18, 8, 13, 19, 15, 17)$$

z := 7. $\varepsilon := -1$.Switch 7 and 6. $\varepsilon := -1$.

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$. Fixing bad pairs

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as {z, z+ε} is bad:
 1. Switch z and z+ε (in the cycle form of σ).

 $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$ $\sigma = (11, 4, 10, 1, 6)(16, 9, 3, 5, 12)(20, 2, 7, 14, 18, 8, 13, 19, 15, 17)$

z := 7. $\varepsilon := -1.$ Switch 7 and 6. $\langle \Box \rangle \langle \overline{\sigma} \rangle \langle \overline{z} \rangle \langle \overline{z} \rangle \langle \overline{z} \rangle \langle \overline{z} \rangle$

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$. Fixing bad pairs

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z + \varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them.

$$\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$$

 $\sigma = (11, 4, 10, 1, 6)(16, 9, 3, 5, 12)(20, 2, 7, 14, 18, 8, 13, 19, 15, 17)$

z := 7. Switch 7 and 6. Switch 1 and 2.

$$\varepsilon := -1.$$

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$. Fixing bad pairs

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z + \varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them.

$$\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$$

 $\sigma = (11, 4, 10, 2, 6)(16, 9, 3, 5, 12)(20, 1, 7, 14, 18, 8, 13, 19, 15, 17)$

z := 7. Switch 7 and 6. Switch 1 and 2.

$$\varepsilon := -1.$$

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$. Fixing bad pairs

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z + \varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.

$$\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$$

 $\sigma = (11, 4, \underline{10}, 2, 6)(16, 9, 3, 5, 12)(\underline{20}, 1, 7, 14, 18, 8, 13, 19, 15, 17)$

z := 7. Switch 7 and 6. Switch 1 and 2. $\varepsilon := -1.$

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$. Fixing bad pairs

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z + \varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.
- $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$
- $\sigma = (11, 4, 10, 2, 6)(16, 9, 3, 5, 12)(20, 1, 7, 14, 18, 8, 13, 19, 15, 17)$
- *z* := 6.

$$\varepsilon := -1.$$

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$. Fixing bad pairs

For each but the last cycle of σ , from left to right:

- z := rightmost entry of the cycle.
 If {z, z-1} or {z, z+1} are bad, let ε = ±1 be such that {z, z+ε} is bad and σ(z+ε) is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z + \varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.
- $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$
- $\sigma = (11, 4, 10, 2, 6)(16, 9, 3, 5, 12)(20, 1, 7, 14, 18, 8, 13, 19, 15, 17)$
- z := 6. {6,5} is bad.

 $\varepsilon := -1.$

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$. Fixing bad pairs

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z + \varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.
- $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$
- $\sigma = (11, 4, 10, 2, 6)(16, 9, 3, 5, 12)(20, 1, 7, 14, 18, 8, 13, 19, 15, 17)$
- *z* := 6.

Switch 6 and 5.

$$\varepsilon := -1.$$

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$. Fixing bad pairs

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z + \varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.

 $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$

- $\sigma = (11, 4, 10, 2, 5)(16, 9, 3, 6, 12)(20, 1, 7, 14, 18, 8, 13, 19, 15, 17)$
- *z* := 6.

Switch 6 and 5.

$$\varepsilon := -1.$$

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$. Fixing bad pairs

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z + \varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.

 $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$

- $\sigma = (11, 4, 10, 2, 5)(16, 9, 3, 6, 12)(20, 1, 7, 14, 18, 8, 13, 19, 15, 17)$
- *z* := 6.

Switch 6 and 5. Switch 2 and 3.

 $\varepsilon := -1.$

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$. Fixing bad pairs

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z + \varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.

 $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$

- $\sigma = (11, 4, 10, 3, 5)(16, 9, 2, 6, 12)(20, 1, 7, 14, 18, 8, 13, 19, 15, 17)$
- *z* := 6.

Switch 6 and 5. Switch 2 and 3.

 $\varepsilon := -1.$

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$. Fixing bad pairs

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:

z := 6.

- 1. Switch z and $z + \varepsilon$ (in the cycle form of σ).
- 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
- 3. z := new rightmost entry of the cycle.

 $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$

 $\sigma = (11, 4, 10, 3, 5)(16, 9, 2, 6, 12)(20, 1, 7, 14, 18, 8, 13, 19, 15, 17)$

Switch 6 and 5. Switch 2 and 3. Switch 10 and 9. \Rightarrow \Rightarrow \Rightarrow \Rightarrow

 $\varepsilon := -1$

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$. Fixing bad pairs

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:

z := 6.

- 1. Switch z and $z + \varepsilon$ (in the cycle form of σ).
- 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
- 3. z := new rightmost entry of the cycle.

 $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$

 $\sigma = (11, \underline{4}, 9, 3, 5)(\underline{16}, \underline{10}, 2, 6, 12)(20, 1, 7, 14, 18, 8, 13, 19, 15, 17)$

 $\varepsilon := -1$

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$. Fixing bad pairs

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z + \varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.
- $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$
- $\sigma = (11, 4, 9, 3, 5)(16, 10, 2, 6, 12)(20, 1, 7, 14, 18, 8, 13, 19, 15, 17)$
- z := 5.

$$\varepsilon := -1.$$

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$. Fixing bad pairs

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z + \varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.
- $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$
- $\sigma = (11, 4, 9, 3, 5)(16, 10, 2, 6, 12)(20, 1, 7, 14, 18, 8, 13, 19, 15, 17)$
- z := 5. {5,4} is OK, so we move on to the second cycle.

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$. Fixing bad pairs

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle.If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z + \varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.
- $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$
- $\sigma = (11, 4, 9, 3, 5)(16, 10, 2, 6, 12)(20, 1, 7, 14, 18, 8, 13, 19, 15, 17)$
- z := 12.

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$. Fixing bad pairs

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z + \varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.
- $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$
- $\sigma = (11, 4, 9, 3, 5)(16, 10, 2, 6, 12)(20, 1, 7, 14, 18, 8, 13, 19, 15, 17)$
- z := 12. {12, 11} is OK but {12, 13} is bad $\Rightarrow \varepsilon := 1$.

・ロト ・聞 ト ・ ヨト ・ ヨト … ヨ

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$. Fixing bad pairs

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z + \varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.
- $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$
- $\sigma = (11, 4, 9, 3, 5)(16, 10, 2, 6, 12)(20, 1, 7, 14, 18, 8, 13, 19, 15, 17)$

z := 12.

Switch 12 and 13.

$$\varepsilon := 1.$$

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$. Fixing bad pairs

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z + \varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.
- $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$
- $\sigma = (11, 4, 9, 3, 5)(16, 10, 2, 6, 13)(20, 1, 7, 14, 18, 8, 12, 19, 15, 17)$
- z := 12.

Switch 12 and 13.

$$\varepsilon := 1.$$

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$. Fixing bad pairs

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.

 $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$

 $\sigma = (11, 4, 9, 3, 5)(16, 10, 2, \underline{6}, 13)(20, 1, 7, 14, 18, \underline{8}, 12, 19, 15, 17)$

z := 12.

Switch 12 and 13.

$$\varepsilon := 1.$$

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$. Fixing bad pairs

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.

 $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$

- $\sigma = (11, 4, 9, 3, 5)(16, 10, 2, 6, 13)(20, 1, 7, 14, 18, 8, 12, 19, 15, 17)$
- z := 13.

$$\varepsilon := 1.$$

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$. Fixing bad pairs

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.
- $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$
- $\sigma = (11, 4, 9, 3, 5)(16, 10, 2, 6, 13)(20, 1, 7, 14, 18, 8, 12, 19, 15, 17)$
- z := 13. {13, 14} is bad.

 $\varepsilon := 1.$

イロン イ部ン イヨン イヨン 三日

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$. Fixing bad pairs

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z + \varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.
- $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$
- $\sigma = (11, 4, 9, 3, 5)(16, 10, 2, 6, 13)(20, 1, 7, 14, 18, 8, 12, 19, 15, 17)$

z := 13.

Switch 13 and 14.

$$\varepsilon := 1.$$

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$. Fixing bad pairs

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z + \varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.
- $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$
- $\sigma = (11, 4, 9, 3, 5)(16, 10, 2, 6, 14)(20, 1, 7, 13, 18, 8, 12, 19, 15, 17)$

z := 13.

Switch 13 and 14.

$$\varepsilon := 1.$$

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$. Fixing bad pairs

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.

 $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$

 $\sigma = (11, 4, 9, 3, 5)(16, 10, 2, 6, 14)(20, 1, 7, 13, 18, 8, 12, 19, 15, 17)$

z := 13. Switch 13 and 14. Switch 6 and 7. $\varepsilon := 1.$

・ロト ・回ト ・ヨト ・ヨト

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$. Fixing bad pairs

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.

 $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$

 $\sigma = (11, 4, 9, 3, 5)(16, 10, 2, 7, 14)(20, 1, 6, 13, 18, 8, 12, 19, 15, 17)$

z := 13. Switch 13 and 14. Switch 6 and 7. $\varepsilon := 1.$

・ロト ・回ト ・ヨト ・ヨト

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$. Fixing bad pairs

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.

 $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$

 $\sigma = (11, 4, 9, 3, 5)(16, 10, 2, 7, 14)(20, 1, 6, 13, 18, 8, 12, 19, 15, 17)$

z := 13. $\varepsilon := 1$. Switch 13 and 14. Switch 6 and 7. Switch 2 and 1.

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$. Fixing bad pairs

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.

 $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$

 $\sigma = (11, 4, 9, 3, 5)(16, \underline{10}, 1, 7, 14)(\underline{20}, 2, 6, 13, 18, 8, 12, 19, 15, 17)$

z := 13. $\varepsilon := 1$. Switch 13 and 14. Switch 6 and 7. Switch 2 and 1.

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$. Fixing bad pairs

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.

 $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$

- $\sigma = (11, 4, 9, 3, 5)(16, 10, 1, 7, 14)(20, 2, 6, 13, 18, 8, 12, 19, 15, 17)$
- z := 14.

 $\varepsilon := 1.$

イロン イ部ン イヨン イヨン 三日

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$. Fixing bad pairs

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.
- $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$
- $\sigma = (11, 4, 9, 3, 5)(16, 10, 1, 7, 14)(20, 2, 6, 13, 18, 8, 12, 19, 15, 17)$
- z := 14. {14, 15} is bad.

 $\varepsilon := 1.$

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$. Fixing bad pairs

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z + \varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.

 $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$

 $\sigma = (11, 4, 9, 3, 5)(16, 10, 1, 7, 14)(20, 2, 6, 13, 18, 8, 12, 19, 15, 17)$

z := 14.

Switch 14 and 15.

$$\varepsilon := 1.$$

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$. Fixing bad pairs

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z + \varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.

 $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$

 $\sigma = (11, 4, 9, 3, 5)(16, 10, 1, 7, 15)(20, 2, 6, 13, 18, 8, 12, 19, 14, 17)$

z := 14.

Switch 14 and 15.

$$\varepsilon := 1.$$

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$. Fixing bad pairs

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.

 $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$

 $\sigma = (11, 4, 9, 3, 5)(16, 10, 1, \underline{7}, 15)(20, 2, 6, 13, 18, 8, 12, \underline{19}, 14, 17)$

z := 14.

Switch 14 and 15.

$$\varepsilon := 1.$$

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$. Fixing bad pairs

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.

 $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$

- $\sigma = (11, 4, 9, 3, 5)(16, 10, 1, 7, 15)(20, 2, 6, 13, 18, 8, 12, 19, 14, 17)$
- z := 15.

 $\varepsilon := 1.$

<ロ> (四) (四) (三) (三) (三)

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$. Fixing bad pairs

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.
- $\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$
- $\sigma = (11, 4, 9, 3, 5)(16, 10, 1, 7, 15)(20, 2, 6, 13, 18, 8, 12, 19, 14, 17)$
- z := 15. {15, 16} is OK, so we are done.

The bijection The inverse

The bijection $\varphi : \mathcal{C}_{n+1} \to \mathcal{S}_n$. Fixing bad pairs

For each but the last cycle of σ , from left to right:

- ► z := rightmost entry of the cycle. If $\{z, z-1\}$ or $\{z, z+1\}$ are bad, let $\varepsilon = \pm 1$ be such that $\{z, z+\varepsilon\}$ is bad and $\sigma(z+\varepsilon)$ is largest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z+\varepsilon$ (in the cycle form of σ).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the cycle.

 $\begin{aligned} \pi &= (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21) \\ \varphi(\pi) &= (11, 4, 9, 3, 5)(16, 10, 1, 7, 15)(20, 2, 6, 13, 18, 8, 12, 19, 14, 17) \\ \text{Define } \varphi(\pi) &= \sigma. \end{aligned}$

The bijection The inverse

The descent sets are preserved

$$\pi = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)$$

$$\varphi(\pi) = (11, 4, 9, 3, 5)(16, 10, 1, 7, 15)(20, 2, 6, 13, 18, 8, 12, 19, 14, 17)$$

In one-line notation,

 $\pi = 7 \cdot 6 \cdot 5 \ 10 \ 12 \ 14 \ 16 \cdot 13 \cdot 3 \cdot 1 \ 4 \ 20 \cdot 19 \cdot 18 \cdot 16 \cdot 9 \ 21 \cdot 8 \ 15 \cdot 2 \ 11$ $\varphi(\pi) = 7 \cdot 6 \cdot 5 \ 9 \ 11 \ 13 \ 15 \cdot 12 \cdot 3 \cdot 1 \ 4 \ 19 \cdot 18 \cdot 17 \cdot 16 \cdot 10 \ 20 \cdot 8 \ 14 \cdot 2$

イロン イヨン イヨン イヨン

æ

The bijection The inverse

The inverse map $\varphi^{-1} : S_n \to C_{n+1}$. First step

Given $\sigma \in S_n$, write it in cycle form with the largest element of each cycle first, ordering the cycles by increasing first element:

 $\sigma = (11, 4, 9, 3, 5)(16, 10, 1, 7, 15)(20, 2, 6, 13, 18, 8, 12, 19, 14, 17) \in \mathcal{S}_{20}.$

・ロン ・回と ・ヨン・

The bijection The inverse

The inverse map $\varphi^{-1} : \mathcal{S}_n \to \mathcal{C}_{n+1}$. First step

Given $\sigma \in S_n$, write it in cycle form with the largest element of each cycle first, ordering the cycles by increasing first element:

 $\sigma = (11, 4, 9, 3, 5)(16, 10, 1, 7, 15)(20, 2, 6, 13, 18, 8, 12, 19, 14, 17) \in \mathcal{S}_{20}.$

Remove parentheses and append n + 1:

 $\pi = (11, 4, 9, 3, 5, 16, 10, 1, 7, 15, 20, 2, 6, 13, 18, 8, 12, 19, 14, 17, 21) \in \mathcal{C}_{21}.$

The bijection The inverse

The inverse map $\varphi^{-1} : \mathcal{S}_n \to \mathcal{C}_{n+1}$. First step

Given $\sigma \in S_n$, write it in cycle form with the largest element of each cycle first, ordering the cycles by increasing first element:

 $\sigma = (11, 4, 9, 3, 5)(16, 10, 1, 7, 15)(20, 2, 6, 13, 18, 8, 12, 19, 14, 17) \in \mathcal{S}_{20}.$

Remove parentheses and append n + 1:

 $\pi = (11, 4, 9, 3, 5, 16, 10, 1, 7, 15, 20, 2, 6, 13, 18, 8, 12, 19, 14, 17, 21) \in \mathcal{C}_{21}.$

A pair $\{i, i+1\}$ is bad if $\pi(i) > \pi(i+1)$ but $\sigma(i) < \sigma(i+1)$, or viceversa. We will fix the bad pairs.

The bijection The inverse

The inverse map $\varphi^{-1} : \mathcal{S}_n \to \mathcal{C}_{n+1}$. First step

Given $\sigma \in S_n$, write it in cycle form with the largest element of each cycle first, ordering the cycles by increasing first element:

 $\sigma = (11, 4, 9, 3, 5)(16, 10, 1, 7, 15)(20, 2, 6, 13, 18, 8, 12, 19, 14, 17) \in \mathcal{S}_{20}.$

Remove parentheses and append n + 1:

 $\pi = (11, 4, 9, 3, 5, 16, 10, 1, 7, 15, 20, 2, 6, 13, 18, 8, 12, 19, 14, 17, 21) \in \mathcal{C}_{21}.$

A pair $\{i, i+1\}$ is bad if $\pi(i) > \pi(i+1)$ but $\sigma(i) < \sigma(i+1)$, or viceversa. We will fix the bad pairs.

Call *blocks* the pieces of π between removed parentheses.

The bijection The inverse

The inverse map $\varphi^{-1} : \mathcal{S}_n \to \mathcal{C}_{n+1}$. Fixing bad pairs

For each but the last block of π , from right to left:

- z := rightmost entry of the block.
 If {z, z-1} or {z, z+1} are bad, let ε = ±1 be such that {z, z+ε} is bad and σ(z+ε) is smallest.
- Repeat for as long as $\{z, z+\varepsilon\}$ is bad:
 - 1. Switch z and $z + \varepsilon$ (in the cycle form of π).
 - 2. If the elements preceding the last switched entries have consecutive values, switch them. Repeat 2.
 - 3. z := new rightmost entry of the block.

We obtain $\pi = \varphi^{-1}(\sigma)$.

・ロト ・回ト ・ヨト ・ヨト

Necklaces

 $X = \{x_1, x_2, \dots\}_{<}$ linearly ordered alphabet.

A *necklace* of length ℓ is a circular arrangement of ℓ beads labeled with elements of X, up to cyclic rotation.

・ロン ・回と ・ヨン・

Necklaces

 $X = \{x_1, x_2, \dots\}_{<}$ linearly ordered alphabet.

A *necklace* of length ℓ is a circular arrangement of ℓ beads labeled with elements of X, up to cyclic rotation.

Given a multiset of necklaces,

 its type is the partition whose parts are the lengths of the necklaces;

イロト イヨト イヨト イヨト

Necklaces

 $X = \{x_1, x_2, \dots\}_{<}$ linearly ordered alphabet.

A *necklace* of length ℓ is a circular arrangement of ℓ beads labeled with elements of X, up to cyclic rotation.

Given a multiset of necklaces,

- its type is the partition whose parts are the lengths of the necklaces;
- ▶ its evaluation is the monomial x₁^{e₁}x₂^{e₂</sub>... where e_i is the number of beads with label x_i.}

・ロン ・四マ ・ヨマ ・ヨマ

Permutations and necklaces

Theorem (Gessel, Reutenauer '93) $|\{\pi \in S_n \text{ with cycle structure } \lambda \text{ and descent composition } C\}| = \langle S_C, L_\lambda \rangle,$

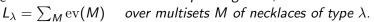
→ ∃ →

Permutations and necklaces

Theorem (Gessel, Reutenauer '93) $|\{\pi \in S_n \text{ with cycle structure } \lambda \text{ and descent composition } C\}| = \langle S_C, L_\lambda \rangle.$

where

 S_C = skew Schur function corresponding to C,



∃ >

Permutations and necklaces

Theorem (Gessel, Reutenauer '93) $|\{\pi \in S_n \text{ with cycle structure } \lambda \text{ and descent composition } C\}|$ $= \langle S_C, L_\lambda \rangle,$ where $S_C = skew Schur function corresponding to C,$ $L_\lambda = \sum_M ev(M)$ over multisets M of necklaces of type λ .

Corollary (Gessel, Reutenauer '93) Let $I = \{i_1, i_2, ..., i_k\}_{\leq} \subseteq [n-1], \ \lambda \vdash n.$ Then $|\{\pi \in S_n \text{ with cycle structure } \lambda \text{ and } D(\pi) \subseteq I\}| = |\{\text{multisets of necklaces of type } \lambda \text{ and} \\ evaluation \ x_1^{i_1} x_{2_{+} \ldots + 1}^{i_2 - i_1} \dots x_{k_{+} 1}^{i_k - i_k} x_{k+1}^{n-i_k}]|.$

Non-bijective proof using Gessel-Reutenauer

$\text{Goal}: |\{\pi \in \mathcal{C}_{n+1} : D(\pi) \cap [n-1] = I\}| = |\{\sigma \in \mathcal{S}_n : D(\sigma) = I\}|.$

Sergi Elizalde Descent sets of cyclic permutations

Non-bijective proof using Gessel-Reutenauer

Goal: $|\{\pi \in \mathcal{C}_{n+1} : D(\pi) \cap [n-1] = I\}| = |\{\sigma \in \mathcal{S}_n : D(\sigma) = I\}|.$

Let $I = \{i_1, i_2, \dots, i_k\}_{<}$, $I' = I \cup \{n\}$. By the previous corollary, $|\{\pi \in C_{n+1} \text{ with } D(\pi) \subseteq I'\}| =$ $|\{\text{necklaces with evaluation } x_1^{i_1} x_2^{i_2 - i_1} \dots x_k^{i_k - i_{k-1}} x_{k+1}^{n - i_k} x_{k+2}\}|.$

イロン イ部ン イヨン イヨン 三日

Non-bijective proof using Gessel-Reutenauer

Goal: $|\{\pi \in \mathcal{C}_{n+1} : D(\pi) \cap [n-1] = I\}| = |\{\sigma \in \mathcal{S}_n : D(\sigma) = I\}|.$

Let $I = \{i_1, i_2, \dots, i_k\}_{<}$, $I' = I \cup \{n\}$. By the previous corollary, $|\{\pi \in \mathcal{C}_{n+1} \text{ with } D(\pi) \cap [n-1] \subseteq I\}| =$ $|\{\text{necklaces with evaluation } x_1^{i_1} x_2^{i_2 - i_1} \dots x_k^{i_k - i_{k-1}} x_{k+1}^{n - i_k} x_{k+2}\}|.$

- 4 同下 4 日下 4 日下 - 日

Non-bijective proof using Gessel-Reutenauer

Goal: $|\{\pi \in \mathcal{C}_{n+1} : D(\pi) \cap [n-1] = I\}| = |\{\sigma \in \mathcal{S}_n : D(\sigma) = I\}|.$

Let $I = \{i_1, i_2, \dots, i_k\}_{<}$, $I' = I \cup \{n\}$. By the previous corollary, $|\{\pi \in \mathcal{C}_{n+1} \text{ with } D(\pi) \cap [n-1] \subseteq I\}| =$ $|\{\text{necklaces with evaluation } x_1^{i_1} x_2^{i_2-i_1} \dots x_k^{i_k-i_{k-1}} x_{k+1}^{n-i_k} x_{k+2}\}|.$

Choosing first the bead labeled x_{k+2} , the # of such necklaces is

$$\binom{n}{i_1, i_2 - i_1, \ldots, i_k - i_{k-1}, n - i_k},$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Non-bijective proof using Gessel-Reutenauer

Goal: $|\{\pi \in \mathcal{C}_{n+1} : D(\pi) \cap [n-1] = I\}| = |\{\sigma \in \mathcal{S}_n : D(\sigma) = I\}|.$

Let $I = \{i_1, i_2, \dots, i_k\}_{<}, I' = I \cup \{n\}$. By the previous corollary, $|\{\pi \in C_{n+1} \text{ with } D(\pi) \cap [n-1] \subseteq I\}| =$ $|\{\text{necklaces with evaluation } x_1^{i_1} x_2^{i_2 - i_1} \dots x_k^{i_k - i_{k-1}} x_{k+1}^{n - i_k} x_{k+2}\}|.$

Choosing first the bead labeled x_{k+2} , the # of such necklaces is

$$\binom{n}{i_1, i_2 - i_1, \ldots, i_k - i_{k-1}, n - i_k},$$

which is precisely $|\{\sigma \in S_n : D(\sigma) \subseteq I\}|$.

- 4 同下 4 日下 4 日下 - 日

Non-bijective proof using Gessel-Reutenauer

Goal: $|\{\pi \in \mathcal{C}_{n+1} : D(\pi) \cap [n-1] = I\}| = |\{\sigma \in \mathcal{S}_n : D(\sigma) = I\}|.$

Let $I = \{i_1, i_2, \dots, i_k\}_{<}$, $I' = I \cup \{n\}$. By the previous corollary, $|\{\pi \in \mathcal{C}_{n+1} \text{ with } D(\pi) \cap [n-1] \subseteq I\}| =$ $|\{\text{necklaces with evaluation } x_1^{i_1} x_2^{i_2-i_1} \dots x_k^{i_k-i_{k-1}} x_{k+1}^{n-i_k} x_{k+2}\}|.$

Choosing first the bead labeled x_{k+2} , the # of such necklaces is

$$\binom{n}{i_1, i_2 - i_1, \ldots, i_k - i_{k-1}, n - i_k},$$

which is precisely $|\{\sigma \in S_n : D(\sigma) \subseteq I\}|$. We have shown that

$$|\{\pi \in \mathcal{C}_{n+1} : D(\pi) \cap [n-1] \subseteq I\}| = |\{\sigma \in \mathcal{S}_n : D(\sigma) \subseteq I\}|.$$

for all $I \subseteq [n-1]$.

Non-bijective proof using Gessel-Reutenauer

Goal: $|\{\pi \in \mathcal{C}_{n+1} : D(\pi) \cap [n-1] = I\}| = |\{\sigma \in \mathcal{S}_n : D(\sigma) = I\}|.$

Let $I = \{i_1, i_2, \dots, i_k\}_{<}$, $I' = I \cup \{n\}$. By the previous corollary, $|\{\pi \in \mathcal{C}_{n+1} \text{ with } D(\pi) \cap [n-1] \subseteq I\}| =$ $|\{\text{necklaces with evaluation } x_1^{i_1} x_2^{i_2-i_1} \dots x_k^{i_k-i_{k-1}} x_{k+1}^{n-i_k} x_{k+2}\}|.$

Choosing first the bead labeled x_{k+2} , the # of such necklaces is

$$\binom{n}{i_1, i_2 - i_1, \ldots, i_k - i_{k-1}, n - i_k},$$

which is precisely $|\{\sigma \in S_n : D(\sigma) \subseteq I\}|$. We have shown that

$$|\{\pi \in \mathcal{C}_{n+1} : D(\pi) \cap [n-1] \subseteq I\}| = |\{\sigma \in \mathcal{S}_n : D(\sigma) \subseteq I\}|.$$

for all $I \subseteq [n-1]$. The statement follows by inclusion-exclusion.

An equivalent statement

Let T_n be the set of *n*-cycles in one-line notation in which one entry has been replaced with 0.

 $\mathcal{T}_3 = \{031, 201, 230, 012, 302, 310\}.$

- 4 回 2 - 4 □ 2 - 4 □

An equivalent statement

Let T_n be the set of *n*-cycles in one-line notation in which one entry has been replaced with 0.

 $\mathcal{T}_3 = \{031, 201, 230, 012, 302, 310\}.$

Clearly, $|T_n| = n!$. Descents are defined in the usual way.

・ロト ・回ト ・ヨト ・ヨト

An equivalent statement

Let T_n be the set of *n*-cycles in one-line notation in which one entry has been replaced with 0.

 $\mathcal{T}_3 = \{031, 201, 230, 012, 302, 310\}.$

Clearly, $|T_n| = n!$. Descents are defined in the usual way.

Corollary

For every n there is a bijection between T_n and S_n preserving the descent set.

Example:

イロン イヨン イヨン イヨン

THANK YOU

Sergi Elizalde Descent sets of cyclic permutations

◆□ → ◆□ → ◆ □ → ◆ □ → ●

æ