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Abstract Much research has recently been devoted to jointly sparse (JS) signal recovery from
multiple measurement vectors (MMV) using `2,1 regularization, which is often more effective than
performing separate recoveries using standard sparse recovery techniques. However, JS methods
are difficult to parallelize due to their inherent coupling. The variance based joint sparsity (VBJS)
algorithm was recently introduced in [1]. VBJS is based on the observation that the pixel-wise
variance across signals convey information about their shared support, motivating the use of a
weighted `1 JS algorithm, where the weights depend on the information learned from calculated
variance. Specifically, the `1 minimization should be more heavily penalized in regions where the
corresponding variance is small, since it is likely there is no signal there. This paper expands on
the original method, notably by introducing weights that ensure accurate, robust, and cost efficient
recovery using both `1 and `2 regularization. Moreover, this paper shows that the VBJS method
can be applied in situations where some of the measurement vectors may misrepresent the unknown
signals or images of interest, which is illustrated in several numerical examples.

Keywords multiple measurement vectors · joint sparsity · image reconstruction · false data
injections;
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1 Introduction

Recovering sparse signals and piecewise smooth functions from under-sampled and noisy data has
been a heavily investigated topic over the past decade. Typical algorithms minimize the `1 norm
of an approximation of a sparse feature (e.g. wavelets, gradients, or edges) of the solution so that
the reconstructed solution will preserve sparsity in its corresponding sparse domain. A weighted
`1 reconstruction algorithm was introduced in [8] to reconcile the difference between the “true”
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sparsity `0 norm and the surrogate `1. Sparse signal recovery was accomplished by a solving a
sequence of weighted `1 minimization problems, with the weights iteratively updated at each step.
As was demonstrated there, updating the weights yielded successively improved estimations of the
non-zero coefficient locations, and consequently relaxes standard sampling rate requirements for
sparse signal recovery. An adjustment for the weight calculation was proposed in [10] resulting
in an improvement to the iterative reweighting algorithm. An adaptively weighted total variation
(TV) regularization algorithm, where the spatially adaptive weights were based on the difference
of values between neighboring pixels, was introduced in [25]. A different weighting technique was
developed in [9] to reduce the staircase effect of TV regularization. An adaptive function was
used along with new parameters to balance the trade off between penalizing discontinuities and
recovering sharp edges. While the method accomplishes the goal of allowing smooth transitions
without reducing sharp edges, the mathematical formulation is challenging and uniqueness is not
guaranteed. Further weighted `1 literature can be found at [8–10,25,39,40] and references therein.

In many inverse problems, it may be possible to acquire multiple measurement vectors (MMVs)
of the unknown signal or image, [2, 11, 12, 16–18, 24, 30]. MMV collection is especially useful when
trying to recover solutions of an underdetermined system when the MMVs have the same, but
unknown, sparsity structure. Techniques exploiting this type of commonality, referred to as joint
sparsity (JS) methods, can be developed by extending the commonly used single measurement
vector (SMV) algorithms for sparse solutions, [12]. Additional examples of this can be found in [11,
21,33,35,37] and references therein. In particular, jointly sparse vectors are often recovered using the
popular `2,1 minimization, [11,14,31,42,44], which was thoroughly analyzed in [16,17]. Conditions
for guaranteeing improvements over SMV were determined for a class of MMV techniques in [16]
and moreover, it was shown in [17] that under mild conditions the probability of not recovering a
sparse vector with high probability (based on a chosen threshold) using `2,1 regularization decays
exponentially with the increase of measurements. Various algorithms are used to implement `2,1
regularization, including the alternating direction method of multipliers (ADMM), split Bregman,
joint-OMP, and “reduce-and-boost”, [26,34,42]. An algorithm is typically chosen to yield the most
efficiency for the particular problem at hand (for example, based on problem complexity). In this
paper we use ADMM, and note that while other methods may yield faster convergence for our
chosen examples, in general `2,1 regularization techniques are inherently coupled, making them
difficult to parallelize.

While much work has been done on designing weighted `p (specifically `1) reconstruction meth-
ods for SMV, and in constructing joint sparsity MMV methods using the `2,1 norm, there has been
less work devoted to improving MMV through weighted `p minimization. Three notable investiga-
tions include: (i) [31], where the SMV weights were adapted from those in [8] to `2,1 minimization for
the problem of multi-channel electrocardiogram signal recovery. Although the technique enhances
the sparseness of the solution and reduce the number of measurements required for accurate recov-
ery, it requires hand tuning of parameters. (ii) [44], where a weighted `2,1 minimization algorithm
is used for direction of arrival estimation, high resolution radar imaging and other sparse recovery
related problems using random measurement matrices. The singular value decomposition is used
to exploit the relationship between the signal subspace and the noise subspace for designing the
weights. (iii) [18], where a shape-adaptive jointly sparse classification method for hyperspectral
imaging was developed. We note that all of these developments were problem specific, and not
easily adapted for general sparse signal recovery.

In this investigation we propose using the variance based joint sparsity (VBJS) method for
MMV, introduced in [1]. The VBJS technique exploits the idea that the variance across multi-
measurement vectors that are jointly sparse should be sparse in the sparsity domain of the under-
lying signal or image, an idea first proposed in [15] for the purpose of edge detection and localization.
The weights used for the weighted `1 regularization term are essentially reciprocals of this variance
(with a threshold built in to ensure no division by zero), with the idea being that the `1 term
should be heavily penalized when the variance is small, but should not influence the solution as
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much when the variance is large. Presumably, the large variance indicates support of the image or
signal in the sparse domain. One of the main advantages of VBJS is that it is easily parallelized.
In particular, it was shown in [1] that VBJS is consistently more computationally efficient than
`2,1 regularization algorithms when using standard black box solvers. In this investigation we im-
prove on the VBJS algorithm by designing weights that reduce the parametric dependence on the
reconstruction, making it more amenable to a variety of other applications not considered in [1].
Specifically, the VBJS can now be used in situations where some measurement vectors may misrep-
resent the unknown function of interest. In contrast, such “rogue” data may wield undue influence
on the reconstruction of piecewise smooth solutions when using the standard `2,1 approach. The
original VBJS approach does not adequately account for false data in the weight design, so much
more parameter tuning would be needed. False data problems appear in applications including
state estimation of electrical power grids, [23], large scale sensor network estimation, [41], synthetic
aperture radar (SAR) automated target recognition (ATR), [20], and many others, [43, 45]. False
data may be purposefully injected into these systems to decrease the performance of automated
detection algorithms. In other situations, misrepresentations of data occur due to human error or
environmental issues effecting the measurements. For example, in SAR ATR it is often the case that
targets are obscured by their surroundings (trees) or by enemies (meshes placed over the targets).
Also, additional parts may be taken off or added to targets, corrupting measurement data, [20]. As
part of our reconstruction algorithm, we include a numerically efficient comparative measurement
of the measurement vectors, which allow us to appropriately disregard rogue data and improve our
overall reconstruction.

Our proposed VBJS technique offers several advantages: (i) Our method is (essentially) non-
parametric so that regularization parameters need not be hand tuned; (ii) We take advantage of
the joint sparsity information available in the MMV setup, thus improving reconstruction accuracy
while decreasing sampling rates, independent of application; (iii) With some sharpness reduction,
our weights allow us to use the `2 norm, which is much more cost efficient; (iv) Our method mitigates
the effects of rogue data. Finally, as noted above, the VBJS algorithm is easily parallelizable, so
even when using the weighted `1 norm, it is much more efficient than when the `2,1 norm is used.

The rest of the paper is organized as follows: In Section 2 we define joint sparsity for multi-
measurement vectors and provide details for the standard `2,1 regularization approach used to
recover sparse signals. In Section 3 we describe the variance based joint sparsity (VBJS) approach,
initially developed in [1], and demonstrate how weights should be constructed to reduce the impact
of false information. We also propose a technique to choose the “best” solution from the set of
possible solution vectors that can be recovered from the VBJS method, so that we do not have
to compute each vector in the solution space. In Section 4 we prove that the alternating direction
method of multipliers (ADMM) can be applied to the weighted `1 minimization. We also show how
the VBJS method can be efficiently computed for the weighted `2 norm. Section 5 provides some
numerical results for sparse signal recovery and one and two dimensional images. Some concluding
remarks are given in Section 6.

2 Preliminaries

Consider a piecewise smooth function f(x) on [a, b]. We seek to recover f ∈ RN , where each element
of f is given as fi = f(xi), i = 1, ..., N , with

xi = a+∆x(i− 1), (2.1)

and ∆x = b−a
N . We note that xi are chosen to be uniform for simplicity of numerical experiments

and is not required for our algorithm.
Since the underlying function f is piecewise smooth, it is sparse in its corresponding edge

domain. Formally we have:
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Definition 1 [11, 13] A vector p ∈ RN is s-sparse for some 1 ≤ s ≤ N if

||p||0 = |supp(p)| ≤ s.

In our case, p corresponds to the edge vector of f at the set of grid points in (2.1).

Suppose we acquire J data vectors, yj ∈ CM , as

yj = Aj(f) + ηj , j = 1, ..., J. (2.2)

Here Aj : RN → CM is a forward operator (often defined as a square (N = M), orthogonal matrix
for simplicity) and

ηj ∈ CM , j = 1, ..., J, (2.3)

model J Gaussian noise vectors.

Due to the sparsity in the edge domain, `1 regularization provides an effective means for re-
constructing f given any of the J noisy data vectors. Specifically, we compute the unconstrained
optimization problem

f̌ j = argmin
g

{
1

2
||Ajg − yj ||22 + µ||Lg||1

}
, j = 1, ..., J, (2.4)

where µ is the `1 regularization parameter. In our experiments we often sample µ from a uni-
form distribution for all calculations of f̌ j to simulate the ad-hoc proceedure for selecting typical
regularization parameters. The sparsifying operator, L, is designed so that the chosen solution is
sparse in the edge domain. In this investigation we choose L to be the mth order polynomial an-
nihilation (PA), [3,4], and note that when m = 1 the method is equivalent to using total variation
(TV).1 To solve (2.4) we use the traditional alternating direction method of multipliers (ADMM)
algorithm [19,22,36].

As shown in Figure 1(left), assuming that the model in (2.2) is correct, any of the reconstructed
f̌ j (which we will refer to as the single measurement vector (SMV) reconstruction) should ade-
quately approximate the underlying function f or any desired features of it. However, this may be
impossible due to undersampling, noise, or bad information. Intuitively, using the redundant data
from part of or all of the available data sets in (3.1) should lead to a better reconstruction algorithm.
Indeed, many techniques have been developed to recover images from such multiple measurement
vectors (MMV), [2,11,12,16–18,24,30]. In our case the underlying function f is sparse in the edge
domain, and so the collected set of recovered vectors is jointly sparse in the edge domain. The
formal definition of joint sparsity is given by

Definition 2 We say that

P =
[
p1 p2 · · · pJ

]
∈ RN×J

is s-joint sparse if

||P ||2,0 =

∣∣∣∣∣∣
J⋃
j=1

supp
(
pj
)∣∣∣∣∣∣ ≤ s,

where each pj is s-sparse according to Definition 1.

1 Although there are subtle differences in the derivations and normalizations, the PA transform can be thought
of as higher order total variation (HOTV). Because part of our investigation discusses parameter selection, which
depends explicitly on ||Lf ||, we will exclusively use the PA transform as it appears in [3] so as to avoid any
confusion. Explicit formulations for the PA transform matrix can be found in [3]. We also note that the method
can be easily adapted for other sparsifying transformations.
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For the variance based joint sparsity method in Algorithm 1, we also will assume that

supp(p1) ≈ supp(p2) ≈ · · · ≈ supp(pJ), (2.5)

that is, the joint sparsity of the vectors does not greatly exceed the sparsity of each individual
vector.

To exploit the joint sparsity of the system, `2,1 regularization is often applied, [11, 32, 42, 44].
Essentially, each vector is assumed to be sparse in its sparsity domain (e.g. edge domain), which
motivates minimizing the `1 norm of each column. The “jointness” is accomplished by minimiz-
ing the `2 norm of each row (spatial elements). The general joint sparsity technique using `2,1
regularization is [32]

f̂ =

{
argmin
z∈RN×J

||Lz||2,1 subject to Az = Y

}
, (2.6)

where L is the sparsifying transform matrix (here the PA transform of orderm), Y = [y1 y2 · · · yJ ] ∈
RM×J and A = A1 = · · · = AJ . The solution f̂ = [f̂1 f̂2 · · · f̂J ] ∈ RN×J contains estimates
for each measurement yj , j = 1, ..., J . It has been shown, both theoretically and in practice, that
(2.6) yields improved approximations to each reconstruction in (2.4), [11, 31,44].

Note that (2.6) is typically solved using optimization techniques such as the ADMM, focal un-
derdetermined system solvers (FOCUSS) and matching pursuit algorithms, [12].2 As demonstrated
in Figure 1(middle), the joint sparsity approach using `2,1 regularization is effective in cases where
the data vectors are somewhat predictable, that is, when each measurement vector is determined
from (2.2), and Aj is known. However, it is often the case when some of the acquired data do not
have known sources. Worse, the information can be deliberately misleading, so that we assume we
are acquiring yj but in fact a completely different data set is obtained. We will refer to such a
data set as a “rogue” vector. Figure 1(right) illustrates that in these situations, using (2.6) may be
heavily influenced by the false measurements.3 Hence we are motivated to find a technique that is
able to discern “good” from “bad” information in the context of joint sparsity.

Fig. 1: Sparse vector of uniformly distributed values on [0, 1] reconstructed using (left) `1 regulariza-
tion with a single measurement vector (SMV), (middle) (2.6) applied on J = 10 true measurement
vectors, and (right) (2.6) applied to J = 10 measurement vectors, with 5 containing false data. In
each case N = 256, M = 100 and ||f ||0 = 20 with A having i.i.d. Gaussian entries and µ = .25 in
(2.4). Plotted here is the average of the final 10 joint sparsity (JS) `2,1 reconstructions.

2 We used the Matlab code provided in [14,42] when implementing (2.6).
3 For this simple example, each of the K = 5 false measurement vectors was formed by adding a single false

data point, with height sampled from the corresponding distribution, (binary, uniform or Gaussian).
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3 Variance based joint sparsity

Minimizing the effect of rogue measurement vectors consists of two parts. First, we must develop a
technique to recognize points in the spatial domain where the measured data are inconsistent, and
ensure that these regions of uncertainty do not have undue influence on the rest of the approxima-
tion. Second, we must have a way to identify the best reconstruction from the set of J solutions.
With regard to the first, the variance based weighted joint sparsity (VBSJ) algorithm, developed
in [1], can be adapted for the rogue measurement problem. The idea is described below.

We begin by gathering the (processed) measurements from (2.4) into a measurement matrix
given by

F̌ =
[
f̌1 f̌2 · · · f̌J

]
∈ RN×J . (3.1)

We note that in most applications the initial data sets will come from (2.2), so it will be necessary
to construct f̌ j , j = 1, · · · , J . Techniques other than (2.4) may be used for this purpose, however,
and it might be sufficient to use a more cost efficient algorithm. Moreover, in some cases only
one data vector is acquired, but is then processed in multiple (i.e. J) ways, with each processing
providing different information. Indeed this was the case for one example discussed in [1], where
one vector of Fourier data was collected but then several edge detection algorithms were used to
construct jump function vectors (e.g. yj in (2.4)). For ease of presentation, in this paper we use
the traditional interpretation of (2.2) followed by the computation of (2.4) for a given set of J
measurement vectors to obtain (3.1), and leave these other cases to future work.

Next we define
P =

[
Lf̌1 Lf̌2 · · · Lf̌J

]
∈ RN×J (3.2)

as the matrix of J vectors approximating some sparse feature of the underlying function f . For
example, here L is the PA transform operator so that Lf̌ j is an approximation of the edges of
piecewise smooth f on the set of grid points given in (2.1).4 Note that even if f is known explicitly,
Lf̌ j will only be approximately zero in smooth regions, and hence is not truly sparse. However, the
behavior of Lf̌ j should be consistent across all data sets, j = 1, · · · , J , especially in smooth regions
where |Lf̌ j | is small. This behavior should be confirmed in the variance vector v̌ = (v̌i)

N
i=1, where

each component is given by

v̌i =
1

J

J∑
j=1

P2
i,j −

 1

J

J∑
j=1

Pi,j

2

, i = 1, ..., N. (3.3)

That is, (3.3) should yield small values in smooth regions when the data measurements are consis-
tent. Note that supp(v̌) ≈

⋃J
j=1 supp(Lf̌j).

We will exploit (3.3) in determining how the joint sparsity algorithm should be regularized.
Figure 2 demonstrates how this may be useful. Five measurement vectors of the function in Example
1, where A has i.i.d. entries sampled from a uniform distribution on [0, 1] and the noise is Gaussian
with mean zero and variance 0.1, is shown in the top left. The bottom left displays the corresponding
sparsity vectors, Lf̌ j . Observe that the variance of the sparsity vectors, provided in the top right, is
spatially variant, with the larger values occuring near the jump discontinuities as well as where more
noise is apparent in the data measurements. This suggests that a spatially variant (weighted) `1
norm might work better than the uniform `2,1 norm in regularizing the joint sparsity approximation.
Algorithm 1 describes this process.

Remark 1 Observe that in contrast to (2.6), any p ∈ [1, 2] can be used in Step 5 of Algorithm
1. While p = 1 is consistent with compressive sensing techniques, a spatially variant weighting
vector may relax the requirements on p while still achieving the goal of sparsity. Intuitively, us-
ing `1 effectively promotes sparsity because of the higher penalty placed on small values in the

4 Specifically it approximates the jump function [f ](x) = f(x+)− f(x−) on a set of N grid points.
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Fig. 2: (top-left) Five measurements of the underlying function in Example 1, acquired using (2.4).
(bottom-left) Corresponding five sparsity vectors (3.2) with order m = 3. (top-right) The variance
of the sparsity vectors calculated using (3.3). (bottom-right) The corresponding weights calculated
as in (3.6).

Algorithm 1 Variance-Based Joint Sparsity algorithm

1: Recover the vectors f̌j , j = 1, . . . , J, separately using (2.4) to obtain (3.1).
2: Compute the variance of Lf̌j , j = 1, · · · , J , using (3.3).
3: Use the results from (3.3) to determine the weights for the weighted `p norm, 1 ≤ p ≤ 2, in the joint sparsity

reconstruction. In particular, v̌i should be large when the index i belongs to the support of v̌, while v̌i ≈ 0
otherwise. Hence we compute a vector of nonnegative weights w = (wi)

N
i=1, 0 ≤ wi ≤ C, C ∈ R based on

this information. In general, wi ≈ 0 when v̌i is large and wi ≈ C when v̌i ≈ 0. The weights we design for this
purpose are provided in (3.6).

4: Determine data vector ŷ ∈ yj , j = 1, · · · , J , and corresponding matrix Â that will be used as the “best”
initial vector approximation. This is done according to (3.9) and (3.10).

5: Solve the weighted `p minimization problem to get the final reconstruction of the vector f :

ĝ = argmin
g∈RN

1

p
||Lg||pp,w +

µ

2
||Âg − ŷ||22, (3.4)

for µ > 0 a constant parameter.

reconstruction of what is presumably sparse (e.g. edges of piecewise smooth f), as compared to
the standard `2 minimization, which imposes a penalty proportional to the square of each value in
the reconstructed edge vector. Employing a (spatially variant) weighted `2 minimization designed
to more strongly enforce small values in sparse regions should yield the same desired property for
promoting sparsity. Moreover, using || · ||2,w will be much more efficient numerically, since a closed
form gradient of the objective function is available. A complete characterization of `1 and weighted
`2 minimizers can be found in [13].
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3.1 Weight design

In contrast to (2.6), where each grid point in the sparsity domain is equally weighted in the regu-
larization term, Algorithm 1 uses a spatially variant regularization, with the weights (wi)

N
i=1 being

inherently linked to (3.3). In particular, since small variance values strongly suggest joint sparsity
in the sparsity domain, the associated values |Lfi|, where fi ≈ f(xi) of the underlying function and
L is the sparsifying transform operator, should be heavily penalized in the regularization term. On
the other hand, large variance values may indicate that the the corresponding indices belong to the
support of the function (or image) in the sparsity domain. Large variance values may also indicate
unreliable information at that particular spatial grid point. Hence |Lfi| should be penalized less at
those indices when minimizing the regularization term. Figure 2 (bottom right) depicts the weights
chosen by (3.6) to minimize the weighted `p norm in (3.4).

From the discussion above and illustrated in Figure 2, we see that the weights for the regular-
ization term should not depend on how the measurements in (2.4) are constructed, but rather only
the expectation that they be jointly sparse in the same domain, as defined in Definition 2. In our
examples, we assume that this joint sparsity occurs in the edge domain. The variance calculated
in (3.3) provides a means of determining the actual joint sparsity, and moreover provides us a way
to reduce the effects of bad data.

As described in Algorithm 1, the PA transformation is used to approximate the edges of the
underlying function or image from which the weighting vector w is scaled according to the spatially
variant jump height, (3.3), of our solutions. To specifically determine w we first define

P̃ =
[
P̃1 P̃2 · · · P̃J

]
∈ RN×J

as the normalized PA transform matrix from (3.2), where

P̃i,j =
|Pi,j |

max
i
|Pi,j |

, j = 1, ..., J.

We then define a weighting scalar C as the average `1 norm across all measurements of the nor-
malized sparsifying transform of our measurements,

C =
1

J

J∑
j=1

N∑
i=1

P̃i,j , (3.5)

which will enable us to further scale the weights according to the magnitude of the values in the
sparsity domain. This will ultimately reduce the need for fine tuning regularization parameters in
the numerical implementation. Finally, w is constructed element-wise as

wi =

C
(

1− vi
maxi vi

)
, i /∈ I

1
C

(
1− vi

maxi vi

)
, i ∈ I

(3.6)

where I consists of the indices i such that

1

J

J∑
j=1

P̃i,j > τ. (3.7)

Here τ is a threshold chosen so that when (3.7) is satisfied, we assume there is a corresponding
edge at xi, and that the index i is part of the support in the sparse domain of f . Since the jumps
are normalized, it is reasonable for τ = O( 1

N ), that is, τ is resolution dependent. Because noise in
the system, we choose τ > 1

N , and in our examples τ = .1, and note that if more is known apriori
about the size of the noise, then τ can be chosen accordingly. In general as τ increases, more noise
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is assumed to be in the system, which corresponds to a more uniform weighting scheme. Choosing
weights based on information about system noise and nuisance parameters will be addressed more
in future investigations.

Observe that wi ∈ [0, C], i = 1, · · · , N and C > 1. The weighting scalar C defined in (3.5)
allows the regularization to better account for functions that contain multiple edges with different
magnitudes. Specifically, the weights in (3.6) are designed to scale the penalty of the regularization
according to the size of the jump, with the largest weights being reserved for regions where the
function is presumably smooth. The intuition used for determining the weights formula in (3.6) is
illustrated in Figure 2. In this case we have J = 5 measurements for Example 1. We use the PA
transform in (3.2) with order m = 3, and µ = .25 in (2.4).5

For comparative purposes, we will also consider weights that were used in [1]

wi =
1

vi + ε
, (3.8)

where ε is a small parameter chosen to avoid dividing by zero. In [1] it was demonstrated that this
weighting strategy was robust in sparse signal recovery (in the noiseless case) for ε = 10−2.

3.2 Determining the optimal solution vector

The traditional method that exploits the joint sparsity of J multi-measurement vectors (MMV)
in (2.6) can recover J solution vectors. This is also the case in Algorithm 1, however we are
only interested in one “best” solution. Moreover, we want to avoid using any bad information or
rogue vectors as the base of our solution. Therefore, we choose the final data vector ŷ in Step
4 of Algorithm 1 to be one whose corresponding measurements are closest to most of the other
measurement vectors in the set of J vectors. Thus we define the distance matrix D with entries

Di,j = ||f̌ i − f̌ j ||2, (3.9)

where each f̌ is defined in (2.4). The data vector ŷ = yj
∗

and forward operator Â = Aj
∗

correspond
to the j∗th index that solves

(i∗, j∗) = argmin
1≤i,j,≤J
i6=j

Di,j . (3.10)

WLOG, we choose the optimal column index j∗ for the final reconstruction. Note that because
D is symmetric, the optimal row index can similarly be used as an indicator of good data. An
example of this process is depicted in Figure 3. On the left we see ten measurements of Example 2
where the first five measurements are false measurements. Displayed on the right is the matrix D
given in (3.9). Assuming that the number of true measurement vectors J −K is greater than 2, it
is reasonable to use (3.10) to determine the “best” data vector for the final reconstruction. It must
also be true that rogue data vectors are not similar to one another, that is, for all i, j = 1, · · · ,K,
||f̌ i − f̌ j || > σ where σ > 0 is a chosen distance threshold. The quality of the solution is clearly
dependent on the number of rogue measurements in the collection set. More analysis is needed to
determine the relationship between the ratio of false and true measurements and the success of
Algorithm 1, and will be the subject of future work.

5 It was observed in [8] that multiple scales in jump heights can be handled by iteratively redefining a weighted
`2,1 norm in the MMV case (2.6). This method proved to be computationally expensive, as the optimization
problem must be resolved at each iteration, however.
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Fig. 3: (left) Five false measurements and five true measurements of Example 2. The true underlying
function is displayed as the bold dashed line. (right) The corresponding construction of the distance
matrix D in (3.9).

4 Efficient implementation of Algorithm 1

Once we determine the initial solutions, (2.4), the weighting vector, (3.6), and the most suitable
vector for reconstruction, (3.10), we can now approximate the solution to (3.4) in Algorithm 1.
When using the weights designed in (3.6), we eliminate the need to tune the parameter µ to ensure
convergence, and thus we set µ = 1 in (3.4) for our experiments.

For x ∈ RN , the weighted `p norm is defined as

||x||p,w =

(
N∑
i=1

wi|xi|p
)1/p

= ||Wx||p, (4.1)

where W = diag(w) ∈ RN×N . With this definition we can now solve (3.4) using stardard `p
minimization techniques, see e.g. [19, 22,36,38].

In two dimensions, especially as the number of data points increase, it quickly becomes com-
putationally expensive to write the weights as a diagonal matrix. That is, even though “stack-
ing” the columns (noted by the vec function) holds intuitive appeal for solving (3.4), since W =

diag(vec(w)) ∈ RN
2×N2

, the problem becomes computationally prohibitive.
Fortunately, however, we are able to show that the ADMM algorithm can also be applied in

this case, as will be described below. For this purpose we first define the weighted `p norm as

||x||pp,w =
N∑
i=1

N∑
j=1

wi,j |xi,j |p, (4.2)

where wi,j are elements of w ∈ RN×N and x ∈ RN×N .

4.1 The ADMM algorithm for weighted `1

We now demonstrate how the ADMM can be applied to solve (3.4) when p = 1. While the algorithm
can be used for either the one or two dimensional case, for computational efficiency, such an
approach is critical for two dimensional problems.

To start, we write (3.4) with µ = 1 as the equivalent non-parametric weighted `1 problem

(ĝ, ẑ) =

{
argmin

g,z
||z||1,w +

1

2
||Âg − ŷ||22 subject to Lg = z

}
. (4.3)
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Here we assume Â, g, z and ŷ are all in RN×N . Because of the non-differentiability in the `1,w

norm, we introduce slack variables z ∈ RN×N and the Lagrangian multiplier ν ∈ RN
2

to minimize

argmin
g,z

{
||z||1,w − νT vec (Lg − z) +

β

2
||Lg − z||22 +

1

2
||Âg − ŷ||22

}
. (4.4)

Remark 2 Two parameters, µ from (3.4) and β in (4.4), typically must be prescribed in ADMM.
In (4.3) we observe that we can use µ = 1 since the weighting of this term is considered in
the construction of the weighting vector (3.6). We also note that although we have not formally
analyzed the impact of using the weighted `1 norm on the overall rate of convergence, our numerical
experiments demonstrate that choosing β = 1 yields reasonably fast convergence. A study of how
the weighting vector affects the convergence rate for different choices of β will be the subject of
future investigations. Thus we see that the ADMM method for VBJS is robust, as no fine tuning
of parameters is needed at the optimization stage.

The problem is now split into two sub-problems, known as the z-subproblem and the g-subproblem.

The z-subproblem

To analyze the z-subproblem, we assume that the value of g is known and fixed and set β = 1
in (4.4), so that

ẑ = argmin
z

{
||z||1,w − νT vec (Lg − z) +

1

2
||Lg − z||22

}
. (4.5)

Lemma 1 demonstrates that a closed form solution exists in general for the z-subproblem for any
β > 0.

Lemma 1 For a given β > 0, x, y ∈ RN×N and ν ∈ RN
2

, the minimizer of the proximal operator,
[29],

Proxf/β(x) = argmin
x

{
f(x) +

β

2
||y − x||22

}
(4.6)

where f(x) = ||x||1,w − νT vec(y − x), is given by the shrinkage-like formula

x̂ = max

{∣∣∣∣y − ν

β

∣∣∣∣− w

β
, 0

}
sign

(
y − ν

β

)
. (4.7)

The proof of Lemma 1 can be found in the Appendix. In light of Lemma 1, the closed form
solution to (4.5) is given as

ẑ = max {|Lg − ν| −w, 0} sign (Lg − ν) . (4.8)

The g-subproblem

Once the z-subproblem is solved, we can proceed using standard ADMM. Specifically, z is held
fixed, β = 1 in (4.4), and we construct g-subproblem from (4.4) as

ĝ = argmin
g

J(g) :=

{
1

2
||Lg − z||22 +

1

2
||Âg − ŷ||22 − νT vec (Lg − z)

}
. (4.9)

Since Â is ill-conditioned in many applications of interest we solve (4.9) using gradient descent,
[19, 22,36],

gk+1 = gk − αk∇gJ(gk), (4.10)
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where

∇gJ(gk) = −νTL+ (L)T (Lg − z) + ÂT (Âg − ŷ). (4.11)

Note that for ease of presentation we have again dropped the vec notation, although it is of course
needed for implementation. The step length is chosen as the Barzilai-Borwein (BB) step (see [5]),

αk =
sTk sk
sTk uk

, (4.12)

with
sk = gk − gk−1

uk = ∇gJ(gk)−∇gJ(gk−1).

A backtracking algorithm is performed to ensure αk is not chosen to be too large. This requires
checking what is known as the Armijo condition, [38], which guarantees that using (4.12) sufficiently
reduces the magnitude of the objective function. Algorithmically, the Armijo condition is given by

J(gk − α∇gJ(gk)) ≤ J(gk)− δαk∇Tg J(gk)∇gJ(gk), (4.13)

where δ ∈ (0, 1). If the Armijo condition (4.13) is not satisfied, we backtrack and decrease the step
length according to

αk = ραk,

where ρ ∈ (0, 1) is the backtracking parameter. At the kth iteration of the algorithm, after the new
z and g values are found using (4.8) and (4.9), the Lagrange multiplier is updated according to

νk+1 = νk − vec(Lgk+1 − zk+1) (4.14)

Algorithm 2 provides the weighted version of the ADMM. The technique involves alternating
solving the z-subproblem (4.5) and g-subproblem (4.9) at each iteration. Typical parameter choices
are ρ = .4 and δ = 10−4, [22, 38].

Algorithm 2 Weighted ADMM

1: Initialize ν0. Determine weights w, starting points g0 and z0 and maximum number of iterations K.
2: for i = 0 to K do
3: Set 0 < ρ, δ < 1 and tolerance tol.
4: while ||gk+1 − gk|| > tol do
5: Compute zk+1 using (4.8).
6: Set αk using (4.12).
7: while Armijo condition (4.13) unsatisfied do
8: Backtrack: αk = ραk.
9: end while

10: Compute gk+1 using (4.10) and (4.11).
11: end while
12: Update Lagrange multiplier according to (4.14).
13: end for

4.2 Efficient implementation for the `2 case

When p = 2 in (3.4) we solve

ĝ = argmin
g

J(g) :=

{
1

2
||Lg||22,w +

1

2
||Âg − ŷ||22

}
(4.15)
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using the gradient descent method defined in (4.10). However, some care must be taken to derive
the gradient of the first term of (4.15). According to (4.2), for L, g,w ∈ RN×N ,

||Lg||22,w =
N∑
i=1

N∑
j=1

wi,j

(
N∑
k=1

Li,kgk,j

)2

. (4.16)

Taking the derivative of (4.16) with respect to an element of g yields

∂

∂gk,j
||Lg||22,w = 2

N∑
i=1

wi,jLi,k

(
N∑
l=1

Li,lgl,j

)
, k, j = 1, ..., N.

Performing this operation over all k, j = 1, ..., N , produces

∇g||Lg||22,w = 2LT [w � (Lg)] , (4.17)

where � denotes the pointwise Hadamard product. Thus, the gradient of the objective function J
in (4.15) is given by

∇gJ(g) = LT [w � (Lg)] + ÂT (Âg − ŷ). (4.18)

Using (4.18) in (4.10) with the BB step length (4.12), we can now solve (4.15) for ĝ. The weighted
`2 gradient descent process is described in Algorithm 3. Typical parameter choices again are ρ = .4
and δ = 10−4 and a starting step length of α0 = 1 is chosen to initiate the algorithm [38].

Algorithm 3 Weighted Gradient Descent

1: Initialize starting points g0 and α0, parameters δ, ρ ∈ (0, 1) and tolerance tol.
2: Determine weights w.
3: while ||gk+1 − gk|| > tol do
4: Set αk using (4.12).
5: while Armijo condition (4.13) unsatisfied do
6: Backtrack: αk = ραk.
7: end while
8: Compute gk+1 using (4.10) and (4.18).
9: end while

5 Numerical Results

We test the variance based joint sparsity (VBJS) technique in three different situations and compare
our method in Algorithm 2 to the typical `2,1 minimization algorithm in (2.6), the SMV case, and
the VBJS method with the weights given in (3.8). In our experiments we employ both `1 and `2
regularization in (3.4) with µ = 1, demonstrating the accuracy and robustness of our methods
in each case. As was shown in [1], the VBJS method is consistently more cost efficient than `2,1
regularization. Moreover, using weighted `2 regularization is clearly less costly than using weighted
`1.

First we consider recovering sparse signals. A similar experiment was performed for VBSJ
in [1] on noiseless data. In our example the measurement vectors contain noise, and there are also
measurements that contain false information. In this regard it is important to note that the weights
in (3.6) are designed so that no additional parameters are needed in (4.4). That is, β = 1 in the
z-subproblem and regularization parameters normally included in the ADMM g-subproblem are not
needed [22]. However, this is not the case when using (3.8), where we will see that regularization
parameters are needed to obtain any meaningful results. As noted previously, to obtain the first
measurements in each algorithm, we use (2.4) with µ sampled from a uniform distribution for each
j = 1, · · · , J , thus simulating the ad-hoc procedure for selecting typical regularization parameters.
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For the second experiment we consider two one-dimensional signals that exhibit sparsity in the
edge domain. We apply the VBJS technique for both p = 1 and 2 in the weighted `p regularization,
and again compare our method to techniques in [1] with (3.8). In our third test we reconstruct
two-dimensional images with sparse edges.

5.1 Case 1: Sparse Signal Recovery

We seek to recover the sparse signal f from a set of measurment vectors. This problem has been
widely studied within the context of MMV, [12, 16, 17]. An adaptively weighted `1 reconstruction
method was developed in [8] for the single measurement vector (SMV) case, and the VBJS method
using the weights in (3.8) was developed for MMV in [1]. In this case each data vector {yj}Jj=1

in (2.2) is acquired using a measurement matrix A ∈ RM×N where each element of A is sampled
independently from a zero mean unit variance Gaussian distribution. The corresponding noise
vectors {ηj}Jj=1 are i.i.d. Gaussian with zero mean and unit variance. Of the J measurements,
K contain false information and in some cases are complete misrepresentations of the underlying
signal. To recover the sparse signal f we used (4.1) with p = 1 in Algorithm 2. Since the J − K
true measurements have overlapping support, we use the PA transform with order m = 0, that is
L = I in the sparsity regularization term.

Fig. 4: Sparse signal recovery employing the usual `2,1 joint sparsity method in (2.6) and our
proposed VBJS `1 technique. Here there are J = 10 measurements of which K = 5 contain false
data. (left) Binary data values. (middle) Data values sampled from a uniform distribution on [0, 1].
(right) Data values sampled from a zero-mean unit-variance Gaussian distribution.

Figure 4 compares the signal recovery results for three sparse signals using the VBJS `1 tech-
nique (dot-dashed) and the more classical `2,1 JS regularization in (2.6), implemented using tech-
niques in [14, 42]. In this case the final JS reconstruction is the pointwise average of the recovered
vectors, {f̂ j}Jj=1. In Figure 4(left), the signal consists of a sparse number of binary values, while the
signals in Figure 4(middle) and (right) contain a sparse number of values sampled from a uniform
distribution on [0, 1] and a Gaussian distribution with zero-mean and unit-variance respectively. In
each case there are a total of J = 10 measurements vectors where each of the K = 5 measurement
vectors are corrupted by adding a single false data point with height sampled from the correspond-
ing distribution. Based on parameters used in other studies, [1, 27], we choose N = 256, M = 100
and sparsity s = ||f ||0 = 15 for all three experiments. As is evident in Figure 4, the VBJS method
successfully recovers each of the three sparse signals with limited influence from the false data.
Conversely, the classic `2,1 JS method is indeed influenced by the bad data. Similar behavior (not
reported here) can be observed for different choices of N , M J , K and s.
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Table 1: Relative reconstruction errors (5.1) for the traditional `2,1 JS method and the VBJS
method with p = 1 using the weights defined in (3.6) and (3.8).

False
Data

Binary Uniform Gaussian
JS `2,1 (3.6) (3.8) JS `2,1 (3.6) (3.8) JS `2,1 (3.6) (3.8)

0% .0127 .0104 .0383 .0254 .0244 .0579 .0142 .0153 .0388
20% .1724 .0094 .0288 .1068 .0234 .0594 .1304 .0144 .0314
50% .2961 .0108 .0499 .2943 .0243 .0621 .1249 .0168 .0262
90% .1543 .0083 .0358 .3089 .0196 .0775 .1233 .0128 .0397

Table 1 displays the relative error,

E =
||ĝ − f ||2
||f ||2

, (5.1)

for the recovery vector ĝ. In each case we use J = 10 measurements where K, the number of false
data measurements, is based on the given percentage in the first column. For consistent comparison
we use N = 256, M = 100 and sparsity s = ||f ||0 = 20 in all cases. It is evident that the VBJS
`1 technique yields small error even as the percentage of false data increases. Conversely, the
traditional `2,1 JS method is more susceptible to false data. For comparison we included results
using the weights given in (3.8). We note that to handle the noise and different jump heights in
the problem, when using the weights in (3.8), we must solve (3.4) by tuning the parameter µ to
µ = .1. Regardless, it is evident that the weights designed in (3.6) outperform the weights in (3.8)
in all cases, and in the former case, no additional parameter tuning is needed.

Fig. 5: Probability of successful recovery of the sparse (left) binary signal, (middle) uniform signal,
and (right) Gaussian signal with J = 10, 20 and 30 measurements, none of which contain false data.
Recovery is deemed a success if ||ĝ − f ||∞ ≤ 5× 10−3, where ĝ is the recovery vector and f is the
true solution vector.

To further demonstrate the success of our method, at varying levels of sparsity for different
numbers of measurements and false data, we calculate the probability that the sparse signal is
successfully recovered. Similar analysis was done in [8,12,16,17,24,44]. Specifically, the probability
of recovery is calculated over 100 trials at the specified configuration (J , K, and sparsity level) with
N = 256, M = 100 and no additive noise. Recovery is deemed a success if ||ĝ − f ||∞ ≤ 5× 10−3,
that is, when the VBJS method can successfully distinguish signals larger than the resolution size,
O( 1

N ).
In Figure 5 we see the recovery plots for each of the three signals considered with J = 10, 20

and 30 measurements, none of which contain false data. In this case, additional measurements do
not improve the already high recovery rates. However, in Figure 6 we see that as the percentage of
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Fig. 6: The probability of recovery of the sparse signal with values sampled from a Gaussian
distribution with zero-mean and unit-variance for various combinations of J , K and ||f ||0. Here
N = 256 and M = 100. (left) Binary sparse vectors, (middle) uniform sparse vectors and (right)
Gaussian sparse vectors.

measurements that are false increases, it becomes more advantageous to have more measurements.
Across top row of Figure 6 the percentage of false data increases to 50% while the number of
measurements changes from J = 10, 20 to 30 for each type of sparse vector (binary, uniform, and
Gaussian). Across the bottom row of Figures 6 the number of measurements J = 20 remains fixed,
while the percentage of false data included increases from 20% to 50% to 90%. We see that when
50% of the measurements are false, the probability of recovery remains high for large sparsity
values. When the percentage of false data increases to 90%, most probability of recovery values fall
below .5.

5.2 Case 2: Reconstructing one dimensional piecewise smooth functions

We now consider the reconstruction of two piecewise smooth functions, given by

Example 1 Define f(x) on [−π, π] as

f(x) =


3
2 , −3π

4 ≤ x < −
π
2

7
4 −

x
2 + sin

(
x− 1

4

)
, −π4 ≤ x <

π
8

11
4 x− 5, 3π

8 ≤ x <
3π
4

0, otherwise.

Example 2 Define f(x) on [−1, 1] as

f(x) =


cos
(
π
2 x
)
, −1 ≤ x < −1

2

cos
(
3π
2 x
)
, −1

2 ≤ x <
1
2

cos
(
7π
2 x
)
, 1

2 ≤ x ≤ 1
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Each function exhibits sparsity in the jump function domain, that is f is not sparse, but
||[f ]||0 = s, with s << N , and [f ] = {[f ](xj)}Nj=1 is the corresponding vector of edges. We consider
the proposed weights (3.6) and the weights given by (3.8) in [1] for the weighted `p reconstructions
(3.4) with p = 1 and 2.

For both examples we seek to approximate f by constructing a solution f on N uniform points
given by (2.1) from J vectors of M ≤ N acquired measurements. We acquire J −K data vectors
according to (2.2). The acquisition process for the K rogue vectors, as described below, considers
situations where there is false information about the underlying solution as well as in the mea-
surement matrix. In both examples we initialize the VBJS algorithm by constructing data vectors
f̌ j for j = 1, ..., J via (2.4) with µ sampled from a uniform distribution on [0, 1]. The sparsifying
transform operator L is chosen to be the polynomial annihilation (PA) transform matrix of order
m = 2 in (3.2).

In Example 1, the K false data vectors are formed by adding random shifts at random locations
to the initial underlying function f in (2.2). That is, the data vectors (2.2) are modified such that

yj =

{
Aj(f̃ j) + ηj , j = 1, ...,K

Aj(f) + ηj , j = K + 1, ..., J,
(5.2)

where each element f̃ ji of f̃ j is given as

f̃ j(xi) =

{
f(xi) + αj , x ≤ −1 + 2γj

f(xi) + βj , x > 1 + 2γj .

Here αj and βj are random integers in [−2, 2] for j = 1, ...,K and each γj is i.i.d. sampled from a
uniform distribution on [0, 1]. The forward model Aj ∈ RM×N in (5.2) is defined as a matrix with
i.i.d., zero-mean, unit-variance, Gaussian entries for all j = 1, ..., J , and the additive noise ηj is
assumed to be i.i.d. Gaussian with zero-mean and variance equal to .16.

For Example 2, we choose Aj ∈ RN×N (M = N) to be a subsampled discrete Fourier transform
(DFT) matrix for j = 1, ...,K, and the standard DFT matrix for j = K + 1, ..., J , so that

Aj =

{
1√
N
PΩjF , j = 1, ...,K

1√
N
F , j = K + 1, ..., J.

(5.3)

Here F ∈ CN×N is the DFT matrix and PΩj ∈ RN×N is a row selector matrix where each
Ωj ⊆ {1, ..., N} randomly selects and zeros out N/2 rows of F . We choose to replace 75% of
the selected rows with a random vector γ sin(x), where γ is repeatedly sampled from the normal
distribution. In this way, we can simulate K false and J −K true data vectors according to (2.2)
where ηj is chosen as complex Gaussian noise with zero mean and variance equal to .75 for all
j = 1, ..., J .

Figures 7 and 8 display the results of reconstructing Examples 1 and 2 respectively using VBJS
with weights defined in (3.6) and (3.8) for p = 1 and 2 in (3.4). It is evident that using our
proposed weights yields improved accuracy as well as prevents the influence of misleading/false
data. We repeat these experiments, without adding Gaussian noise to the data (ηj = 0 for all
j = 1, ..., J), with our proposed weights for N = M = 32, 64, 128 and 256, each time calculating
the pointwise error in the reconstruction. That is, for each ĝ we calculate

log10 |ĝ − f |. (5.4)

The pointwise error plots corresponding to the reconstruction of Examples 1 and 2 are then dis-
played in Figure 9(top) and Figure 9(bottom), respectively, for p = 1 and 2 in (3.4). In Figure 9,
the left two columns were calculated using our proposed weights (3.6) and the right two columns
were calculated using the weights (3.8) given in [1]. The results shown here are consistent with
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Fig. 7: (top-left) J = 10 measurement vectors with K = 8 false data acquired using (2.4) with (5.2).
Weights proposed in (3.6) (top-middle) and (3.8) from [1] (top-right). (bottom-left) Corresponding
distance matrix D in (3.9). VBJS `1 and `2 reconstructions with weights in (bottom-middle) (3.6)
and (bottom-right) (3.8). Here N = 128 and M = 64.

those displayed in Figure 6. It is also evident that the weights provided by (3.6) yield better results
than those given by (3.8). Finally, we see that the VBJS weighted `2 solutions also maintain a high
level of accuracy, indicating that accurate solutions can be obtained using the less computationally
intensive `2 regularization. For multi-dimensional problems with many measurement vectors, using
`2 instead of `1 would provide an enormous reduction in computational cost.

Table 2: Relative reconstruction errors (5.1) for the VBJS method (3.4) with p = 1 and 2 using the
weights defined in (3.6) and (3.8). Here N = M = 128.

SMV `1 (3.6) `2 (3.6) `1 (3.8) `2 (3.8)
Example 1 .0844 .0335 .0393 .4173 .1694
Example 2 .0692 .0536 .0716 .3142 .0959

For further comparison, Table 2 displays the relative error (5.1) for each example, while Table
3 measures the performance at a neighboring grid point to a jump discontinuity, given by

|f(x∗)− ĝ(x∗)|.

For the SMV approximation we choose ŷ using (3.10), that is, we consider the best possible solution.
In each case we use J = 10 measurements where K = 5 vectors contain false infromation. Observe
that using the VBJS algorithm with the weights in (3.6) with either `1 or `2 regularization yields
better accuracy than the weights in (3.8), proposed in [1]. These results occur without any additional
parameter tuning, which is required for both the SMV and VBJS using (3.8). Our method also
shows general improvement over the SMV approximation, (2.4), which does not contain any false
information.
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Fig. 8: (top-left) J = 10 measurement vectors with K = 5 false data acquired using (2.4) with (5.3).
Weights proposed in (3.6) (top-middle) and (3.8) from [1] (top-right). (bottom-left) Corresponding
distance matrix D in (3.9). VBJS `1 and `2 reconstructions with weights in (bottom-middle) (3.6)
and (bottom-right) (3.8). Here N = M = 128.

Fig. 9: The pointwise error of the VBJS reconstructions of (top) Example 1 and (bottom) Example
2 for N = M = 32, 64, 128 and 256 with J = 20 measurements K = 4 of which are false with p = 1
(left,right-middle) and p = 2 (left-middle,right). In (left,left-middle) we use the weights given in
(3.6) and in (right,right-middle) we use the weights given in (3.8).

5.3 Case 3: Reconstructing two dimensional images

We now consider reconstructing two dimensional images using the VBJS approach. We note that
the original polynomial annihilation edge detection method constructed in [4] was, by design, multi-
dimensional. However, as was discussed in [3], for optimization algorithms using `1 regularization,
applying the PA transform dimension by dimension was both more efficient and more accurate
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Table 3: Absolute error near a discontinuity for the VBJS method (3.4) with p = 1 and 2 using the
weights defined in (3.6) and (3.8). In Example 1, x∗ = 1.23 and in Example 2, x∗ = −.55. Here
N = M = 128.

SMV `1 (3.6) `2 (3.6) `1 (3.8) `2 (3.8)
Example 1 .1417 .0048 .0285 .3440 .4276
Example 2 .0131 .0206 .0132 .3738 .1325

Fig. 10: (left) Weights calculated using (3.6), where the darker shades indicate wi,j ≈ 0. (middle-
left) Reconstruction of a single measurement vector using (3.9) and (2.4). (middle-right) VBJS with
p = 1. (right) VBJS with p = 2. (top) Example 3 reconstruction performed with PA transform of
order m = 1 in (3.2). (bottom) Example 4 reconstruction performed with PA transform of order
m = 2 in (3.2).

when on a uniform grid. Therefore, to calculate the weights (3.6) in the two dimensional case, we
first calculate the two dimensional edge map for each j = 1, · · · , J as

Ej = Lf̌ j + f̌ jLT .

The columns of each Ej , j = 1, · · · , J , are then stacked on top of each other to form the matrix of J
vectors of approximations of some sparse feature of the underlying image, i.e. the two dimensional
analogue of (3.2). Continuing as in one dimension, the weights are now calculated according to
(3.6) and then reshaped into a matrix W ∈ RN×N . The non-zero entries wi,j correspond to the
sparse regions of the image, while the entries are approximately zero whenever an edge is assumed
to be present. Observe that W is not sparse, so the implementation methods developed in Section
4 is critical for numerical efficiency.

As in the one dimensional case, we consider two examples:

Example 3 Define f(x, y) on [−1, 1]2 as

f(x, y) =


15, |x|, |y| ≤ 1

4

20, |x|, |y| > 1
4 ,

√
x2 + y2 ≤ 3

4

10, else
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Fig. 11: (top) Results corresponding to Example 3. (bottom) results corresponding to Example 4.
(left) Cross sections (y = 0) of J = 10 measurement vectors with K = 5 false data representations.
(middle) Cross sections (y = 0) of VBJS reconstructions for p = 1 and 2 in (3.4) compared to the
SMV constructed using (2.4). (right) Data selection matrices D.

Example 4 Define f(x, y) on [−1, 1]2 as

f(x, y) =

10 cos
(

3π
2

√
x2 + y2

)
,
√
x2 + y2 ≤ 1

2

10 cos
(
π
2

√
x2 + y2

)
,
√
x2 + y2 > 1

2

We sample each function f : RN×N → R on a uniform grid as fi,l = f(xi, yl), where

xi = −1 +
2

N
(i− 1), yl = −1 +

2

N
(l − 1),

for each i, l = 1, · · · , N . In (2.2), A : RN×N → CN×N is defined to be the normalized, two
dimensional discrete Fourier transform operator so that A∗ = A−1, and ηj is zero mean complex
Gaussian noise with .5 variance for all j = 1, ..., J . As in the one dimensional case we use (2.4)
to construct each f̌ j . Because of the piecewise constant nature of Example 3 we apply the PA
transform with order m = 1. Similarly, for Example 4 we use m = 2. We note that it is possible
to use m > 2, but in this case, because of the noise, the higher order polynomial approximation
leads to overfitting. For each data vector the regularization parameter µ is sampled from a uniform
distribution on [0, 10].

Figure 10 displays the result of applying VBJS with `1 (middle-right) and `2 (right) to Examples
3 and 4. For both examples we use J = 10 measurement vectors where K = 5 falsely represent the
underlying function. (The corresponding measurement selection matrices (3.9) are shown in Figure
11(right).) Figure 10(middle-left) shows the the SMV results on the measurement vector selected
by (3.9) calculated using (2.4). It is evident in both examples that the VBJS technique with either
p = 1 or 2 in (3.4) leads to improved visualization over the standard SMV reconstruction, even when
the standard SMV uses the “best” initialization as determined by (3.9). This result is confirmed in
Figure 11, where we compare the corresponding one-dimensional cross sections at y = 0.
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6 Concluding Remarks

In this investigation we proposed a modification to the variance based joint sparsity technique
(VBJS), introduced in [1], in both the weighting vector and in the choice of reconstruction vector.
Our adaptation is especially critical when some data vectors contain false measurements. We addi-
tionally proved that the ADMM algorithm could be successfully used for the weighted `1 case, and
moreover, that for our choice of weights in (3.6), no extra parameter tuning is needed to achieve
high accuracy and fast convergence. Hence our method is robust and suitable to a wide range of
problems. We also presented a corresponding gradient descent method for the weighted `2 case.

Our numerical results demonstrate that the VBJS method with the weights designed in (3.6)
yields improved accuracy and robustness over the single measurement vector case, the classical `2,1
JS method, and the original VBJS method proposed in [1]. By including an optimal data vector
selection step, we are able to obtain high accuracy and good sparse signal recovery even when a
subset of the given measurement data misrepresents the underlying function. Furthermore, using
the weighted `2 norm also yields good results and is much more cost effective than the weighted `1
reconstructions.

In future investigations we will conduct a thorough convergence analysis of the VBJS method, in
particular to establish rigorous results for the weighted `2 case. We will also parallelize our algorithm
so that we may test it on synthetic aperture radar automatic target recognition problems, where
current algorithms fail when obstructions are added to (or taken out of) imaging scenes. Because
our method is non-parametric, autonomy will be maintained. This framework also lends itself
to data fusion problems, where measurements of a scene are obtained through multiple imaging
techniques and must be combined to yield optimal results. Finally, the VBJS can potentially be
used in numerical partial differential equation solvers, in particular to develop predictor-corrector
methods for equations that exhibit singularities or for which shock discontinuities evolve.
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A Proof of Lemma 1

Proof [Lemma 1] Following the technique described in [22] for the non-weighted, one-dimensional case, let x ∈
RN×N and wi,j ≥ 0 for all i, j = 1, ..., N . We drop the vec notation for simplicity.

Define the objective function H : RN×N → RN×N as

H(x) := ||x||1,w − νT (y − x) +
β

2
||y − x||22. (A.1)

To show H(x) is convex, we first observe that for α ∈ (0, 1) and p, q ∈ RN×N , we have

||y − αp− (1− α)q||22 −
(
α||y − p||22 + (1− α)||y − q||22

)
= (y − αp− (1− α)q)T (y − αp− (1− α)q)−

(
α(y − p)T (y − p) + (1− α)(y − q)T (y − q)

)
= α(α− 1)

(
pT p− pT q − qT p+ qT q

)
= α(α− 1)||p− q||22
≤ 0.

(A.2)

Applying (A.2) to H yields

H(αp+ (1− α)q)− (αH(p) + (1− α)H(q))

= ||αp+ (1− α)q||1,w − νT (y − (αp+ (1− α)q)) +
β

2
||y − (αp+ (1− α)q)||22

− α||p||1,w − (1− α)||q||1,w + ανT (y − p) + (1− α)νT (y − q)−
βα

2
||y − p||22 −

β(1− α)

2
||y − q||22

≤
β

2
||y − (αp+ (1− α)q)||22 −

βα

2
||y − p||22 −

β(1− α)

2
||y − q||22

=
β

2
α(α− 1)||p− q||22

≤ 0.

(A.3)

Therefore H is convex. For p 6= q, H is strictly/strongly convex and thus coercive [6, 7, 28]. Hence there exists at
least one solution x̂ of (4.6), [38].

The subdifferential of f(x) = ||x||1,w is given element-wise as

(∂xf(x))i,j =

{
sign(xi,j)wi,j , xi,j 6= 0

{h; |h| ≤ wi,j , h ∈ R} , otherwise,
(A.4)

where the origin is required to be included according to the optimality condition for convex problems. According
to (A.4), to minimize (A.1), each component x̂i,j , i, j = 1, ..., N , must satisfy{

sign(x̂i,j)wi,j + β(x̂i,j − yi,j) + νi,j = 0, xi,j 6= 0

|vi,j − βyi,j | ≤ wi,j , otherwise.
(A.5)

If x̂i,j 6= 0, (A.5) yields
wi,j

β
sign(x̂i,j) + x̂i,j = yi,j −

νi,j

β
. (A.6)

Since wi,j/β > 0, (A.6) implies
wi,j

β
+ |x̂i,j | = |yi,j −

νi,j

β
|. (A.7)

Combining (A.6) and (A.7) gives

sign(x̂i,j) =
sign(x̂i,j)|x̂i,j |+ sign(x̂i,j)wi,j/β

|x̂i,j |+ wi,j/β
=
x̂i,j + sign(x̂i,j)wi,j/β

|x̂i,j |+ wi,j/β

=
yi,j − νi,j/β
|yi,j − νi,j/β|

= sign

(
yi,j −

νi,j

β

) (A.8)
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Thus, for x̂i,j 6= 0, we have

x̂i,j = |x̂i,j |sign(x̂i,j) =

(
|yi,j −

νi,j

β
| −

wi,j

β

)
sign

(
yi,j −

νi,j

β

)
, (A.9)

where we have used (A.7) and (A.8) in the result.
Conversely, we now show that x̂i,j = 0 if and only if

|yi,j −
νi,j

β
| ≤

wi,j

β
. (A.10)

First assume that x̂i,j = 0. Then (A.10) follows from (A.5) since β > 0.
Now assume (A.10) holds for some x̂i,j 6= 0. By (A.5), x̂i,j satisfies (A.7). Hence

|x̂i,j | = |yi,j −
νi,j

β
| −

wi,j

β
≤ 0

which only holds for x̂i,j = 0. Hence by contradiction, x̂i,j = 0. Combining (A.10) with (A.9) yields

x̂i,j = max

{
|yi,j −

νi,j

β
| −

wi,j

β
, 0

}
sign

(
yi,j −

νi,j

β

)
.

which is equivalent to (4.7) in matrix form.
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