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Abstract. The peak algebra Pn is a unital subalgebra of the symmetric group algebra,
linearly spanned by sums of permutations with a common set of peaks. By exploiting
the combinatorics of sparse subsets of [n−1] (and of certain classes of compositions of n
called almost-odd and thin), we construct three new linear bases of Pn. We discuss two
peak analogs of the first Eulerian idempotent and construct a basis of semi-idempotent
elements for the peak algebra. We use these bases to describe the Jacobson radical
of Pn and to characterize the elements of Pn in terms of the canonical action of the
symmetric groups on the tensor algebra of a vector space. We define a chain of ideals
Pj

n of Pn, j = 0, . . . , bn
2 c, such that P0

n is the linear span of sums of permutations with

a common set of interior peaks and P
bn

2 c
n is the peak algebra. We extend the above

results to Pj
n, generalizing results of Schocker (the case j = 0).

Introduction

A descent of a permutation σ ∈ Sn is a position i for which σ(i) > σ(i + 1), while a
peak is a position i for which σ(i− 1) < σ(i) > σ(i + 1).

One aspect of the algebraic theory of peaks was initiated by Stembridge [21], another
by Nyman [14]. The peak algebra Pn was introduced in [1]. It is a unital subalgebra
of the group algebra of the symmetric group Sn, obtained as the linear span of sums of
permutations with a common set of peaks. The construction is analogous to that of the
descent algebra of Sn, denoted Sol(An−1), which is obtained as the linear span of sums
of permutations with a common set of descents. Pn is a subalgebra of Sol(An−1).

The descent algebra has been the object of numerous works; for a recent survey see [17].
The peak algebra, or closely related objects, has been studied in [1, 5, 8, 16], from different
perspectives.

The descent algebra construction, due to Solomon, can be extended to all finite Coxeter
groups [19]. Let Bn be the group of signed permutations: Bn = Sn n Zn

2 , and

ϕ : Bn → Sn

the canonical projection (the map that forgets the signs). A basic observation of [1] is
that this map sends the descent algebra of Bn, denoted Sol(Bn), onto the peak algebra
Pn. This allows us to derive properties of the peak algebra from known properties of
the descent algebra of Bn. This point of view is emphasized again in this work.
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Notation. We write [m, n] := {m, m+1, . . . , n} and [n] := [1, n]. Z is the set of integers.
A subset F of Z is sparse if it does not contain consecutive integers: for any i, j ∈ F ,
|i− j| 6= 1. The number of sparse subsets on [n− 1] is the Fibonacci number fn, defined
by

f0 = f1 = 1 and fn = fn−1 + fn−2 for n ≥ 2 .

Unless otherwise stated, F , G, and H denote sparse subsets of [n− 1].
For any i ∈ Z and J ⊆ Z, we let J + i := {j + i | j ∈ J}. We use mostly i = ±1.
Given a (signed or ordinary) permutation σ, we let σ(0) = 0 and define

Des(σ) := {i ∈ [n−1] | σ(i) > σ(i+1)}, Peak(σ) := {i ∈ [n−1] | σ(i−1) < σ(i) > σ(i+1)}

if σ ∈ Sn, and

Des(σ) := {i ∈ [0, n− 1] | σ(i) > σ(i + 1)}
if σ ∈ Bn. Note that a signed permutation may have a descent at i = 0 (if σ(1) < 0) and
an ordinary permutation may have a peak at i = 1 (if σ(1) > σ(2)). If σ ∈ Sn, Des(σ)
is a subset of [n − 1] and Peak(σ) is a sparse subset of [n − 1]; if σ ∈ Bn, Des(σ) is a
subset of [0, n− 1].

We work over a field k of characteristic different from 2.
The descent algebra Sol(An−1) is the subspace of kSn linearly spanned by the elements

YI :=
∑

σ∈Sn, Des(σ)=I

σ ,

or by the elements

XI :=
∑

σ∈Sn, Des(σ)⊆I

σ ,

as I runs over the subsets of [n−1]. The peak algebra Pn is the subspace of kSn linearly
spanned by the elements

PF :=
∑

σ∈Sn, Peak(σ)=F

σ ,

as F runs over the sparse subsets of [n−1]. The descent algebra Sol(Bn) is the subspace
of kBn linearly spanned by the elements

YJ :=
∑

σ∈Bn, Des(σ)=J

σ ,

or by the elements

XJ :=
∑

σ∈Bn, Des(σ)⊆J

σ ,

as J runs over the subsets of [0, n− 1].
It is sometimes convenient to index basis elements of Sol(An−1) by compositions

of n and basis elements of Sol(Bn) by pseudocompositions of n: integer sequences
(b0, b1, . . . , bk) such that b0 ≥ 0, bi > 0, and b0 + b1 + · · ·+ bk = n (see Section 2).

In Section 6, pj denotes a certain element of the peak algebra, but in Section 7 the
same symbol is used for Lie polynomials.
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Contents. Our main results require the introduction of a different basis of the peak
algebra. In Section 1, we construct three bases (Q, O, and Ō) and describe how they
relate to each other. Two different partial orders on the set of sparse subsets of [n−1] play
a crucial role here. Section 2 continues the study of the combinatorics of sparse subsets,
by introducing two closely related classes of compositions (thin and almost-odd). One of
the partial orders on sparse subsets corresponds to refinement of thin compositions, the
other to refinement of almost-odd compositions (Lemmas 2.1 and 2.2). Basis elements of
the peak algebra may be indexed by either sparse subsets, thin compositions, or almost-
odd compositions; the most convenient choice depending on the situation.

A chain of ideals Pj
n, j = 0, . . . , bn

2
c, of the peak algebra is introduced in Section 3.

The ideal at the bottom of the chain, P0
n, is the peak ideal of [1]. It is the linear span

of sums of permutations with a common set of interior peaks. This is the object studied
in [5, 8, 14, 16]. Our results recover several known results for P0

n, and extend them to
the ideals Pj

n and the peak algebra Pn. This chain of ideals is the image of a chain of
ideals of Sol(Bn) under the map ϕ (Proposition 3.6).

In Section 4 we study the (Jacobson) radical of the peak algebra. The radical of
the descent algebra of an arbitrary finite Coxeter group was described by Solomon [19,
Theorem 3]; see also [7, Theorem 1.1] for the case of type A and [4, Corollary 2.13]
for the case of type B. As (a1, . . . , ak) runs over all compositions of n and s over all
permutations of [k], the elements

X(a1,...,ak) −X(as(1),...,as(k))

linearly span rad(Sol(An−1)), while rad(Sol(Bn)) is linearly spanned by the elements

X(b0,b1,...,bk) −X(b0,bs(1),...,bs(k))

as (b0, b1, . . . , bk) runs over all pseudocompositions of n and s over all permutations of
[k]. In Theorem 4.2 we obtain a similar result for the radical of Pn: rad(Pn) is linearly
spanned by the elements

Q(b0,b1,...,bk) −Q(b0,bs(1),...,bs(k))

as (b0, b1, . . . , bk) runs over all almost-odd compositions of n and s over all permutations of
[k] (a similar result holds for the bases O and Ō as well). It follows that the codimension
of the radical is the number of almost-odd partitions of n (Corollary 4.3). We also obtain
similar descriptions for the intersection of the radical with the ideals Pj

n. The case j = 0
recovers a result of Schocker on the radical of the peak ideal [16, Corollary 10.3].

Section 5 discusses the external structure on the direct sum of the peak algebras. This
is a product on the space P = ⊕n≥0Pn which corresponds to the convolution product
of endomorphisms of the tensor algebra T (V ) = ⊕n≥0V

⊗n via the canonical action of
Sn on V ⊗n. The connection with the convolution product on Sol(B) = ⊕n≥0Sol(Bn) is
explained, and then used to derive properties of the convolution product on P from prop-
erties of the convolution product on Sol(B), which is simpler to analyze. Proposition 5.1
states that the bases Q, O, and Ō are multiplicative with respect to the convolution
product. It follows that P0 = ⊕n≥0P

0
n is a free algebra (with respect to the convolution

product) with one generator for each odd degree (a result known from [6, 8, 16]) and
that P is free as a right module over P0, with one generator for each even degree.

Let L(V ) be the free Lie algebra generated by V . It is the subspace of primitive
elements of the tensor algebra T (V ). The elements of L(V ) are called Lie polynomi-
als and products of these are called Lie monomials. The first Eulerian idempotent is a
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certain element of Sol(An−1) which projects the homogeneous component of degree n of
T (V ) onto the homogeneous component of degree n of L(V ), via the canonical action
of the symmetric groups on the tensor algebra. The Eulerian idempotents have been
thoroughly studied [11, Section 4.5], [15, Chapter 3]. In Section 6 we discuss two peak
analogs of the first Eulerian idempotent, ρ(n) and ρ(0,n). The latter was introduced by
Schocker [16, Section 7]. The former is idempotent when n is even, the latter when n
is odd. We describe these elements explicitly in terms of sums of permutations with
a common number of peaks and show that they are images under ϕ of elements intro-
duced by Bergeron and Bergeron (Theorem 6.2). We use them as the building blocks
for a multiplicative basis of Pn consisting of semiidempotents elements (Corollary 6.6).
The idempotents ρ(0,n) (n odd) project onto the odd components of L(V ), while the
idempotents ρ(n) (n even) project onto the subalgebra of T (V ) generated by the even
components of L(V ) (Lemma 7.3). The elements ρ(n) and ρ(0,n) belong to a commutative
semisimple subalgebra of Pn introduced in [1, Section 6]. More information about this
subalgebra is provided in Section 6.3.

Section 7 contains our main results. The proofs rely on most of the preceding con-
structions. A classical result (Schur-Weyl duality) states that if dim V ≥ n then kSn

may be recovered as those endomorphisms of V ⊗n which commute with the diagonal
action of GL(V ). Similarly, an important result of Garsia and Reutenauer characterizes
which elements of the group algebra kSn belong to the descent algebra Sol(An−1) in
terms of their action on Lie monomials [7, Theorem 4.5]: an element φ ∈ kSn belongs to
Sol(An−1) if and only if its action on an arbitrary Lie monomial m yields a linear com-
bination of Lie monomials each of which consists of a permutation of the factors of m;
see (7.1). Schocker obtained a characterization for the elements of the peak ideal P0

n in
terms of the action on Lie monomials [16, Main Theorem 8]: an element φ ∈ Sol(An−1)
belongs to P0

n if and only if its action annihilates any Lie monomial whose first factor
is of even degree; see (7.2). We present a characterization for the elements of the peak
algebra Pn that is analogous to that of Garsia and Reutenauer, both in content and
proof (Theorem 7.5). Our result states that an element φ ∈ kSn belongs to Pn if and
only if its action on an arbitrary Lie monomial m in which all factors of even degree
precede all factors of odd degree yields a linear combination of Lie monomials each of
which consists of the even factors of m (in the same order) followed by a permutation
of the odd factors of m; see (7.9). Furthermore, we provide a characterization for the
elements of each ideal Pj

n that interpolates between Schocker’s characterization of the

peak ideal P0
n and our characterization of the peak algebra P

bn
2
c

n = Pn (Theorem 7.8).
The action of an element of Pj

n must in addition annihilate any Lie monomial m as above
in which the degree of the even part is larger than 2j; see (7.11).

Acknowledgements. This work builds upon the papers [2, 7, 16] and thus we owe
much of the insight to their authors. We also thank Nantel Bergeron, Steve Chase, Sam
Hsiao, and Swapneel Mahajan for useful comments.

1. Bases of the peak algebra

In the introduction, the bases X and Y of the descent algebras and a basis P of the
peak algebra are discussed. The basis P is analogous to the bases Y . For the results of
this paper, we need an analog for the peak algebra of the bases X. Three such bases are
introduced in this section.
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For any subset M ⊆ [n− 1], let

M̄ := {i ∈ [n− 1] | either i is in M or both i− 1 and i + 1 are in M} .

In other words,
M̄ = M ∪

(
(M − 1) ∩ (M + 1)

)
.

Note that

(1.1) ¯̄M = M̄ and (M ⊆ N ⇒ M̄ ⊆ N̄) .

Definition 1.1. For any sparse subset F ⊆ [n− 1], let

QF :=
∑
F⊆G

PG ,(1.2)

OF :=
∑

G⊆[n−1]\F

PG ,(1.3)

ŌF :=
∑

G⊆[n−1]\F̄

PG ;(1.4)

in each case the sum being over sparse subsets G of [n− 1]. For example, when n = 6,

Q{1,3} = P{1,3} + P{1,3,5} ,

O{1,3} = P∅ + P{2} + P{4} + P{5} + P{2,4} + P{2,5} ,

Ō{1,3} = P∅ + P{4} + P{5} .

View the collection of sparse subsets of [n− 1] as a poset under inclusion. All subsets
of a sparse subset are again sparse; therefore, each interval of this poset is Boolean.
Hence, (1.2) is equivalent to

(1.5) PF :=
∑
F⊆G

(−1)#G\F QG .

Thus, as F runs over the sparse subsets of [n − 1], the elements QF form a linear basis
of Pn. The matrices relating the elements PG to the elements OF and ŌF are not
triangular. However, these elements also form linear bases of Pn. This will be shown
shortly (Corollary 1.7).

Lemma 1.2. For any subset M ⊆ [n− 1],

(1.6)
∑

G sparse

G⊆[n−1]\M

(−1)#GQG =
∑

H sparse

H⊆M

PH .

Proof. We have∑
G sparse

G⊆[n−1]\M

(−1)#GQG

(1.2)
=

∑
G sparse

G⊆[n−1]\M

∑
H sparse

G⊆H

(−1)#GPH =
∑

H sparse

( ∑
G⊆([n−1]\M)∩H

(−1)#G
)
PH .

The inner sum is 1 if ([n− 1] \M) ∩H = ∅ and 0 otherwise; (1.6) follows. �

Proposition 1.3. For any sparse subset F ⊆ [n− 1],

(1.7) OF =
∑
G⊆F

(−1)#GQG .
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Proof. Apply Lemma 1.2 with M = [n− 1] \ F . �

For each subset J of [0, n−1], let XJ =
∑

Des(σ)⊆J σ. As mentioned in the introduction,

these elements form a basis of Sol(Bn).
Let ϕ : Bn → Sn be the canonical map. In [1, Proposition 3.3], we showed that for

any J ⊆ [0, n− 1],

(1.8) ϕ(XJ) = 2#J ·
∑

H sparse

H⊆J∪(J+1)

PH .

Proposition 1.4. For any J ⊆ [0, n− 1],

(1.9) ϕ(XJ) = 2#J ·
∑

G sparse

G⊆[n−1]\
(

J∪(J+1)
)(−1)#GQG .

Proof. Apply Lemma 1.2 with M =
(
J ∪ (J + 1)

)
∩ [n− 1]. �

Given sparse subsets F and G of [n− 1], define

F � G ⇐⇒ F̄ ⊇ G .

Lemma 1.5. The relation � is a partial order on the collection of sparse subsets of
[n− 1].

Proof. Suppose F � G and G � F . Let f = max F . Suppose f /∈ G. Then f − 1 and
f + 1 ∈ G, since F ⊆ Ḡ. Since F is sparse, f + 1 /∈ F . But then f and f + 2 ∈ F ,
since G ⊆ F̄ . This contradicts the choice of f . Thus f ∈ G. By symmetry, we also have
max G ∈ F , and thus f = max F = max G. Note that F \ {f} equals either F̄ \ {f}
or F̄ \ {f, f − 1}. Since G is sparse, f − 1 /∈ G, and therefore G \ {f} ⊆ F \ {f}, i.e.,
F \ {f} � G \ {f}. By symmetry, G \ {f} � F \ {f}. Proceeding by induction, F = G.
This proves antisymmetry. Transitivity follows from (1.1). �

The previous result may also be deduced from Lemma (2.2) . The Hasse diagram of
the poset of sparse subsets of [n− 1] under � are shown in Figure 1, for n = 4, 5.
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Figure 1. Sparse subsets under �

Proposition 1.6. For any sparse subset F ⊆ [n− 1],

(1.10) ŌF =
∑
F�G

(−1)#GQG .
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Proof. Let J := [0, n− 1] \
(
F ∪ (F − 1)

)
. Then J + 1 = [1, n] \

(
(F + 1) ∪ F

)
.

On the other hand,

F̄ = F ∪
(
(F − 1) ∩ (F + 1)

)
=

(
F ∪ (F − 1)

)
∩

(
(F + 1) ∪ F

)
.

Therefore, (
J ∪ (J + 1)

)
∩ [n− 1] = [n− 1] \ F̄ .

Combining (1.4) and (1.8) we deduce

ϕ(XJ) = 2#J · ŌF .

Together with (1.9) this implies

ŌF =
∑

G sparse

G⊆[n−1]\
(

J∪(J+1)
)(−1)#GQG .

This sets (1.10), since by the above, G ⊆ [n− 1] \
(
J ∪ (J + 1)

)
⇐⇒ G ⊆ F̄ ⇐⇒ F �

G. �

Corollary 1.7. As F runs over the sparse subsets of [n − 1], the elements OF form a
linear basis of Pn, and so do the elements ŌF .

Proof. Applying Möbius inversion to (1.7) we obtain

QF =
∑
G⊆F

(−1)#GOG .

Let µ denote the Möbius function of the poset of sparse subsets of [n − 1] under �.
Applying Möbius inversion to (1.10) we obtain

(−1)#F QF =
∑
F�G

µ(F, G)ŌG .

Since the elements QF form a linear basis of Pn, the same is true of the elements OF

and ŌF . �

The values µ(F, G) are products of Catalan numbers, see Remark 2.3. Note that {PF},
{QF}, {OF}, and {ŌF} are integral bases of the peak algebra.

2. Sparse subsets and compositions

Let n be a non-negative integer. An ordinary composition of n is a sequence α =
(a1, . . . , ak) of positive integers such that a1 + · · · + ak = n. A thin composition of n is
an ordinary composition α of n in which each ai is either 1 or 2.

A pseudocomposition of n is a sequence β = (b0, b1, . . . , bk) of integers such that b0 ≥ 0,
bi ≥ 1 for i ≥ 1, and b0 + b1 + · · · + bk = n. An almost-odd composition of n is a
pseudocomposition β of n in which b0 ≥ 0 is even and bi ≥ 1 is odd for all i ≥ 1.

We do not regard ordinary compositions as particular pseudocompositions. In partic-
ular, for ordinary or thin compositions α = (a1, . . . , ak) we define the number of parts of
α as

k(α) = k ,

but for pseudo or almost-odd compositions β = (b0, b1, . . . , bk) we define

(2.1) k(β) = k
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(instead of k + 1).
Pseudocompositions of n are in bijection with subsets of [0, n− 1] via

(2.2) β = (b0, b1, . . . , bk) 7→ J(β) := {b0, b0 + b1, . . . , b0 + b1 + · · ·+ bk−1} .

Similarly, compositions of n are in bijection with subsets of [n− 1] via

α = (a1, . . . , ak) 7→ I(α) := {a1, a1 + a2, . . . , a1 + a2 + · · ·+ ak−1} .

Under these bijections, inclusion of subsets corresponds to refinement of compositions:
β′ refines β if and only if J(β) ⊆ J(β′). We write β ≤ β′ in this case. Note that

#J(β) = k(β) and #I(α) = k(α)− 1 .

We use these correspondences to label basis elements of Sol(Bn) by pseudocompositions
instead of subsets: given a pseudocomposition β of n we let Xβ := XJ(β). Similarly, we
may label basis elements of Sol(An−1) by ordinary compositions of n.

There is a simple bijection between thin compositions of n and sparse subsets of [n−1].

Lemma 2.1. Given a sparse subset F of [n−1], let τF be the unique ordinary composition
of n such that

I(τF ) = [n− 1] \ F .

(i) The composition τF is thin and

#F = n− k(τF ) .

(ii) F 7→ τF is a bijection between sparse subsets of [n− 1] and thin compositions of
n.

(iii) Let G be a sparse subset of [n−1], α an ordinary composition of n, and I = I(α).
Then

G ⊆ [n− 1] \ I ⇐⇒ α ≤ τG .

(iv) For any sparse subsets F and G of [n− 1],

G ⊆ F ⇐⇒ τF ≤ τG .

Proof. Straightforward. �

According to the lemma, the poset of sparse subsets of [n−1] under reverse inclusion is
isomorphic to the poset of thin compositions of n under refinement. The Hasse diagrams
of the latter are shown in Figure 2, for n = 4, 5. Comparison with Figure 1 illustrates
the correspondence of Lemma 2.1 .
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Figure 2. Thin compositions under refinement
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There is also a bijection between almost-odd compositions of n and sparse subsets of
[n− 1].

Lemma 2.2. Given a sparse subset F of [n−1], let γF be the unique pseudocomposition
of n such that

J(γF ) = [0, n− 1] \
(
F ∪ (F − 1)

)
.

(i) The pseudocomposition γF is almost-odd and

#F =
n− k(γF )

2
.

(ii) F 7→ γF is a bijection between sparse subsets of [n− 1] and almost-odd composi-
tions of n.

(iii) Let G be a sparse subset of [n − 1], β a pseudocomposition of n, and J = J(β).
Then

G ⊆ [n− 1] \
(
J ∪ (J + 1)

)
⇐⇒ β ≤ γG .

(iv) For any sparse subsets F and G of [n− 1],

F � G ⇐⇒ G ∪ (G− 1) ⊆ F ∪ (F − 1) ⇐⇒ γF ≤ γG .

Proof. We show (i). Since F is sparse, it is a disjoint union of maximal subsets of the
form {a, a + 2, . . . , a + 2k}. It follows that F ∪ (F − 1) is a disjoint union of maximal
intervals of the form {a − 1, a, . . . , a + 2k − 1, a + 2k}. The difference between two
consecutive elements of J(γF ) = [0, n − 1] \

(
F ∪ (F − 1)

)
is therefore odd (equal to

a + 2k + 1 − a − 2). Consider the first element a0 of F and the corresponding interval
{a0 − 1, a0, . . . , a0 + 2k0 − 1, a0 + 2k0}. If a0 = 1 then the first element of J(γF ) is
a0 + 2k0 + 1 which is even. If a0 = 0 then the first element of J(γF ) is 0. This proves
that γF is almost-odd. Also, k(γF ) = #J(γF ) = n−2#F , since F and F −1 are disjoint
and equinumerous.

Given an almost-odd composition γ, write [0, n − 1] \ J(γ) as a disjoint union of
maximal intervals and delete every other element, starting with the first element of each
interval. The result is a sparse subset of [n− 1]. This defines the inverse correspondence
to F 7→ γF , which proves (ii).

We show (iii). Refinement of pseudocompositions corresponds to inclusion of subsets
via J . Therefore,

β ≤ γG ⇐⇒ J(β) ⊆ J(γG) ⇐⇒ G ∪ (G− 1) ⊆ [0, n− 1] \ J

⇐⇒ G ⊆ ([0, n− 1] \ J) ∩
(
[1, n] \ (J + 1)

)
⇐⇒ G ⊆ [n− 1] \

(
J ∪ (J + 1)

)
.

We show (iv). Let β = γF . Then J = [0, n − 1] \
(
F ∪ (F − 1)

)
. The proof of (iii)

shows that γF ≤ γG ⇐⇒ G ∪ (G − 1) ⊆ F ∪ (F − 1). The proof of Proposition 1.6
shows that

(
J ∪ (J + 1)

)
∩ [n− 1] = [n− 1] \ F̄ . Together with (iii) this says

γF ≤ γG ⇐⇒ G ⊆ F̄ ⇐⇒ F � G .

�

According to the lemma, the poset of sparse subsets of [n− 1] under � is isomorphic
to the poset of almost-odd compositions of n under refinement. The Hasse diagrams of
the latter are shown in Figure 3, for n = 4, 5. Comparison with Figure 1 illustrates the
correspondence of Lemma 2.2 .
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Figure 3. Almost-odd compositions under refinement

Remark 2.3. The poset of almost-odd compositions of n is isomorphic to the poset of
odd compositions of n + 1 (add 1 to the first part). It follows from [20, Exercise 52,
Chapter 3] that the values of the Möbius function of this poset are products of Catalan
numbers. (The poset studied in this reference is the poset of odd compositions of 2m+1.
The poset of odd compositions of 2m is a convex subset of the poset of odd compositions
of 2m+1: add a new part equal to 1 at the end.) We thank Sam Hsiao for this reference.

Combining the correspondences of Lemmas 2.1 and 2.2 results in a bijection between
thin compositions of n and almost-odd compositions of n that we now describe.

Lemma 2.4. Given an almost-odd composition γ = (b0, b1, b2, . . . , bk), let τγ be the thin
composition of n given by

τγ := (2, . . . , 2︸ ︷︷ ︸
b0
2

, 1, 2, . . . , 2︸ ︷︷ ︸
b1−1

2

, 1, 2, . . . , 2︸ ︷︷ ︸
b2−1

2

, . . . , 1, 2, . . . , 2︸ ︷︷ ︸
bk−1

2

) .

(i) γ 7→ τγ is a bijection between almost-odd compositions of n and thin compositions
of n such that

k(τγ) =
n + k(γ)

2
.

(ii) For any almost-odd compositions γ and δ of n, we have that τγ ≤ τδ (refinement
of thin compositions) if and only if γ ≤ δ (refinement of almost-odd compositions)
and in addition δ is obtained by replacing each part c of γ by a sequence of parts
c0, c1, . . . , ci such that c0 + c1 + . . . + ci = c, c0 ≡ c mod 2, c1 = . . . = ci−1 = 1,
and ci is odd. (In particular, i must be even.)

(iii) The bijections F 7→ τF and F 7→ γF of Lemmas 2.1 and 2.2 combine to give the
bijection of (i), in the sense that τγF

= τF .

Proof. Left to the reader. �

For example, let γ = (4, 1, 1) and δ = (0, 3, 1, 1, 1). Then

τγ = (2, 2, 1, 1) and τδ = (1, 2, 1, 1, 1) .

Note that δ refines γ but τδ does not refine τγ. In passing from γ to δ, the substitution
4 7→ 031 violates the conditions of (ii) above. Other instances of the correspondence are

(2, 1, 1, 2, 2, 2, 1, 1, 2, 2) ↔ (2, 1, 7, 1, 5) and (1, 2, 2, 1, 2, 1, 1, 2, 2) ↔ (0, 5, 3, 1, 5) .

We use these correspondences to label basis elements of Pn by thin or almost-odd
compositions instead of sparse subsets. Thus, given a thin composition τ of n we let
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Qτ := QF , where F is the sparse subset of [n − 1] such that τF = τ , and given an
almost-odd composition γ of n we let Qγ := QF , where F is the sparse subset of [n− 1]
such that γF = γ, and similarly for the other bases.

Example 2.5. Suppose n is even. The almost-odd composition (n) corresponds to the
sparse subset {1, 3, 5, . . . , n− 1} and to the thin composition (2, 2, . . . , 2︸ ︷︷ ︸

n
2

). Thus,

Ō(n) = Ō(2,2,...,2) = Ō{1,3,5,...,n−1} = P∅ ,

O(n) = O(2,2,...,2) = O{1,3,5,...,n−1} =
∑

G⊆{2,4,...,n−2}

PG ,

Q(n) = Q(2,2,...,2) = Q{1,3,5,...,n−1} = P{1,3,5,...,n−1} .

If n is odd, the almost-odd composition (0, n) corresponds to the sparse subset {2, 4, 6, . . . , n−
1} and to the thin composition (1, 2, . . . , 2︸ ︷︷ ︸

n−1
2

). Thus,

Ō(0,n) = Ō(1,2,...,2) = Ō{2,4,6,...,n−1} = P∅ + P{1} ,

O(0,n) = O(1,2,...,2) = O{2,4,6,...,n−1} =
∑

G⊆{1,3,...,n−2}

PG ,

Q(0,n) = Q(1,2,...,2) = Q{2,4,6,...,n−1} = P{2,4,6,...,n−1} .

Lemma 2.1 allows us to rewrite (1.7) as follows: for any thin composition τ of n,

(2.3) Oτ =
∑
ρ thin

τ≤ρ

(−1)n−k(ρ)Qρ .

Lemma 2.2 allows us to rewrite formulas (1.9) and (1.10) as follows (recall our con-
vention (2.1) on the number of parts): for any pseudocomposition β of n,

ϕ(Xβ) = 2k(β) ·
∑

γ almost-odd

β≤γ

(−1)
n−k(γ)

2 Qγ ,(2.4)

and for any almost-odd composition γ of n,

Ōγ =
∑

δ almost-odd
γ≤δ

(−1)
n−k(δ)

2 Qδ .(2.5)

Corollary 2.6. For any almost-odd composition γ of n,

(2.6) ϕ(Xγ) = 2k(γ) · Ōγ .

�

Remark 2.7. Some of the definitions and results of Sections 1 and 2 have counterparts
in earlier work of Hsiao [8] and Schocker [16]. These references do not deal with the peak
algebra but with the peak ideal. Our study of the peak algebra is more general, although
the underlying combinatorics is similar for both situations (almost-odd compositions
versus odd compositions). See Remark 3.4 for more details.
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3. Chains of ideals of Sol(Bn) and of Pn

For n ≥ 2, consider the map πn : Pn → Pn−2 defined by

(3.1) PF 7→


−PF\{1}−2 if 1 ∈ F

0 if 2 ∈ F

PF−2 if neither 1 nor 2 belong to F

for any sparse subset F ⊆ [n − 1]. We let π1 and π0 be the zero maps on P1 and P0,
respectively. We often omit the subindex n from πn. We know that π : Pn → Pn−2 is a
surjective morphism of algebras [1, Proposition 5.6].

We describe π on the other bases of the peak algebra (Definition 1.1).

Proposition 3.1. Let F be a sparse subset of [n− 1], (a1, . . . , ak) a thin composition of
n, and (b0, b1, . . . , bk) an almost-odd composition of n. We have

π(QF ) =

{
−QF\{1}−2 if 1 ∈ F ,

0 if 1 /∈ F ;
(3.2)

π(O(a1,...,ak)) =

{
O(a2,...,ak) if a1 = 2 ,

0 if a1 = 1 ;
(3.3)

π(Ō(b0,b1,...,bk)) =

{
Ō(b0−2,b1,...,bk) if b0 ≥ 2 ,

0 if b0 = 0 .
(3.4)

Proof. By (1.2), π(QF ) =
∑

F⊆G π(PG). The only terms that contribute to this sum are
those for which 2 /∈ G. These split in two classes: (i) those in which 1 ∈ G, and (ii)
those in which 1, 2 /∈ G. From (3.1) we obtain

π(QF ) = −
∑

F⊆G, 1∈G

PG\{1}−2 +
∑

F⊆G, 1,2/∈G

PG−2 .

If 1 /∈ F there is a bijection from class (i) to class (ii) given by G 7→ G \ {1}, and
π(QF ) = 0. If 1 ∈ F then class (ii) is empty and class (i) is in bijection with the
sparse subsets of [n − 3] which contain F \ {1} − 2 via G 7→ G \ {1} − 2; therefore,
π(QF ) = −QF\{1}−2.

Let τ = (a1, . . . , ak). Let F be the sparse subset of [n − 1] corresponding to τ as in
Lemma 2.1, i.e., I(τ) = [n − 1] \ F . If a1 = 1 then 1 /∈ F and from (1.7) and (3.2)
we deduce π(Oτ ) = 0. Assume a1 = 2 and let τ̂ = (a2, . . . , ak). Then 1 ∈ F and
I(τ̂) = I(τ)− 2 = [n− 3] \ (F \ {1} − 2). We have

π(Oτ )
(1.7)
=

∑
G⊆F

(−1)#Gπ(QG)
(3.2)
= −

∑
1∈G⊆F

(−1)#GQG\{1}−2

=
∑

G′⊆F\{1}−2

(−1)#G′
QG′

(1.7)
= Oτ̂ .

The proof of (3.4) is similar. �

Definition 3.2. For each j = 0, . . . , bn
2
c let Pj

n = Ker(πj+1 : Pn → Pn−2j−2).
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Since π is a morphism of algebras, these subspaces form a chain of ideals

P0
n ⊆ P1

n ⊆ · · · ⊆ P
bn

2
c

n = Pn .

In particular, Ker(π) = P0
n is the peak ideal [1, Theorem 5.7]. This space has a linear basis

consisting of sums of permutations with a common set of interior peaks [1, Definition
5.5].

From Proposition 3.1 we deduce the following explicit description of the ideals Pj
n.

Corollary 3.3. Let j = 0, . . . , bn
2
c. The ideal Pj

n is linearly spanned by any of the sets
consisting of:

(a) The elements QF as F runs over the sparse subsets of [n−1] which do not contain
{1, 3, . . . , 2j + 1}.

(b) The elements Oα as α = (a1, . . . , ak) runs over those thin compositions of n such
that either k ≤ j or else there is at least one index i ≤ j + 1 with ai = 1.

(c) The elements Ōβ as β = (b0, b1, . . . , bk) runs over those almost-odd compositions
of n such that b0 ≤ 2j.

�
The almost-odd compositions of n that do not satisfy condition (c) are in bijection with

the almost-odd compositions of n− 2j − 2 via (b0, b1, . . . , bk) 7→ (b0 − 2j − 2, b1, . . . , bk).
Therefore,

(3.5) dim Pj
n =

{
fn − fn−2j−2 if j < bn

2
c ,

fn if j = bn
2
c .

The sparse subsets of [n − 1] that do not satisfy condition (a) are those of the form
{1, 3, . . . , 2j + 1} ∪ G, where G is a sparse subset of {2j + 3, . . . , n − 1}. The thin
compositions α = (a1, . . . , ak) that do not satisfy condition (b) are those for which
k ≥ j + 1 and a1 = . . . = aj+1 = 2.

There is another way to express these dimensions. It follows from (3.5) and the
Fibonacci recursion that, if j < bn

2
c, then

dim Pj
n = fn−1 + fn−3 + · · ·+ fn−(2j+1) .

This can also be understood as follows. Suppose F is a sparse subset of [n − 1] that
satisfies condition (a). Then min F c ∈ {1, 3, . . . , 2j + 1}. The number of sparse subsets
F with min F c = i is fn−i.

Remark 3.4. Specializing j = 0 in the preceding remarks we obtain that the peak ideal
P0

n is linearly spanned by

(a) The elements QF as F runs over the sparse subsets of [n−1] which do not contain
1.

(b) The elements Oα as α = (a1, . . . , ak) runs over those thin compositions of n such
that a1 = 1.

(c) The elements Ōβ as β = (b0, b1, . . . , bk) runs over those almost-odd compositions
of n such that b0 = 0.

The dimension of the peak ideal is dim P0
n = fn − fn−2 = fn−1.

The peak ideal is the object studied in [5, 14, 16] (and in dual form in [8]). The bases
Q and Ō specialized as in (a) and (c) above are the bases Γ and Ξ̃ of [16, Section 3].
The basis O appears to be new, even after specialization.
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For n ≥ 1, consider the map βn : Sol(Bn) → Sol(Bn−1) defined by

(3.6) X(b0,b1,...,bk) 7→

{
X(b0−1,b1,...,bk) if b0 6= 0 ,

0 if b0 = 0 .

We let β0 be the zero map on Sol(B0). We often omit the subindex n from βn.

Definition 3.5. For each i = 0, . . . , n, let Ii
n = Ker(βi+1 : Sol(Bn) → Sol(Bn−1)).

We know that β is a surjective morphism of algebras [1, Proposition 5.2]. Therefore,
these subspaces form a chain of ideals

I0
n ⊆ I1

n ⊆ I2
n ⊆ · · · ⊆ In

n = Sol(Bn) .

From (3.6) we deduce that the ideal Ii
n is linearly spanned by the elements Xβ as

β = (b0, b1, . . . , bk) runs over those pseudocompositions of n such that b0 ≤ i.
Under the canonical map ϕ : Sol(Bn) → Sol(An−1), the ideals I0

n and I1
n both map

onto the peak ideal P0
n [1, Theorem 5.9]. Furthermore, In

n = Sol(Bn) maps onto the
peak algebra Pn [1, Theorem 4.2]. These results generalize as follows.

Proposition 3.6. For each i = 0, . . . , n,

ϕ(Ii
n) = P

b i
2
c

n .

Proof. Let j = 0, . . . , bn
2
c. Let γ = (c0, c1, . . . , ck) be an almost-odd composition of n

such that c0 ≤ 2j. Then ϕ(Xγ) = 2k(γ) · Ōγ by (2.6). In addition, Xγ ∈ I2j
n , and by

Corollary 3.3, these elements Ōγ span Pj
n. Therefore, Pj

n ⊆ ϕ(I2j
n ).

On the other hand, the commutativity of the diagram [1, Proposition 5.6]

Sol(Bn)
β2

//

ϕ

��

Sol(Bn−2)

ϕ

��
Pn π

// Pn−2

implies that I2j+1
n = Ker(β2j+2) maps under ϕ to Ker(πj+1) = Pj

n.
Thus Pj

n ⊆ ϕ(I2j
n ) ⊆ ϕ(I2j+1

n ) ⊆ Pj
n and the result follows. �

The situation may be illustrated as follows:

I0
n ⊆ I1

n︸ ︷︷ ︸ ⊆ I2
n ⊆ I3

n︸ ︷︷ ︸ ⊆ · · · ⊆ In
n = Sol(Bn)

↓↓ ↓↓ ↓↓|

P0
n ⊆ P1

n ⊆ · · · ⊆ P
bn

2
c

n = Pn

4. The radical of the peak algebra

Let A be an Artinian ring (e.g., a finite dimensional algebra over a field). The (Ja-
cobson) radical rad(A) may be defined in any of the following ways [10, Theorem 4.12,
Exercise 11 in Section 4]:

(R1) rad(A) is the largest nilpotent ideal of A;
(R2) rad(A) is the smallest ideal of A such that the corresponding quotient is semisim-

ple.
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Thus, rad(A) is a nilpotent ideal and an ideal N is nilpotent if and only if N ⊆ rad(A);
A/rad(A) is semisimple and an ideal I is such that A/I is semisimple if and only if
I ⊇ rad(A).

Lemma 4.1. Let A be an Artinian ring and f : A → B a surjective morphism of rings.
Then

f(rad(A)) = rad(B) .

Proof. Since f is surjective, f(rad(A)) is an ideal of B. Since rad(A) is nilpotent, so
is f(rad(A)). Hence, by (R1), f(rad(A)) ⊆ rad(B). On the other hand, f induces an
isomorphism of rings

A/f−1(f(rad(A))) ∼= B/f(rad(A)) .

Since f−1(f(rad(A))) ⊇ rad(A), the quotient is semisimple, by (R2) applied to A. Hence,
by (R2) applied to B, f(rad(A)) ⊇ rad(B). �

We apply the lemma to derive an explicit description of the radical of the peak algebra
from the known description of the radical of the descent algebra of type B. Solomon
described the radical of the descent algebra of an arbitrary finite Coxeter group [19,
Theorem 3]. For the descent algebra of type B, his result specializes as follows (see
also [4, Corollary 2.13]). Given a pseudocomposition β = (b0, b1, . . . , bk) of n and a
permutation s of [k], let

(4.1) βs := (b0, bs(1), . . . , bs(k)) .

The radical rad(Sol(Bn)) is linearly spanned by the elements

(4.2) Xβ −Xβs

as β runs over all pseudocompositions of n and s over all permutations of [k(β)]. It
follows that the dimension of the maximal semisimple quotient of Sol(Bn) is

(4.3) codim rad(Sol(Bn)) = p(0) + p(1) + · · ·+ p(n) ,

where p(n) is the number of partitions of n.

Theorem 4.2. The radical rad(Pn) is linearly spanned by the elements in either (a),
(b), or (c):

(a) Ōγ − Ōγt , (b) Qγ −Qγt , (c) Oγ −Oγt .

In each case, γ runs over all almost-odd compositions of n and t over all permutations
of [k(γ)].

Proof. Let Ja, Jb, and Jc be the span of the elements in (a), (b), and (c) respectively.
Consider the canonical morphism ϕ : Sol(Bn) → Sol(An−1). Its image is Pn [1,

Theorem 4.2]. According to Lemma 4.1 and (4.2), rad(Pn) is spanned by the elements

ϕ(Xβ)− ϕ(Xβs)

with β and s as in (4.1).
Given an almost-odd composition γ and a permutation t of [k(γ)], (2.6) gives

ϕ(Xγ)− ϕ(Xγt) = 2k(γ) · (Ōγ − Ōγt) .

This shows that Ja ⊆ rad(Pn).
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Fix β and s as in (4.1). Given a pseudocomposition γ ≥ β, write γ = γ0γ1 · · · γk

(concatenation of compositions), with γ0 a pseudocomposition of b0 and γi an ordinary
composition of bi for i = 1, . . . , k. Define

γs := γ0γs(1) · · · γs(k) .

This extends definition (4.1). Note that γs ≥ βs, and if γ is almost-odd then so is
γs. Therefore, the map γ 7→ γs is a bijection from the almost-odd compositions γ ≥ β
to the almost-odd compositions γ′ ≥ βs (the inverse is γ′ 7→ (γ′)s−1

). Note also that
k(γ) = k(γs). Together with (2.4) this gives

ϕ(Xβ)− ϕ(Xβs) = 2k(β) ·
∑

γ almost-odd

β≤γ

(−1)
n−k(γ)

2 (Qγ −Qγs) .

Note that each γs = γt for a certain permutation t of [k(γ)]. This shows that rad(Pn) ⊆
Jb.

The bijection of the preceding paragraph may also be used in conjunction with (2.5)
to give

Ōγ − Ōγs =
∑

δ almost-odd
γ≤δ

(−1)
n−k(δ)

2 (Qδ −Qδs) .

Möbius inversion then shows that Jb ⊆ Ja. Thus Ja = rad(Pn) = Jb.
Lastly, we deal with Jc. Recall the bijection γ 7→ τγ between almost-odd compositions

and thin compositions of Lemma 2.4. Consider (2.3). When written in terms of almost-
odd compositions, this equation says that

Oγ =
∑

δ

(−1)
n−k(δ)

2 Qδ

the sum being over those almost-odd compositions δ such that τγ ≤ τδ. Let t be a
permutation of [k(γ)]. The map δ 7→ δt restricts to a bijection between the almost-odd
compositions δ such that τγ ≤ τδ and the almost-odd compositions δ′ such that τγt ≤ τδ′ .
This is so because the restriction on the admissible refinements described in item (ii) of
Lemma 2.4 only depends on the individual parts of γ, and not on their relative position.
Therefore,

Oγ −Oγt =
∑

δ

(−1)
n−k(δ)

2 (Qδ −Qδt) .

Together with Möbius inversion this shows that Jc = Jb. �

A partition of n is an ordinary composition λ = (`1, `2, . . . , `k) of n such that `1 ≥
`2 ≥ . . . ≥ `k. We say that λ is odd if each `i is odd, and almost-odd if at most one `i is
even.

Corollary 4.3. The dimension of the maximal semisimple quotient of Pn is the number
of almost-odd partitions of n.

�
An almost-odd partition of n may be viewed as an odd partition of m for some m ≤ n

such that n −m is even. Therefore, the dimension of the maximal semisimple quotient
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of Pn is

(4.4) codim rad(Pn) = po(n) + po(n− 2) + po(n− 4) + · · ·+ po(n− 2bn
2
c) ,

where po(n) is the number of odd partitions of n. The number of almost-odd partitions
of n is, for n ≥ 0,

1, 1, 2, 3, 4, 6, 8, 11, 14, 19, . . . .

For more information on this sequence, see [18, A038348].
The partial sums of (4.3) and (4.4) are the codimensions of the radicals of the ideals

of Section 3.

Corollary 4.4. For any i = 0, . . . , n,

dim
Ii

n

rad(Sol(Bn)) ∩ Ii
n

= p(n) + p(n− 1) + · · ·+ p(n− i)

and for any j = 0, . . . , bn
2
c,

dim
Pj

n

rad(Pn) ∩Pj
n

= po(n) + po(n− 2) + · · ·+ po(n− 2j) .

Proof. The first equality follows directly from (4.2) and the definition of the ideals Ii
n.

The second follows from Theorem 4.2 and item (c) in Corollary 3.3. �

In particular, the codimension of the radical of the peak ideal P0
n is the number of odd

partitions of n. This result is due to Schocker [16, Corollary 10.3]. (In this reference, P0
n

is viewed as a non-unital algebra, but this leads to the same answer, since the radical
of an ideal of a ring coincides with the intersection of the ideal with the radical of the
ring [10, Exercise 7 in Section 4].)

The radical may also be described in terms of thin compositions in either of the three
bases, by transporting the action (4.1) of permutations on almost-odd compositions to
an action on thin compositions via the bijection of Lemma 2.4. We describe the result.

Given a thin composition τ , consider the unique way of writing it as the concate-
nation of compositions τ = τ0τ1 · · · τh in which τ0 is of the form (2, 2, . . . , 2) (τ0 may
be empty), and for each i > 0 τi is of the form (1, 2, . . . , 2). For instance, if τ =
(2, 1, 1, 2, 2, 2, 1, 1, 2, 2) then τ0 = (2), τ1 = (1), τ2 = (1, 2, 2, 2), τ3 = (1), τ4 = (1, 2, 2).
Let h := h(τ). (If τ = τγ then h(τ) = k(γ).) Given a permutation t of [h(τ)] we let
τ t := τ0τt(1) · · · τt(h).

Proposition 4.5. The radical rad(Pn) is linearly spanned by the elements in either (a),
(b), or (c):

(a) Ōτ − Ōτ t , (b) Qτ −Qτ t , (c) Oτ −Oτ t .

In each case, τ runs over all thin compositions of n and t over all permutations of [h(τ)].

�

Remark 4.6. We point out that the radicals of the peak algebra and the descent algebra
of type A are related by

rad(Pn) = rad(Sol(An−1)) ∩Pn .

First, for any extension of algebras A ⊆ B, we have that rad(B) ∩A is a nilpotent ideal
of A, so rad(B) ∩ A ⊆ rad(A) by (R1). The reverse inclusion does not always hold, but
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it does if B/rad(B) is commutative. Indeed, a commutative semisimple algebra does not
contain nilpotent elements, and since A/(rad(B)∩A) ↪→ B/rad(B), A/(rad(B)∩A) does
not contain nilpotent elements. Hence A/(rad(B) ∩ A) is semisimple by (R1), and then
rad(A) ⊆ rad(B) ∩ A by (R2). These considerations apply in our situation (A = Pn,
B = Sol(An−1)), since it is known that Sol(An−1)/rad(Sol(An−1)) is commutative [19,
Theorem 3] (this quotient is isomorphic to the representation ring of Sn).

5. The convolution product

The convolution product of permutations is due to Malvenuto and Reutenauer [13].
It may also be defined for signed permutations. We review the relevant notions below,
for more details see [1, Section 8].

Consider the spaces

kB :=
⊕
n≥0

kBn and kS :=
⊕
n≥0

kSn .

On the space kS there is defined the external or convolution product

(5.1) σ ∗ τ :=
∑

ξ∈Sh(p,q)

ξ · (σ × τ) .

Here σ ∈ Sp and τ ∈ Sq are permutations,

Sh(p, q) = {ξ ∈ Sp+q | ξ(1) < · · · < ξ(p), ξ(p + 1) < · · · < ξ(p + q)}
is the set of (p, q)-shuffles, and σ × τ ∈ Sp+q is defined by

(σ × τ)(i) =

{
σ(i) if 1 ≤ i ≤ p ,

p + τ(i− p) if p + 1 ≤ i ≤ p + q .

The convolution product turns the space kS into a graded algebra.
Similar formulas define the convolution product on kB, and the canonical map ϕ :

kB → kS preserves this structure.
Consider now the spaces

Sol(B) :=
⊕
n≥0

Sol(Bn) , P :=
⊕
n≥0

Pn , I0 :=
⊕
n≥0

I0
n , P0 :=

⊕
n≥0

P0
n .

Under the convolution product of kB, I0 is a graded subalgebra of kB and Sol(B) is
a graded right I0-submodule of kB. Similarly, P0 is a graded subalgebra of kS and P is
a graded right P0-submodule of kS, and the map ϕ preserves each of these structures.
The situation may be schematized by

I0

ϕ
����

⊆ Sol(B)

ϕ
����

⊆ kB

ϕ
����

P0 ⊆ P ⊆ kS

For any pseudocomposition (b0, b1, . . . , bk) we have

(5.2) X(b0,b1,...,bk) = X(b0) ∗X(0,b1) ∗ · · · ∗X(0,bk) .

In other words, the basis X of Sol(B) is multiplicative with respect to convolution.
We deduce that all three bases Q, O, and Ō of P are multiplicative.
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Proposition 5.1. For any almost-odd composition (b0, b1, . . . , bk),

Ō(b0,b1,...,bk) = Ō(b0) ∗ Ō(0,b1) ∗ · · · ∗ Ō(0,bk) ,(5.3)

Q(b0,b1,...,bk) = Q(b0) ∗Q(0,b1) ∗ · · · ∗Q(0,bk) ,(5.4)

O(b0,b1,...,bk) = O(b0) ∗O(0,b1) ∗ · · · ∗O(0,bk) .(5.5)

Proof. Formula (5.3) follows at once from (5.2) by applying the canonical map ϕ, in view
of (2.6) and the fact that ϕ preserves the convolution product.

Let β := (b0, b1, . . . , bk). From (2.5) we obtain

Ō(b0) ∗ Ō(0,b1) ∗ · · · ∗ Ō(0,bk) =
∑

(b0)≤δ0
(0,bi)≤δi

(−1)
n−

Pk
i=0 k(δi)

2 Qδ0 ∗Qδ1 ∗ · · · ∗Qδk
.

The sum is over almost-odd compositions δ0 and δi as indicated. For i > 0, any such δi is
of the form (0, αi) with αi an (ordinary) odd composition of bi. Note k(αi) = k(δi) (2.1).
The concatenation δ := δ0α1 . . . αk is then an almost-odd composition of n with k(δ) =∑k

i=0 k(δi) and δ ≥ β. Any almost-odd composition δ ≥ β is of this form for a unique
sequence δi. Therefore, the right hand side may be written as∑

β≤δ

(−1)
n−k(δ)

2 Qδ0 ∗Qδ1 ∗ · · · ∗Qδk
.

On the other hand, by(2.5) and (5.3), the left hand side equals∑
β≤δ

(−1)
n−k(δ)

2 Qδ .

By Möbius inversion we deduce Qδ0 ∗Qδ1 ∗ · · · ∗Qδk
= Qδ for each δ, which gives (5.4).

Formula (5.5) may be deduced similarly from (2.3) and (5.4). The argument now
involves the partial order on almost-odd compositions corresponding to refinement of
thin compositions. Let β, δ, and δi be as above. The key observation is that β ≤ δ in
this partial order if and only if (b0) ≤ δ0 and (0, bi) ≤ δi (i > 0) in the same partial
order. This is guaranteed by item (ii) of Lemma 2.4. �

Equation (5.2) implies

X(b0,b1,...,bk) ∗X(0,c1,...,ch) = X(b0,b1,...,bk,c1,...,ch) ,

and in particular,

X(0,a1,...,ak) ∗X(0,c1,...,ch) = X(0,a1,...,ak,c1,...,ch) .

The second equation says that I0 is a free algebra, with one generator of degree n for
each n (the element X(0,n)). The first equation says that Sol(B) is a free I0-module,
with one generator of degree n for each n (the element X(n)). The latter fact is reflected
in the following relation between the Hilbert series of these graded vector spaces:

Sol(B)(t)

I0(t)
=

1

1− t
.

Similarly, Proposition 5.1 implies that P0 is a free algebra with one generator of degree
n for each odd n (a result known from [6, 8, 16]) and also that P is a free P0-module,



20 MARCELO AGUIAR, KATHRYN NYMAN, AND ROSA ORELLANA

with one generator of degree n for each even n. Correspondingly, the Hilbert series of
these graded vector spaces are related by

P(t)

P0(t)
=

1

1− t2
.

6. Eulerian idempotents and a basis of semiidempotents

6.1. Peak analogs of the first Eulerian idempotent. As in [1, Section 6], we con-
sider certain elements of the group algebras of Bn and Sn obtained by grouping permu-
tations according to their number of descents, peaks, interior descents, or interior peaks,
respectively. More precisely, we let

yj :=
∑

{σ ∈ Bn | #Des(σ) = j} for j = 0, . . . , n ;

y0
j :=

∑
{σ ∈ Bn | #(Des(σ) \ {0}) = j − 1} for j = 1, . . . , n ;

pj :=
∑

{σ ∈ Sn | #Peak(σ) = j} for j = 0, . . . , bn
2
c ;

p0
j :=

∑
{σ ∈ Sn | #(Peak(σ) \ {1}) = j − 1} for j = 1, . . . , bn + 1

2
c .

We have that yj ∈ Sol(Bn), y0
j ∈ I0

n, pj ∈ Pn, and p0
j ∈ P0

n. The canonical map
ϕ : Sol(Bn) → Pn satisfies [1, Propositions 6.2, 6.4]

ϕ(yj) =

min(j,n−j)∑
i=0

22i

(
n− 2i

j − i

)
· pi for j = 0, . . . , n ;(6.1)

ϕ(y0
j ) =

min(j,n+1−j)∑
i=1

22i−1

(
n− 2i + 1

j − i

)
· p0

i for j = 1, . . . , n .(6.2)

For each n ∈ Z+, let n!! := n(n− 2)(n− 4) · · · (the last term in the product is 2 if n
is even and 1 if n is odd). Set also 0!! = (−1)!! = 1. Note that

(6.3) (2n)!! = 2nn! and (2n + 1)!! =
(2n + 1)!

2nn!
.

Consider the following elements:

e(n) =
n∑

j=0

(−1)j (2j − 1)!!(2n− 2j − 1)!!

(2n)!!
yj ∈ Sol(Bn)(6.4)

e(0,n) =
n∑

j=1

(−1)j−1 (j − 1)!(n− j)!

n!
y0

j ∈ I0
n(6.5)

ρ(n) =

bn
2
c∑

j=0

(−1)j (2j − 1)!!(n− 2j − 1)!!

n!!
pj ∈ Pn(6.6)

ρ(0,n) =

bn+1
2
c∑

j=1

(−1)j−1 (2j − 2)!!(n− 2j)!!

n!!
p0

j ∈ P0
n(6.7)
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These elements are analogous to a certain element of Sol(An−1) known as the first
Eulerian idempotent. The elements e(n) and e(0,n) appear in work of Bergeron and Berg-
eron [2, 3, 4], where they are denoted I∅ and I(n), respectively. According to [4, Theorems
2.1, 2.2], e(n) and 1

2
e(0,n) are orthogonal idempotents. For odd n, the element ρ(0,n) is

known to be idempotent from work of Schocker [16, Section 7]. Below we deduce this
fact, as well as the idempotency of ρ(n) for even n, from that of e(n) and e(0,n).

Lemma 6.1. For any i = 1, . . . , bn+1
2
c,

(6.8)
n−i+1∑

j=i

(−1)j−i (j − 1)!(n− j)!

(j − i)!(n− i− j + 1)!
=

{
(2i−2)!!(n−1)!!
22i−2(n−2i+1)!!

if n is odd,

0 if n is even.

For any i = 0, . . . , bn
2
c,

(6.9)
n−i∑
j=i

(−1)j−i (2j − 1)!(2n− 2j − 1)!

(j − i)!(j − 1)!(n− i− j)!(n− j − 1)!
=

{
(2i−1)!!(n−1)!!

22i−2n+2(n−2i)!!
if n is even,

0 if n is odd.

Proof. Start from the equality

1

(1 + x)i
· 1

(1− x)i
=

1

(1− x2)i
.

Expanding with the binomial theorem gives
∞∑

r=0

(−1)r

(
i + r − 1

r

)
xr ·

∞∑
s=0

(
i + s− 1

s

)
xs =

∞∑
t=0

(
i + t− 1

t

)
x2t .

Equating coefficients of xm we obtain
m∑

r=0

(−1)r

(
i + r − 1

r

)(
i + m− r − 1

m− r

)
=

{(
i+m/2−1

m/2

)
if m is even,

0 if m is odd.

Letting n = m + 2i− 1 and j = r + i this equality becomes
n−i+1∑

j=i

(−1)j−i

(
j − 1

j − i

)(
n− j

n− i− j + 1

)
=

{(
n/2−1/2

n/2−i+1/2

)
if n is odd,

0 if n is even.

Equation (6.8) follows by noting that
(

n/2−1/2
n/2−i+1/2

)
(i− 1)!2 = (2i−2)!!(n−1)!!

22i−2(n−2i+1)!!
for odd n.

Equation (6.9) can be deduced similarly, starting from

1

(1 + x)i+ 1
2

· 1

(1− x)i+ 1
2

=
1

(1− x2)i+ 1
2

.

�

Theorem 6.2. Let n be a positive integer. Then

ϕ(e(n)) =

{
ρ(n) if n is even,

0 if n is odd;
(6.10)

ϕ(e(0,n)) =

{
0 if n is even,

2ρ(0,n) if n is odd.
(6.11)

In particular, ρ(n) is idempotent for each even n, and ρ(0,n) is idempotent for each odd n.
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Proof. According to (6.1) and (6.4),

ϕ(e(n)) =
n∑

j=0

(−1)j (2j − 1)!!(2n− 2j − 1)!!

(2n)!!

min(j,n−j)∑
i=0

22i

(
n− 2i

j − i

)
· pi

=

bn
2
c∑

i=0

22i

n−i∑
j=i

(−1)j (2j − 1)!!(2n− 2j − 1)!!

(2n)!!

(
n− 2i

j − i

)
· pi

(6.3)
=

bn
2
c∑

i=0

(n− 2i)!

n!
22i−2n+2

n−i∑
j=i

(−1)j (2j − 1)!(2n− 2j − 1)!

(j − i)!(j − 1)!(n− j − i)!(n− j − 1)!
· pi

(6.9)
=

{∑bn
2
c

i=0
(n−2i)!

n!
(−1)i (2i−1)!!(n−1)!!

(n−2i)!!
· pi if n is even

0 if n is odd

=

{∑bn
2
c

i=0(−1)i (2i−1)!!(n−2i−1)!!
n!!

· pi if n is even

0 if n is odd

(6.4)
=

{
ρ(n) if n is even

0 if n is odd.

Equation (6.11) can be deduced similarly from (6.8). �

The dimensions of the left ideals of the group algebra kBn generated by the idempo-
tents e(n) and 1

2
e(0,n) are [4, Proposition 2.5 and page 108]

dim(kBn)e(n) = (2n− 1)!! and dim(kBn)e(0,n) = (2n− 2)!! .

We calculate the dimensions of the left ideals of the group algebra kSn generated by the
idempotents ρ(n) and ρ(0,n).

Proposition 6.3. For even n,

dim(kSn)ρ(n) = (n− 1)!!2 ,

and for odd n,

dim(kSn)ρ(0,n) = (n− 1)! .

Proof. If e is an idempotent of an algebra A then dim Ae = tr(re), the trace of the map
re : A → A, re(a) = ae (since this is a projection onto Ae). If A is a group algebra then
tr(re) equals the coefficient of the identity of the group in e times the order of the group.
Assume n is even, so ρ(n) is idempotent. From (6.6) we see that the coefficient of the

identity in ρ(n) is (n−1)!!
n!!

, so

dim(kSn)ρ(n) =
(n− 1)!!

n!!
· n! = (n− 1)!!2 .

If n is odd, ρ(0,n) is idempotent, and by (6.7) the coefficient of the identity in ρ(0,n) is
(n−2)!!

n!!
, so

dim(kSn)ρ(0,n) =
(n− 2)!!

n!!
· n! = (n− 2)!!(n− 1)!! = (n− 1)! .

�
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6.2. A basis of semiidempotents. We build a basis of the peak algebra by means of
the convolution product.

Definition 6.4. For any pseudocomposition β = (b0, b1, . . . , bk) of n, let

(6.12) eβ := e(b0) ∗ e(0,b1) ∗ · · · ∗ e(0,bk) .

Similarly, given an almost-odd composition γ = (b0, b1, . . . , bk) of n, let

(6.13) ργ := ρ(b0) ∗ ρ(0,b1) ∗ · · · ∗ ρ(0,bk) .

Since Sol(B) is a graded right I0-module, eβ ∈ Sol(Bn). Similarly, ργ ∈ Pn.

Proposition 6.5. Let β be a pseudocomposition. Then

(6.14) ϕ(eβ) =

{
2k(β)ρβ if β is almost-odd,

0 otherwise.

Proof. Since ϕ preserves convolution products,

ϕ(eβ) = ϕ(e(b0)) ∗ ϕ(e(0,b1)) ∗ · · · ∗ ϕ(e(0,bk)) .

The result follows at once from Theorem 6.2. �

The elements eβ were introduced in [3, 4] (where they are denoted Ip). It is shown
in [4, page 106] that as β runs over all pseudocompositions of n, the elements eβ form a
linear basis of Sol(Bn). Moreover, each eβ is a semiidempotent [4, Corollary 2.8].

Corollary 6.6. As γ runs over the almost-odd compositions of n, the elements ργ form
a basis of semiidempotents of Pn.

Proof. The surjectivity of ϕ : Sol(Bn) � Pn together with Proposition 6.5 imply that
the elements ργ span Pn. Since the dimension of Pn is the number of almost-odd
compositions of n, they form a basis. Since each eγ is a semiidempotent, so is each
ργ. �

6.3. Commutative semisimple subalgebras. Let s(Bn) denote the linear span of the
elements yj, j = 0, . . . , n, i0n the linear span of the elements y0

j , j = 1, . . . , n, and

ŝ(Bn) := s(Bn) + i0n .

It is known that ŝ(Bn) is a commutative semisimple subalgebra of Sol(Bn) of dimension
2n, s(Bn) is a subalgebra of ŝ(Bn) of dimension n + 1, and i0n is an ideal of ŝ(Bn) of
dimension n [12, Section 4.2], [1, Theorem 6.1]. Let

xj :=
∑

J⊆[0,n−1]

#J=j

XJ and x0
j :=

∑
J⊆[0,n−1], 0∈J

#J=j

XJ .

The elements xj, j = 0, . . . , n, form a basis of s(Bn), and the elements x0
j , j = 1, . . . , n,

form a basis of i0n [1, Section 6.1]. The idempotents e(n) and e(0,n) can be expressed in
these bases as follows:

e(n) =
n∑

j=0

(−1)j (2j − 1)!!

(2j)!!
xj and e(0,n) =

n∑
j=1

(−1)j−1 1

j
x0

j .

These formulas can be found in [4, Section 2] or [12, Section 4.2].
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We discuss peak analogs of these formulas. Let ℘n denote the linear span of the
elements pj, j = 0, . . . , bn

2
c, ℘0

n the linear span of the elements p0
j , j = 1, . . . , bn+1

2
c, and

℘̂n := ℘n + ℘0
n .

We know that ℘̂n is a commutative semisimple subalgebra of Pn of dimension n, ℘n is
a subalgebra of dimension bn

2
c + 1, and ℘0

n is an ideal of dimension bn+1
2
c [1, Theorem

6.8]. Define elements

(6.15) qj :=
∑

F sparse

#F=j

QF and q0
j :=

∑
F sparse, 1/∈F

#F=j−1

QF .

Proposition 6.7.

(6.16) qj =

bn
2
c∑

i=j

(
i

j

)
pi and q0

j =

bn+1
2
c∑

i=j

(
i− 1

j − 1

)
p0

i .

Proof. We have

qj =
∑

F⊆G sparse

#F=j

PG =
∑

G sparse

#{F ⊆ G | #F = j}PG

=
∑

G sparse

(
#G

j

)
PG =

bn
2
c∑

i=j

(
i

j

)
pi .

The formula for q0
j is similar. �

It follows that the qj, j = 0, . . . , bn
2
c, form a basis of ℘n and the q0

j , j = 1, . . . , bn+1
2
c,

form a basis of ℘0
n. The elements ρ(n) and ρ(0,n) can be expressed in these bases as follows.

Proposition 6.8. For every n,

ρ(n) =

bn
2
c∑

i=0

(−1)i (n− 2i− 1)!!

(n− 2i)!!
qi and ρ(0,n) =

bn+1
2
c∑

i=1

(−1)i−1 1

n− 2i + 2
q0
i .

Proof. Left to the reader. �

The canonical map ϕ : Sol(Bn) → Pn admits the following expressions on the bases
xj and qj.

Proposition 6.9.

ϕ(xj) = 2j

bn
2
c∑

i=0

(−1)i

(
n− 2i

j

)
qi and ϕ(x0

j) = 2j

bn+1
2
c∑

i=1

(−1)i−1

(
n + 1− 2i

j − 1

)
q0
i .

Proof. We have

ϕ(xj) =
∑

J⊆[0,n−1]

#J=j

ϕ(XJ)
(1.9)
= 2j ·

∑
G sparse

G⊆[n−1]\
(

J∪(J+1)
)(−1)#GQG .
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As seen in the proof of Lemma 2.2, G ⊆ [n − 1] \
(
J ∪ (J + 1)

)
⇐⇒ J ⊆ [0, n −

1] \
(
G ∪ (G− 1)

)
. Once a sparse subset G has been fixed, there are

(
n−2#G

j

)
subsets J

satisfying this condition, since G and G− 1 are disjoint. The formula for ϕ(xj) follows.
The formula for ϕ(x0

j) can be derived similarly. �

Consider the maps β : Sol(Bn) → Sol(Bn−1) and π : Pn → Pn−2 of Section 3. We
have [1, Proposition 6.10]

β(xj) =

{
xj if 0 ≤ j < n ,

0 if j = n .

Similarly, one sees that

π(qj) =

{
−qj−1 if j = 1, . . . , bn

2
c,

0 if j = 0.

Since e(0,n) ∈ I0
n = Ker(β), we have β(e(0,n)) = 0 for every n. Similarly, π(ρ(0,n)) = 0 for

every n. On the other hand,

Proposition 6.10. For every n,

β(e(n)) = e(n−1) and π(ρ(n)) = ρ(n−2) .

Proof. These follow easily from the preceding formulas. �

7. The action on Lie monomials

7.1. Preliminaries. Let T (V ) = ⊕n≥0V
⊗n be the tensor algebra of a vector space V .

It is a Hopf algebra with coproduct determined by ∆(v) = 1 ⊗ v + v ⊗ 1 for all v ∈ V .
A Lie polynomial is a primitive element of T (V ). A Lie monomial is a product of Lie
polynomials. View T (V ) as a Lie algebra under the commutator bracket [a, b] = ab− ba.
The subspace L(V ) of Lie polynomials may also be described as the Lie subalgebra of
T (V ) generated by V . This turns out to be the free Lie algebra generated by V . We
have L(V ) = ⊕n≥1Ln(V ) with Ln(V ) = L(V ) ∩ V ⊗n.

Recall the right action of Sn on the tensor power V ⊗n of a vector space V :

(v1 . . . vn) · σ = vσ(1) . . . vσ(n) .

There is also a left action of GL(V ) on V ⊗n given by

g · (v1 . . . vn) = (g · v1) . . . (g · vn) .

These actions commute: for any g ∈ GL(V ), a ∈ V ⊗n, and σ ∈ Sn,

g · (a · σ) = (g · a) · σ .

A classical result (Schur-Weyl duality) states that if dim V ≥ n then kSn may be recov-
ered as those endomorphisms of V ⊗n which commute with the action of GL(V ).

Similarly, an important result of Garsia and Reutenauer characterizes which elements
of the group algebra kSn belong to the descent algebra Sol(An−1) in terms of their action
on Lie monomials [7, Theorem 4.5]. Their result may be stated as follows. An element
φ ∈ kS belongs to Sol(A) if and only if for all Lie polynomials p1, . . . , pk ∈ L(V ), the
subspace

(7.1) Span{ps(1) . . . ps(k) | s ∈ Sk} ⊆ T (V )
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is invariant under the action of φ.
Schocker obtained an interesting characterization for the elements of the peak ideal

P0
n in terms of the action on Lie monomials [16, Main Theorem 8]. Let L(V ) = Le(V )⊕

Lo(V ) denote the decomposition into polynomials of even and odd degrees, i.e., Le(V ) =
⊕n evenLn(V ), and Lo(V ) = ⊕n oddLn(V ). Schocker’s result states that an element φ ∈
Sol(A) belongs to P0 if and only if for all Lie polynomials p1, . . . , pk ∈ L(V ) with
p1 ∈ Le(V ),

(7.2) (p1 . . . pk) · φ = 0 .

Below we present a characterization for the elements of the peak algebra Pn that is
analogous to that of Garsia and Reutenauer, both in content and proof (Theorem 7.5).
Furthermore, we provide a characterization for the elements of each ideal Pj

n that inter-
polates between Schocker’s characterization of the peak ideal and our characterization
of the peak algebra (Theorem 7.8).

7.2. The action of signed permutations. Suppose the vector space V is endowed
with an involution

v 7→ v , v = v .

We extend the involution to T (V ) by

v1 . . . vn := vn . . . v1 .

Thus a 7→ a is an anti-automorphism of algebras of T (V ). We say that an element
a ∈ T (V ) is invariant if a = a, and skew-invariant if a = −a. We obtain decompositions

T (V ) = Ti(V )⊕ Ts(V ) and L(V ) = Li(V )⊕ Ls(V )

into invariants and skew-invariants elements.
The group Bn acts on V ⊗n via

(7.3) (v1 . . . vn) · σ = v±σ(1) . . . v±σ(n) , where v±σ(i) :=

{
vσ(i) if σ(i) > 0 ,

v−σ(i) if σ(i) < 0 .

Let ιn : kBn → End(V ⊗n) be ι(σ)(a) = a · σ. Summing over n we get a map

ι : kB → End(T (V )) .

The external product of kB (Section 5) corresponds to the convolution of endomorphisms
under ι: for any σ ∈ Bp and τ ∈ Bq,

(7.4) ι(σ ∗ τ) = m
(
ι(σ)⊗ ι(τ)

)
∆

where m and ∆ are the product and coproduct of T (V ).
Consider the operator ∇ : T (V ) → T (V ) defined by

∇(a) = a + a .

The following result is central for our purposes. It generalizes [1, Proposition 8.8].

Proposition 7.1. Let p1, . . . , pk be homogeneous Lie polynomials and n =
∑k

i=1 deg(pi).
Then

(7.5) (p1 . . . pk) ·X(0,n) = ∇
(
. . .∇

(
∇(p1)p2

)
p3 . . . pk

)
.

In particular, if p1 is skew-invariant, then

(7.6) (p1 . . . pk) ·X(0,n) = 0 .
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Proof. For p ≥ 0, let 1p := 12 . . . p ∈ Bp denote the identity permutation and let 1̄p :=
p̄ . . . 2̄1̄ ∈ Bp. Note that 1̄p(a) = a for any a ∈ V ⊗p. Let R(p,q) := 1̄p ∗ 1q ∈ kBp+q. We
have

X(0,n) =
n∑

p=0

R(p,n−p)

(see the proof of Proposition 7.13 in [1] for a more general result). We make use of (7.4)
to analyze the action of X(0,n). Since each pi is primitive, we have

∆(p1 . . . pk) =
∑

StT=[k]

pS ⊗ pT ,

where, if S = {i1 < . . . < ih}, then pS := pi1 . . . pik . Therefore,

(p1 . . . pk) ·X(0,n) =
∑

StT=[k]

pSpT .

We verify that ∑
StT=[k]

pSpT = ∇
(
. . .∇

(
∇(p1)p2

)
p3 . . . pk

)
by induction on k. If k = 1, both sides equal p1 + p1. Assume the result holds for k− 1.
Then the right hand side equals

∇
( ∑

StT=[k−1]

pSpT pk

)
=

∑
StT=[k−1]

pSpT pk +
∑

StT=[k−1]

pkpT pS .

The subsets S from the first sum, together with the subsets T ∪ {k} from the second
sum, traverse all subsets of [k], and we obtain the left hand side. �

7.3. The action of elements of the peak algebra. We revert to the case of an
arbitrary vector space V . We endow it with the trivial involution v := v. The induced
involution on T (V ) is

v1 . . . vn = vn . . . v1 .

There are invariants and skew-invariants of arbitrary degrees. However, a Lie polynomial
is invariant (skew-invariant) if and only if it is odd (even).

Lemma 7.2. We have

Li(V ) = Lo(V ) and Ls(V ) = Le(V ) .

Proof. We have L(V ) = Li(V ) ⊕ Ls(V ) = Lo(V ) ⊕ Le(V ), so it suffices to show that
Lo(V ) ⊆ Li(V ) and Le(V ) ⊆ Ls(V ). We verify the first inclusion, the second is similar.
Let p ∈ Lo(V ). We may assume that p is homogeneous and we argue by induction on its
degree. If deg(p) = 1 we have p = p because the involution is trivial on V . If deg(p) > 1
then p is a linear combination of polynomials of the form [a, b], with a and b homogeneous
Lie polynomials of smaller degree. Since deg(p) is odd, one of the polynomials a and b is
even and the other is odd. By induction hypothesis, one of them is skew-invariant and
the other is invariant. Hence,

[a, b] = ab− ba = ba− ab = −ba + ab = [a, b] .

Thus [a, b], and hence p, is invariant. �
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Observe that, since the involution is trivial on V , the action of Bn on V ⊗n (7.3) is

(v1 . . . vn) · σ = v|σ(1)| . . . v|σ(n)| .

Therefore, the action of Bn descends to the (usual) action of Sn on V ⊗n via the canonical
map ϕ : Bn → Sn.

Using results of Bergeron and Bergeron, we may now describe the action on the tensor
algebra of the idempotents ρ(n) ∈ Pn and ρ(0,n) ∈ P0

n of Theorem 6.2. The latter acts
as the projection onto the subspace of odd Lie polynomials, the former as the projection
onto the subalgebra generated by even Lie polynomials.

Lemma 7.3.

T (V ) ·
∑

n even

ρ(n) = the subalgebra of T (V ) generated by Le(V ),

T (V ) ·
∑
n odd

ρ(0,n) = Lo(V ) .

Proof. According to [4, Theorem 2.2], the element
∑

n e(n) projects T (V ) onto the subal-
gebra of T (V ) generated by Ls(V ). According to [2, Theorem 2] or [4, Theorem 2.1], the
element

∑
n e(0,n) projects T (V ) onto Li(V ). Together with Theorem 6.2 and Lemma 7.2

this gives the result. �

The sum of all permutations in Sn with no interior peaks is

P(0,n) := P∅ + P{1} ∈ Pn .

According to (1.8) and (2.6),

(7.7) P(0,n) =
1

2
ϕ(X(0,n)) for any n, and P(0,n) = Ō(0,n) if n is odd.

Consider the operator T (V )× T (V ) → T (V ) defined on homogeneous elements a and
b by

{a, b} = ab + (−1)deg(b)−1ba .

The following result describes the action of P(0,n) on Lie monomials. It generalizes [1,
Proposition 8.9] and is closely related to [9, Lemma 5.11].

Proposition 7.4. Let p1, . . . , pk be homogeneous Lie polynomials and n =
∑k

i=1 deg(pi).
Then

(7.8) (p1 . . . pk) · P(0,n) =

{{
. . .

{
{p1, p2}, p3

}
, . . . , pk

}
if p1 is odd,

0 if p1 is even,

Proof. From (7.5) and (7.7) we get

(p1 . . . pk) · P(0,n) =
1

2
∇

(
. . .∇

(
∇(p1)p2

)
p3 . . . pk

)
.

If p1 is even then ∇(p1) = p1 + p1 = 0 by Lemma 7.2, and we are done.

When p1 is odd we argue by induction on k. Let ηk = ∇
(
. . .∇

(
∇(p1)p2

)
p3 . . . pk

)
and

θk =
{

. . .
{
{p1, p2}, p3

}
, . . . , pk

}
. We have to show that ηk = 2θk.

For k = 1 we have, by Lemma 7.2, η1 = ∇(p1) = p1 + p1 = 2p1 = 2θ1, so the result
holds.
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Assume the result holds for k. Note that for any homogeneous Lie polynomial p we
have p = (−1)deg(p)−1p, by Lemma 7.2. Also, since ηk is in the image of ∇, ηk = ηk.
Hence,

ηk+1 = ∇(ηkpk+1) = ηkpk+1 + pk+1 ηk = ηkpk+1 + (−1)deg(pk+1)−1pk+1ηk

= 2θkpk+1 + (−1)deg(pk+1)−1pk+12θk = 2{θk, pk+1} = 2θk+1 ,

as needed. �

We may now derive the characterization of the peak algebra in terms of the action on
Lie monomials.

Theorem 7.5. Let V be an infinite-dimensional vector space. An element φ ∈ kS belongs
to P if and only if for all Lie polynomials p1, . . . , pu ∈ Le(V ) and q1, . . . , qv ∈ Lo(V ),
the subspace

(7.9) Span{p1 . . . puqs(1) . . . qs(v) | s ∈ Sv} ⊆ T (V )

is invariant under the action of φ.

Proof. We first show that subspace (7.9) is invariant under any element φ of the peak
algebra. We may assume that pi, qj are homogeneous Lie polynomials and φ = Ōβ,
β = (b0, b1, . . . , bk) an almost-odd composition of n :=

∑u
i=1 deg(pi) +

∑v
j=1 deg(qj). We

have Ō(b0,b1,...,bk) = Ō(b0) ∗ Ō(0,b1) ∗ · · · ∗ Ō(0,bk) (5.3). For i = 1, . . . , u + v, let

`i =

{
pi if 1 ≤ i ≤ u,

qi−u if u + 1 ≤ i ≤ u + v.

Since Lie polynomials are primitive elements,

∆(k)(p1 . . . puq1 . . . qv) =
∑

T0t···tTk=[u+v]

`T0 ⊗ · · · ⊗ `Tk
,

where `T :=
∏

i∈T `i (product in increasing order of the indices, as in the proof of
Proposition 7.1). Therefore, by (7.4),

(p1 . . . puq1 . . . qv) · Ōβ =
∑

T0t···tTk=[u+v]

deg(`Ti
)=bi

(
`T0 · Ō(b0)

)(
`T1 · Ō(0,b1)

)
. . .

(
`Tk

· Ō(0,bk)

)
.

In this sum, if for any i ≥ 1 the subset Ti contains an element from [u], then the first
factor of the Lie monomial `Ti

is an even Lie polynomial (one of the p’s); then, by (7.7)
and (7.8),

`Ti
· Ō(0,bi) = 0 .

Thus the only terms that contribute to this sum are those for which T0 ⊇ [u]. In this
case, since the element Ō(b0) is the identity of Sb0 , we have

`T0 · Ō(b0) = `T0 = p1 . . . puq1 . . . q#T0−u .

On the other hand, the elements Ō(0,bi) are, in particular, elements of the descent algebra
Sol(An−1), so by the result of Garsia and Reutenauer (7.1) each `Ti

· Ō(0,bi) is a linear
combination of Lie monomials of the form `s(j1) . . . `s(jvi )

, as s runs over the permutations
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of the set Ti := {j1, . . . , jvi
}. It follows that (p1 . . . puq1 . . . qv) · Ōβ is a linear combination

of Lie monomials of the form

p1 . . . puqs(1) . . . qs(v) ,

as s runs over the permutations of [v]. This proves the invariance of subspace (7.9).
We now prove the converse. Start from an element φ ∈ kSn under whose action any

subspace (7.9) is invariant.
Fix an almost-odd composition β = (b0, b1, . . . , bk) of n. Let I0 t I1 t · · · t Ik = [n]

be the decomposition of [n] into consecutive segments of lengths b0, b1, . . . , bk. Thus
I0 = {1, . . . , b0}, I1 = {b0 + 1, . . . , b0 + b1}, etc.

Let v1, . . . , vn be linearly independent elements of V . Define

P := vI0 · ρ(b0) , q1 := vI1 · ρ(0,b1) , . . . , qk := vIk
· ρ(0,bk) ,

where ρ(n) and ρ(0,n) are the idempotents of Theorem (6.2), and in each vT :=
∏

i∈T vi

the product is in increasing order of the indices (as before).
By Lemma 7.3, q1, . . . , qk ∈ Lo(V ), and P belongs to the subalgebra generated by

Le(V ), so there are even Lie polynomials p1, . . . , ph ∈ Le(V ) such that P := p1 . . . ph.
Therefore, our hypothesis implies the existence of scalars cs indexed by permutations
s ∈ Sk such that

(∗) (Pq1 . . . qk) · φ =
∑
s∈Sk

csPqs(1) . . . qs(k) .

Fix a decomposition T0tT1t· · ·tTk = [n] with #Ti = bi for every i. Let γ be the unique
permutation of [n] such that γ(Ii) = Ti and γ restricted to each Ii is order-preserving.
Since the vi are linearly independent, there is a linear transformation g ∈ GL(V ) such
that g(vi) = vγ(i) for each i. Note that g · vIi

= vTi
. Since the actions of GL(V ) and Sn

on V ⊗n commute with each other, we have g ·P = (g ·vI0) ·ρ(b0) = vT0 ·ρ(b0), and similarly
g · qi = vTi

· ρ(0,bi). Thus, acting with g from the left on both sides of (∗) we obtain(
(vT0 · ρ(b0))(vT1 · ρ(0,b1)) . . . (vTk

· ρ(0,bk))
)
· φ

=
∑
s∈Sk

cs(vT0 · ρ(b0))(vTs(1)
· ρ(0,bs(1))) . . . (vTs(k)

· ρ(0,bs(k))) .

Note that the coefficients cs are the same for all decompositions {Ti}. Summing over all
such decompositions, we obtain

(v1 . . . vn) · (ρ(b0) ∗ ρ(0,b1) ∗ · · · ∗ ρ(0,bk)) · φ

=
∑
s∈Sk

cs(v1 . . . vn) · (ρ(b0) ∗ ρ(0,bs(1)) ∗ · · · ∗ ρ(0,bs(k))) .

(The convolution product gives rise to the sum over those decompositions because the
vi are primitive elements.) Now, by (6.13), this equation may be rewritten as

(v1 . . . vn) · (ρ(b0,b1,...,bk)) · φ =
∑
s∈Sk

cs(v1 . . . vn) · ρ(b0,bs(1),...,bs(k)) .

Since the vi are linearly independent, this implies

ρ(b0,b1,...,bk) · φ =
∑
s∈Sk

csρ(b0,bs(1),...,bs(k)) .
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In particular, for any almost-odd composition β,

ρβ · φ ∈ Pn .

Since the ρβ form a basis of Pn (Corollary 6.6), we may write 1 ∈ Pn as a linear
combination of these elements, and conclude that φ ∈ Pn. This completes the proof. �

Example 7.6. Let a, b, c, d ∈ V and consider the Lie polynomials p1 = [a, b], p2 = c,
and p3 = [a, [b, d]]. We have

p1p2p3 = abcabd− abcadb− abcbda + abcdba− bacabd + bacadb + bacbda− bacdba .

The total degree is n = 6. The action of

P{5} = 123465 + 123564 + 124563 + 134562 + 234561 ∈ P6

may be explicitly calculated as follows:

(p1p2p3) · 123465 = abcadb− abcabd− abcbad + abcdab− bacadb + bacabd + bacbad− bacdab

(p1p2p3) · 123564 = abcbda− abcdba− abcdab + abcbad− bacbda + bacdba + bacdab− bacbad

(p1p2p3) · 124563 = ababdc− abadbc− abbdac + abdbac− baabdc + baadbc + babdac− badbac

(p1p2p3) · 134562 = acabdb− acadbb− acbdab + acdbab− bcabda + bcadba + bcbdaa− bcdbaa

(p1p2p3) · 234561 = bcabda− bcadba− bcbdaa + bcdbaa− acabdb + acadbb + acbdab− acdbab .

It follows that

(p1p2p3) · P{5} = abcadb− abcabd − bacadb + bacabd

+ abcbda− abcdba − bacbda + bacdba

+ ababdc− abadbc− abbdac + abdbac− baabdc + baadbc + babdac− badbac

= −p1p2p3 + p1p3p2 .

Theorem 7.5 still holds if we only assume dim V ≥ n, provided we start from an
element φ ∈ kSn (with the same proof). Clearly one need only consider Lie monomials
of total degree n in (7.9).

To derive the characterization of the ideals Pj
n in terms of the action on Lie monomials,

we analyze the behavior of the map π : Pn → Pn−2 (3.1) with respect to this action.

Lemma 7.7. Let `0 be a Lie polynomial of degree 2, `1, . . . , `v homogeneous Lie polyno-
mials, and n = 2 +

∑v
i=1 deg(`i). Then, for any φ ∈ Pn,

(7.10) (`o`1 . . . `v) · φ = `0

(
(`1 . . . `v) · π(φ)

)
.

Proof. It suffices to consider the case when φ = Ōβ, β = (b0, b1, . . . , bk) an almost-odd
composition of n. As in the proof of Theorem 7.5,

(`0`1 . . . `v) · Ōβ =
∑

T0t···tTk=[0,v]

0∈T0, deg(`Ti
)=bi

(
`T0 · Ō(b0)

)(
`T1 · Ō(0,b1)

)
. . .

(
`Tk

· Ō(0,bk)

)
.

Note that if 0 ∈ T0 then the first factor in the Lie monomial `T0 is `0, and deg(`T0) ≥ 2.
Therefore, if b0 = 0, then no decomposition satisfies both 0 ∈ T0 and deg(`T0) = b0, so
(`0`1 . . . `v) · Ōβ = 0. This agrees with the right hand side of (7.10), because in this case
π(Ōβ) = 0 by (3.4).
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Assume b0 ≥ 2. Since Ō(b0) is the identity of Sb0 , we may write

(`0`1 . . . `v) · Ōβ =
∑

T0t···tTk=[v]

deg(`T0
)=b0−2, deg(`Ti

)=bi

`0

(
`T0 · Ō(b0−2)

)(
`T1 · Ō(0,b1)

)
. . .

(
`Tk

· Ō(0,bk)

)
.

The right hand side equals

`0

(
(`1 . . . `v) · Ō(b0−2,b1,...,bk)

)
= `0

(
(`1 . . . `v) · π(Ōβ)

)
by (3.4). �

Theorem 7.8. Let V be a vector space of dimension ≥ n. Let j = 0, . . . , bn
2
c. An

element φ ∈ kSn belongs to Pj
n if and only if for any homogeneous Lie polynomials

p1, . . . , pu ∈ Le(V ) and q1, . . . , qv ∈ Lo(V ) we have that

(7.11) (p1 . . . puq1 . . . qv) · φ =


∑
s∈Sv

csp1 . . . puqs(1) . . . qs(v) if 2j ≥
∑u

i=1 deg(pi) ,

0 if 2j <
∑u

i=1 deg(pi) ,

where cs ∈ k can be arbitrary scalars.

Proof. Fix j and suppose φ ∈ Pj
n. Choose Lie polynomials as in (7.11). We may assume∑u

i=1 deg(pi) +
∑v

i=1 deg(qi) = n and φ = Ōβ, with β = (b0, b1, . . . , bk) an almost-odd
composition of n with b0 ≤ 2j (Corollary 3.3). As in the proof of Theorem 7.5, we have

(∗) (p1 . . . puq1 . . . qv) · Ōβ =
∑

T0t···tTk=[u+v]

deg(`Ti
)=bi

(
`T0 · Ō(b0)

)(
`T1 · Ō(0,b1)

)
. . .

(
`Tk

· Ō(0,bk)

)
,

and the only decompositions {Ti} that contribute to this sum have T0 ⊇ [u]. This
condition implies that p[u] is a factor of `T0 and deg(`T0) ≥ deg(p[u]). If 2j < deg(p[u]),
then b0 < deg(p[u]), and there are no decompositions with deg(`T0) = b0, so the right
hand side of (∗) is 0. This proves the second alternative of (7.11). If 2j ≥ deg(p[u]), then
we may rewrite (∗) as

(p1 . . . puq1 . . . qv) · Ōβ =
∑

T0t···tTk=[v]

deg(p[u])+deg(qT0
)=b0, deg(qTi

)=bi

(
p[u]qT0

)(
qT1 · Ō(0,b1)

)
. . .

(
qTk

· Ō(0,bk)

)
.

By (7.1), the right hand side of this equation can be written in the form∑
s∈Sv

csp1 · · · puqs(1) · · · qs(v)

for some choice of scalars cs. This proves the second alternative of (7.11).
We now prove the converse. Fix j and an element φ ∈ kSn satisfying (7.11). This

implies that φ ∈ Pn, by Theorem 7.5. To show that φ ∈ Pj
n we may verify that

πj+1(φ) = 0 (Definition 3.2).
Choose j + 1 Lie polynomials p0, . . . , pj of degree 2 and arbitrary homogeneous Lie

polynomials q1, . . . , qv. Then 2j <
∑j

i=0 deg(pi), so by the second alternative of (7.11),

(p0 · · · pjq1 · · · qv) · φ = 0 .
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On the other hand, applying Lemma 7.7 repeatedly we obtain

(p0 · · · pjq1 · · · qv) · φ = (p0 . . . pj)
(
(q1 . . . qv) · πj+1(φ)

)
.

Therefore,

(p0 . . . pj)
(
(q1 . . . qv) · πj+1(φ)

)
= 0 ,

and hence

(q1 . . . qv) · πj+1(φ) = 0 ,

since p0 . . . pj is a non-zero element of T (V ). Now, q1 . . . qv is an arbitrary Lie monomial
and these span T (V ). Since dim V ≥ n, the action of kSn on V ⊗n is faithful. We
conclude that πj+1(φ) = 0, which completes the proof. �

Note that if the second alternative of (7.11) is satisfied then 2j + 2 ≤
∑u

i=1 deg(pi),
because each deg(pi) is even. In particular, if j = bn

2
c, the second alternative of (7.11) is

satisfied only when n <
∑u

i=1 deg(pi), so Theorem 7.8 reduces in this case to Theorem 7.5.
On the other hand, the case j = 0 of Theorem 7.8 recovers Schocker’s result (7.2). If

φ ∈ P0
n, the theorem implies that (`1 . . . `k)·φ = 0 whenever `1 is an even Lie polynomial,

by the second alternative of (7.11). Conversely, suppose an element φ ∈ Sol(An−1) is
such that (`1 . . . `k) · φ = 0 whenever `1 is an even Lie polynomial. Consider now Lie
polynomials p1, . . . , pu, q1, . . . , qv as in Theorem 7.8. If u = 0, then the first alternative
of (7.11) is satisfied, by (7.1). If u ≥ 1 then the second alternative is satisfied (with
j = 0), by hypothesis. The theorem then says that φ ∈ P0

n.

Example 7.9. Let a, b, c, d ∈ V and consider the Lie polynomials p1 = [a, b], p2 = [c, d],
and p3 = a. We have

p1p2p3 = abcda− abdca− bacda + badca .

Consider the element

P{4} = 12354 + 12453 + 13452 + 23451 ∈ P5 .

By (3.1), π(P{4}) = P{2} ∈ P3 and π2(P{4}) = 0, so P{4} ∈ P1
5. The action of P{4} on

p1p2p3 may be explicitly calculated as follows:

(p1p2p3) · 12354 = abcad− abdac− bacad + badac

(p1p2p3) · 12453 = abdac− abcad− badac + bacad

(p1p2p3) · 13452 = acdab− adcab− bcdaa + bdcaa

(p1p2p3) · 23451 = bcdaa− bdcaa− acdab + adcab .

It follows that

(p1p2p3) · P{4} = 0 ,

in agreement with Theorem 7.8.
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