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Abstract

We study the lifting of linear systems on curves in polarized K3 surfaces and
prove a bounded version of the Donagi-Morrison conjecture for rank 3 linear
systems. Using these developments, and a study of Lazarsfeld—-Mukai bundles,
we prove that a polarized K3 surface of genus g < 17 is Brill-Noether special if
and only if a curve in the polarization class is Brill-Noether special.

Brill-Noether Theory (Curves)

Let C be a curve and A € Pic(C) a line bundle. We say A is a ¢, when h’(C, A) =
r+1and deg(A) = d. The Clifford index of A'isv(A) = d — 2r. The Clifford index of
C'is v(C) == min{y(A)|A € Pic(C), h'(C, A), h}(C, A) > 2}.

The Brill-Noether theorem states that when

plg,rd)= g —(r+1)(g—d+r)=>0,
BeNus  pO(CLA)  RY(Cwe—A)

then C admits a gi;. Therefore v(C) < [4].

Moreover, if p(g,r,d) < 0 then a general curve of genus g has no g. A line bundle
A with p(A) < 0 is called Brill-Noether special, and a curve admitting such a line
bundle is also called Brill-Noether special.

Brill-Noether Theory (K3 surfaces)

Let (S, H) be a polarized K3 surface of genus g (degree 2g —2). Thatis, H* = 29 —2,
and a smooth curve C' € |H| has genus g.

Definition: [Mukai] (S, H) is Brill-Noether special if there is a nontrivial
J # H € Pic(S) such that
g—h'(S, (S, H — J) < 0.
Flse (S, H) is called Brill-Noether general.
Proposition: If (S, H) is Brill-Noether special, then C' is Brill-Noether special.

Theorem [4]: If Pic(S) = ZH, then C € |H| is Brill-Noether general.
So if C'is Brill-Noether special, then rk Pic(S) > 2.

In particular, Pic(S) admits a primitive embedding of the lattice

H L
L d 2r—2

In the moduli space K, of polarized K3 surfaces of genus g, there is a Noether-
Lefschetz divisor K}, ; parameterizing such polarized K3 surfaces.

Conjecture and Theorem

Brill-Noether special K3 conjecture: Let (S, H) be a polarized K3 surface
of genus g > 2. Then (S, H) is Brill-Noether special if and only if a curve C' € |H|
s Brill-Noether special.

Strategy: Suppose that C admits a Brill-Noether special line bundle A. Then
find a Donagi-Morrison lift M € Pic(.S) of A and use M to find the required line
bundle J making (.5, H) Brill-Noether special.

Theorem [Auel-H.]: The conjecture holds in genus 2 < g < 17

In genus > 17, similar techniques can prove the conjecture, however, additional
results regarding lifts of Brill-Noether special line bundles are needed.
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Lattice Restrictions

For a polarized K3 surface with Pic(S) = A7, to exist, the Hodge index theorem
implies

Alg,r,d) = disc(A, 4) =4(r —1)(g — 1) — d* < 0.

Proposition [3]: The locus of Brill-Noether special K3 surfaces in K, isaunion
of the Noether-Lefschetz divisors K;)d satisfying2 <d < g—1, A(g,r,d) < 0, and
plg,r,d) <.

Lifting Brill-Noether Special Line Bundles

Let A € Pic(C') be a Brill-Noether special line bundle. We are interested in finding
a lift of A to a line bundle M € Pic(S). We do this by studying the lifting of line
bundles on polarized K3 surfaces.

Donagi-Morrison Conjecture [1, 6]: Let (S, H) be a polarized K3 surface
and C' € |H| be a smooth irreducible curve of genus > 2. Suppose A is a complete

basepoint free g, on C such thatd < g — 1 and p(g,r,d) < 0. Then there exists a
ine bundle M € Pic(S) adapted to |H| such that

= |A| is contained in the restriction of |M| to C', and
*1(M @ Oc) < ~(A).

The line bundle M is called a Donagi-Morrison lift of A.

Donagi and Morrison verified the Donagi-Morrison conjecture for r = 1, and Lelli-
Chiesa verified it for r = 2 [1, 5] and when v(A) = v(C) [6]. These lifting results
prove the Brill-Noether special K3 conjecture when ~v(A) < ~(C).

Genus > 14

In genus g > 14, there are Brill-Noether special line bundles with v(A) > ~(C).

In genus 14, a general curve has Clifford index v(C') = 6, however there are two
Brill-Noether line bundles with v = 7: g%, and g¢3s.

Lifting ¢s

Theorem [2]: Let (S, H) be a polarized K3 surface of genus ¢ # 2,3, 4,8, and
C' € |H| a smooth irreducible curve of Clifford index v(C'). Then there is a
constant k(v(C'), Pic(S)) such that if d < k then the Donagi—-Morrison conjecture

holds for any g3 on C.

Proof Idea

Not every Donagi-Morrison lift M makes (.S, H) Brill-Noether special!!
Find new line bundle K € Pic(S).

H M K
H?2g—2 e K.H .
C
M e 9s—9 K = Picld)

K KH KM K?

Maybe some combination of H, M, and K will work!
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Lazarsfeld-Mukai Bundles

We define a bundle F 4 on S via the short exact sequence
O—*FQA—J‘]O(O, A) R Og-Y L*(A)—O.
Dualizing gives Ec 4 = I 4 (the LM bundle associated to A on C) sitting in the

short exact sequence
O—*HO(C, A)v X OS—*EC’A—*L*(WC’ X A\/)—O;
The LM bundle E¢ 4 is like a lift of A to a vector bundle on S.

Let Ec 4 be a LM bundle associated to a basepoint free line bundle A of type g
on C' C S, then:

k=r+1l,e=H=[C],c,=d

« Ec 4 is globally generated off the base locus of t.(we ® AY)
- If p(A) < 0, then E¢ 4 is not stable

Proposition: Suppose N € Pic(S) is a globally generated line bundle and

0=+ N—=Eca—E—0
s exact, with E stable. Then M :=det E is a Donagi—-Morrison lift of A.

Generalized Lazarsfeld-Mukai Bundles

Definition: A generalized Lazarsfeld-Mukai bundle is a torsion free coherent sheaf
E such that h*(S, E') = 0 and either

(1) £ is locally free and globally generated off finitely many points; or

(1) E is globally generated.

The Clifford index of E is y(E) := co(E) — 2(rk(E) — 1).

Proposition: When A and we ® AY are basepoint free, the quotient E :=
Fec 4/N is a generalized Lazarsfeld-Mukai bundle of type (ll).

*V(Eca) = d—2r =5(A)
Y (E) =7(A) = M.H + M*+2"="~(A) = v(M|c)

Genus < 17: Canassume 0 < y(E) < 2,and E = Ep g for a smooth irreducible
curve D and line bundle B. Lift B to K € Pic(S). Taking J = M orJ =M — K
works!
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