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Abstract. In this paper we give a combinatorial rule for the decomposition of

tensor powers of the signed permutation representation of the hyperoctahedral
group. We then use this rule to describe the Bratteli diagram of a centralizer

algebra of this group over k-th tensor space. We show that a basis for this
algebra can be described completely in terms of set partitions and we give a
set of generators and relations.

Introduction

In [J] Jones has given a description of the centralizer algebra EndSn(V
⊗k) where

V = Cn and Sn (symmetric group) acts by permutations on V and it acts diagonally
on V ⊗k. This algebra was independently introduced by Martin [Ma] and named
the Partition algebra. The main motivation for studying the partition algebra
is in generalizing the Temperley-Lieb algebras and the Potts model in statistical
mechanics. A survey on the Partition algebra has been written by Halverson and
Ram [HR].

The main objective of this paper is to study a family of subalgebras of the
Partition algebra. In this paper we look at the corresponding centralizer algebras
of the hyperoctahedral group. This group is the wreath product of the cyclic group
of order 2 and the symmetric group, which we will denote by Gn := Z/2ZwrSn.

Let V = Cn, then Gn acts on this vector space via signed permutations. The
semisimple decomposition of the algebra EndGn(V

⊗k) can be obtained by decom-
posing the tensor product V ⊗k in terms of simple Gn-modules by the double cen-
tralizer theory. In this paper we prove the decomposition of the Gn-module V

⊗k in
terms of irreducibles. Since the representations of Gn are indexed by ordered pairs
of Young diagrams, we obtained an indexing set for the irreducible representations
of EndGn(V

⊗k) in terms of ordered pairs of Young diagrams. This decomposition
rule also yields a purely combinatorial rule in terms of pairs of Young diagrams for
the restriction and induction of simple modules of this centralizer algebras. This
branching rule allows us to write the Bratteli diagram of these centralizer algebras.
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We also give a linear basis of EndGn(V
⊗k) and a description in terms of set

partition diagrams. This basis has already appeared in [T], we include a proof just
for completeness. The generators of this algebra are the Temperley-Lieb generators
ei, the simple transpositions si of Sn and some of the generators of the Partition
algebra bi and the identity. These generators have been obtained in [T] the set of
relations satisfied by these generators are not stated anywhere as far as the author
knows; however they can be easily deduced from [BJ, HR, K, We].

Kosuda [K] has studied the subalgebra of the partition algebra generated by
the si’s and the bi’s only. He has named this algebra the Party algebra. In [K] the
Bratteli diagram of the sequence of Party algebras has been defined by example.
From this example one can deduce the decomposition rules for the Party algebra.
For the generic Party algebra the irreducible representations are indexed by se-
quences of partitions. The rule we have obtained in this paper is similar to the rule
obtained in [K] since the Party algebra is a subalgebra of EndGn(V

⊗k).
The generators bi and ei generate a subalgebra isomorphic to an algebra studied

by Bisch and Jones [BJ] with relation to intermediate subfactors, the subalgebra is
called the bicolored Fuss-Catalan algebra, so in some sense the centralizer algebra
EndGn(V

⊗k) is a bicolored analogue of the Brauer algebra where the bicolored
Fuss-Catalan algebra replaces the Temperley-Lieb algebra.

This paper is organized as follows: In Section 1 we give definitions and notation
that will be useful in the rest of the paper. In Section 2 we prove the branching
rule in terms of Schur functions. In Section 3 we define the algebra EndGn(V

⊗k)
and describe a linear basis as well as generators and relations. In Section 4 we use
the main theorem in Section 2 to construct the Bratteli diagram of EndGn(V

⊗k).

Acknowledgement. I would like to thank T. Halverson for telling me that the
basis in Sec. 3.1 has already appeared in [T] and also for bringing to my attention
the work of M. Kosuda [K].

1. Preliminaries

1.1. Integer partitions and symmetric functions. A partition of a non-
negative integer n is a sequence of nonnegative integers α = (α1, . . . , α`) such that
α1 ≥ α2 ≥ · · · ≥ α` ≥ 0 and |λ| = α1 + α2 + · · · + α` = n. The nonzero αi’s
are called the parts of α and the number of nonzero parts is called the length of α
denoted by `(α). The notation α ` n means that α is a partition of n.

A Young diagram is a pictorial representation of a partition α as an array of n
boxes with α1 boxes in the first row, α2 boxes in the second row, and so on. We
count the rows from top to bottom. We shall denote the Young diagram and the
partition by the same symbol α. We use the Young diagram interchangeably with
the word partition. We denote by ∅ the empty partition and |∅| = 0.

Figure 1. λ = (6, 4, 2, 2), `(λ) = 4, |λ| = 14
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A double partition of size n, (α, β) is an ordered pair of partitions α and β such
that |(α, β)| = |α| + |β| = n. A double partition corresponds to a double pair of
Young diagrams in the obvious way.

( , )

Figure 2. (α, β) = ([3, 1], [2, 2, 1]) and |(α, β)| = 9.

If λ and µ are two partitions with |µ| ≤ |λ|, then we write λ ⊂ µ if µi ≤ λi for
all i. In this case we say that µ is contained in λ. If µ ⊂ λ then the set-theoretic
difference µ− λ is called a skew diagram, λ/µ.

Figure 3. λ/µ for λ = (7, 5, 3) and µ = (3, 2).

For any positive integer N , let x = (x1, x2, . . . , xN ) be an independent set of
commuting variables. The symmetric group SN acts on the ring of polynomials
C[x1, . . . , xN ] by permuting the variables. A polynomial is called symmetric if it
is invariant under this action. The ring of symmetric polynomials is denoted by
ΛN := C[x1, . . . , xN ]

SN . ΛN is a graded ring: we have ΛN =
⊕

k≥0 Λ
k
N , where

ΛkN contains the homogeneous symmetric polynomials of degree k and the zero
polynomial.

Let xλ = xλ1
1 xλ2

2 · · ·xλNN , assume N ≥ |λ| and λi = 0 if the number of parts
in λ is less than N . Let δ = (N − 1, N − 2, . . . , 1, 0). We define the following
determinant:

aλ+δ = det(x
λj+N−j
i ).

This determinant is divisible by the Vandermonde determinant aδ = det(x
N−j
i ). In

this setting the symmetric Schur function is defined by

sλ(x) = sλ(x1, x2, . . . , xN ) :=
aλ+δ

aδ
.

It is well-known that {sλ | |λ| = k} is a basis of ΛkN . In this paper we will also use
another basis of ΛkN known as the power symmetric functions defined as follows:
for any nonnegative integer r, let pr := xr1 + x

r
2 + · · ·+ x

r
N . Then for any partition

λ, we have

pλ := pλ1
pλ2

· · · pλ`(λ)
.

1.2. Hyperoctahedral group. In this section we give a brief summary on
results about the hyperoctahedral group Gn that will be useful in the remainder
of this paper. For proofs and details see [JK]. The hyperoctahedral group is
the wreath product of the cyclic group of order 2 with Sn (symmetric group):
Gn := (Z/2Z)wrSn.

Gn is generated by t, s1, . . . , sn−1 satisfying the following relations:

(1) t2 = 1;
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(2) s2i = 1, 1 ≤ i ≤ n− 1;

(3) ts1ts1 = s1ts1t;

(4) sisj = sjsi, |i− j| > 1;

(5) sisi+1si = si+1sisi+1.

The irreducible representations of Gn are indexed by double partitions or ordered
pairs of Young diagrams (α, β) of total size n, i.e. |α| + |β| = n. It is also known
that the dimension of the irreducible representation indexed by (α, β) is given by

f (α,β) =

(

n

|α|

)

fαfβ

where fγ = |γ|!
∏

(i,j)∈γ

h(i,j) and h(i, j) = γi + γj
′ − i− j + 1, where the prime indicates

the length of the j’th column of the Young diagram γ.

1.3. The Characteristic Map. In this section we relate the characters of
Gn with symmetric functions. We will use this relationship to prove the tensor
product decomposition of the natural representation in terms of irreducibles. The
details and proofs of the results quoted in this section can be found in [M], [S], and
[B].

Let C(Gn) be the algebra of class functions over the complex numbers and let

Λ(Gn) :=
⊕

m1+m2=n

Λm1(x)⊗ Λm2(y)

where Λm(x) is the space of homogeneous symmetric functions of degree m. Let
C(α,β) denote the conjugacy class of Gn indexed by (α, β). Define the class functions
1(α,β)(σ) = χ(σ ∈ C(α,β)), that is

1(α,β)(σ) =

{

1 if σ ∈ C(α,β)

0 otherwise.

It is well-known that the set {1(α,β) | |(α, β)| = n} is a basis of C(Gn). Thus, one
can define the characteristic map on this basis as follows

ch : C(Gn) −→ Λ(Gn)

1(α,β) −→
1

Z(α,β)
pα[x]pβ [y]

where Z(α,β) = zαzβ and zλ =
∏

i≥1 i
nini! with ni being the number of parts of

λ equal to i. Using this map one can write the characteristic for the irreducible
characters of Gn in terms of Schur functions. The proof of the following proposition
is found in [B] and [M].

Proposition 1.1. Let χ(α,β) denote the irreducible character of Gn indexed by

(α, β). Then its characteristic is given as follows:

ch(χ(α,β)) := S(α,β)(x, y) = sα[x+ y]sβ [x− y]

where sα[x + y] =
∑

γ⊂α
sγ(x)sα/γ(y) and sβ [x − y] =

∑

δ⊂β

sδ(x)(−1)
|β/δ|s(β/δ)′(y),

and the prime denotes the conjugate partition.
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2. Branching Rule

Let V be the signed permutation representation of the hyperoctahedral group.
It is known that this representation is irreducible and that it is indexed by ([n −
1], [1]). In this section we prove via elementary methods the decomposition of the
Gn-module V

⊗k, for any positive integer k, in terms of irreducible representations
of Gn. The methods employed are basic properties of symmetric functions found
in [M] and known results about the inner product of symmetric functions.

Let V(α,β) and V(λ,µ) be two irreducible representations of Gn with characters

χ(α,β) and χ(λ,µ) respectively, then let Gn acts diagonally on V(α,β) ⊗ V(λ,µ). The

character of this representation is χ(α,β)χ(λ,µ), the point-wise product defined by
χ(α,β)χ(λ,µ)(w) = χ(α,β)(w)χ(λ,µ)(w) for all w ∈ Gn. Computing the decomposition
of the Gn-module V(α,β) ⊗ V(λ,µ) is equivalent to decomposing χ

(α,β)χ(λ,µ). It is
known that

ch(χ(α,β)χ(λ,µ)) = S(α,β)(x, y) ∗ S(λ,µ)(x, y),

where the ∗ denotes the inner product (or Kronecker product) of symmetric func-
tions. Therefore, computing the inner product of the corresponding characteristics
yields the decomposition of the tensor product. We will use this method to prove
the decomposition of V ⊗k.

In the proof of the following lemma and theorem we will need the following
results on symmetric functions. The proofs of these facts can be found in [M]. In
the following f , g, and h denote symmetric functions, ⊥ denotes the skew operator,
i.e. s⊥λ (sµ) = sµ/λ, and the ∗ denotes the inner or Kronecker product of symmetric
functions.

(1) (fg) ∗ sλ =
∑

µ⊂λ(f ∗ sλ/µ)(g ∗ sµ).

(2) sn−1,1 ∗ sλ = s¤sλ/¤ − sλ, where |λ| = n.

(3) f⊥(gh) =
∑

i a
⊥
i (g)b

⊥
i (h) where ∆(f) =

∑

ai ⊗ bi.

(4) s⊥λ s
⊥
µ = s⊥µ s

⊥
λ .

(5) (sλ(x)sµ(y)) ∗ (sν(x)sη(y)) = (sλ(x) ∗ sν(x))(sµ(y) ∗ sη(y)), if |λ| = |ν|
and |µ| = |η| or zero otherwise.

(6) f ∗ (g + h) = f ∗ g + f ∗ h.

Throughout this paper λ+ denotes a Young diagram obtained from λ by adding
one box. And λ− will denote a Young diagram obtained from λ by removing a box.
And a sum over λ+ or λ− means the sum over all possible Young diagrams of this
kind. By Proposition 1.1 we have that

S([n−1],[1])(x, y) =

=

n−1
∑

m=0

[sm+1(x) + sm,1(x)]sn−m−1(y)− sm(x)[sn−m(y) + sn−m−1,1(y)].

We now prove some identities that we will use in the proof of the next theorem.

Lemma 2.1. (a)
∑

γ⊂α

sγ/¤(x)sα/γ(y) =
∑

α−

∑

γ⊂α−
sγ(x)sα−/γ(y)

(b)
∑

γ⊂α

sγ(x)s¤(x)sα/γ(y) =
∑

α+

∑

¤⊂γ⊂α+

sγ(x)sα+/γ(y)−
∑

¤⊂γ⊂α

sγ(x)s¤(y)sα/γ(y)



6 ROSA C. ORELLANA

(c)
∑

δ⊂β

(−1)|β/δ|sγ/¤(x)s(β/δ)′(y) =
∑

β−

∑

δ⊂β−
sδ(x)(−1)β

−/δs(β−/δ)′(y)

(d)
∑

δ⊂β

s¤(x)sδ(x)(−1)|β/δ|s(β/δ)′(y) =
∑

β+

∑

δ⊂β+

sδ(x)(−1)|β
+/δ|s(β+/δ)′(y)

−
∑

δ⊂β

sδ(x)(−1)|β/δ|−1s¤(y)s(β/δ)′(y)

Proof. (a) The left-handside of (a) can be written as follows:

LHS =
∑

γ⊂α

∑

γ−

sγ−sα/γ

=
∑

γ⊂α

γ 6=α

sγ(x)
∑

γ+

sα/γ+(y)

=
∑

γ⊂α

γ 6=α

sγs(α/γ)/¤(y)

=
∑

α−

∑

γ⊂α−

sγ(x)sα−/γ(y)

The first equality follows by expanding sγ/¤, the second by rearranging the order
of summation, and the last equation follows from the commutativity of the skew
operation.
(b)

LHS =
∑

γ⊂α

∑

γ+

sγ+(x)sα/γ(y)

=
∑

¤⊂γ⊂α+

sγ(x)
∑

γ−⊂α

sα/γ−(y)

=
∑

¤⊂γ⊂α+

sγ(x)[(
∑

α+

sα+/γ(y))− s¤(y)sα/γ(y)]

=
∑

α+

∑

¤⊂γ⊂α+

sγs
α+/γ(y)−

∑

¤⊂γ⊂α

sγ(x)s¤(y)sα/γ(y)

The first equality is just a change in the order of summation. The second
equality is a special case of equation (3) above, where f = sγ(y), g = s¤(y) and
h = sα(y).

The proof of (c) and (d) are done in a similar way as the proofs of (a) and (b)
respectively. ¤

We now state the main theorem of this section which will allow us to decompose
the tensor product of the sign permutation module with any other Gn-module.

Theorem 2.1.

S([n−1],[1])(x, y) ∗ S(α,β)(x, y) =
∑

α+,β−

S(α+,β−)(x, y) +
∑

α−,β+

S(α−,β+)(x, y)

where α+ is a diagram obtained by adding one box to α, and α− is obtained by

removing one box from α, and similarly for β.
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Proof. After substitution and distributing by relations (1), (5) and (6) above
we have that the lefthand side of the equation of the statement of the theorem can
be simplified to:

n
∑

m=1

∑

γ⊂α,δ⊂β

|α|+|β|=m

[(sm(x)+sm−1,1(x))∗(sγ(x)sδ(x))][sn−m(y)∗((−1)
|β/δ|sα/γ(y)s(β/δ)′(y))]

−
n
∑

m=1

∑

γ⊂α,δ⊂β

|α|+|β|=m

sm(x)∗(sγ(x)sδ(x))[(sn−m(y)+sn−m−1,1(y))∗((−1)
|β/δ|sα/γ(y)s(β/δ)′(y))

=

n
∑

m=1

∑

γ⊂α,δ⊂β

|α|+|β|=m

[sγ/1(x)s1(x)sδ(x) + sγ(x)sδ/1(x)s1(x)][sα/γ(y)(−1)
|β/δ|s(β/δ)′(y)]−

n−1
∑

m=0

∑

γ⊂α,δ⊂β

|γ|+|β|=m

[sγ(x)sδ(x)](−1)
|β/δ|[s(α/γ)/1(y)s1(y)sβ/δ(y) + sα/γ(y)s(β/δ)′/1(y)s1(y)]

The equality follows from equations (2) and (5). Now if we replace the equations
in Lemma 2.1, we will get the right-hand side of the statement of the theorem. ¤

The main application of Theorem 2.1 is that it allows us to decompose the Gn-
module V ⊗k for any k, where V is the irreducibleGn-module indexed by ([n−1], [1]).
For example,

V ⊗ V ∼= V([n−2],[2]) ⊕ V([n−2],[1,1]) ⊕ V([n],∅) ⊕ V([n−1,1],∅).

We will use this rule to recursively construct the Bratteli diagram for the centralizer
algebras EndGn(V

⊗k).

3. Centralizer Algebra of Gn

Let V = Cn,and let {vi | 1 ≤ i ≤ n} denote its standard basis, i.e. vi is the
vector whose ith entry is 1 and the rest are zeros. Gn acts naturally on V as follows:

t.vi =

{

−v1 if i = 1,

vi otherwise,

and σ.(vi) = vσ(i), for any permutation σ, since Gn is generated by t and the group
of permutations.

Gn also acts diagonally on V
⊗k for any positive integer k,

g.(vi1 ⊗ · · · ⊗ vik) = g.vi1 ⊗ · · · ⊗ g.vik

for any g ∈ Gn. Thus, V
⊗k is a Gn-module and therefore we have the fact that the

endomorphism algebra EndGn(V
⊗k) is the commutant algebra, that is

EndGn(V
⊗k) = {X |Xg = gX for all g ∈ Gn}

Remark: Notice that since Sn is a subgroup of Gn, it follows that the centralizer
algebra EndGn(V

⊗k) is a subalgebra of EndSn(V
⊗k).
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3.1. A basis for Ak(n) := EndGn(V
⊗k). In this subsection we describe a

basis for Ak(n) := EndGn(V
⊗k). This basis is the same as in [T]. For any element

X ∈ Ak(n) we denote by (X
b1,···bk
a1,···ak), 1 ≤ ai, bi ≤ n, its matrix of coefficients with

respect to the basis {vi1 ⊗ · · · ⊗ vik | 1 ≤ ij ≤ n} of V ⊗k. Set [n] := {1, 2, . . . , n}.

Lemma 3.1. X ∈ Ak(n) if and only if X
b1,···bk
a1,···ak = X

σ(b1),··· ,σ(bk)
σ(a1),··· ,σ(ak)

for any permu-

tation σ and |{i | ai = j}| ≡ |{i | bi = j}| mod 2 for all j = 1, . . . , n and i = 1, . . . , k.

Proof. For X ∈ Ak(n) and σ ∈ Sn we have

σ−1Xσ(va1
⊗ · · · ⊗ vak) =

∑

b1,...bk⊆[n]

X
σ(b1)...σ(bk)
σ(a1),...σ(ak)

vb1 ⊗ · · · ⊗ vbk .

Now for the generator t we have

t−1Xt(va1
⊗ · · · vak) =

∑

b1,...,bk⊆[n]

(−1)|{i | ai=1}−|{i | bi=1}|Xb1,...,bk
a1...ak

vb1 ⊗ · · · ⊗ vbk ,

since (−1)|{i | ai=1}|−|{i | bi=1}| = 1 if and only if |{i | ai = 1} − |{i | bi = 1}| ≡
0 mod 2 we have the second condition of the statement of the lemma. The result
follows in general by linear independence and since Gn is generated by t and the
permutation group. ¤

This lemma says that X commutes with the action of Gn on V ⊗k if and
only if the matrix entries are equal on Gn-orbits on the 2k Cartesian product,
{1, 2, . . . , n}×2k. These orbits are in 1 − 1 correspondence with set partitions,
B = {B1, . . . Bs} of {1, 2, . . . , 2k}, such that all blocks have even cardinality.

Every set partition B = {B1, B2, . . . , Bs} has at most n blocks. Notice that
each set partition will give rise to an equivalence relation, i.e. two elements i, j ∈
{1, 2, . . . , 2k} are equivalent if and only if they belong to the same block if and only
if ai = aj , where we have relabeled bl = al+k for convenience.

For each set partition B of [2k] we define an element TB ∈ Ak(n) by the matrix

(TB)
ak+1...a2k
a1...ak

=

{

1 if ai = aj if and only if i and j are in the same block.

0 otherwise.

We have the following proposition.

Proposition 3.1. Let B be the set of all set partitions of [2k] such that for

any set partition B = {B1, . . . , Bs} in B all blocks Bi have even cardinality. Then

the set {TB |B ∈ B} form a basis for Ak(n) if we exclude any zero TB.

Proof. Notice that TB is zero if the number of blocks is greater than n, thus
as long as 2k < n the TB will be nonzero. By definition, the set {TB |B ∈ B} spans
Ak(n). Notice that another way to write TB is in terms of the matrices E

ak+1...a2k
a1...ak

which are nk × nk matrices with a 1 in the (a1 . . . ak), (ak+1 . . . a2k) position and
zero everywhere else. Then we have

TB =
∑

Eak+1...a2k
a1...ak

where the sum is over all 1 ≤ a1, . . . , a2k ≤ n with the condition that ai = aj if and
only if i and j are in the same block in B.
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To show linear independence, assume that
∑

B cBTB = 0 (the zero matrix).
Consider the (i1, i2, . . . , ik), (ik+1, . . . , i2k) entry in the left-hand side of this equa-
tion. This entry is equal to

∑

D cD, where D is a set partition finer than or
equal the set partition, B, (i.e. Di ⊂ Bj for some j) defined by the 2k-tuple
(i1, . . . , ik), (ik+1, . . . , i2k). This implies that c{j1,j2}···{jk,j2k} = 0, since a set parti-
tion into blocks of size 2 is the smallest set partition in B. Notice that by induction
for any arbitrary set partition B ∈ B we can write cB as the sum of coefficients cD
where the D’s are set partitions with only blocks of size 2. Thus, cB = 0 for all
B ∈ B. Thus {TB |B ∈ B} forms a basis. ¤

Corollary 3.1. The dimension of End(V ⊗k) is the number dk of set partitions
of a 2k-element set into even blocks. This dimension satisfies the recurrence dk =
∑k

j=1

(

2k−1
2j−1

)

dk−j and has exponential generating function exp(cosh(x)− 1).

For a proof of the second statement of the corollary see [C]. The first five
dimensions are 1, 4, 31, 379, 6556.

3.2. Partition diagrams. A set partition B = {B1, B2, . . . Bs} of [2k] can
be represented by a class of simple graphs with vertex set {1, 2, . . . , 2k} arranged
in two rows and such that two vertices x and y are in the same block in B if
and only if they are connected by a path in the graph. Thus, every block defines a
connected component in the graph. We think of two graphs with the same connected
components as equivalent, see Figure 4 for an example of a partition diagram.
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Figure 4. A partition diagram corresponding to {1, 5, 6, 9, 11, 12}{2, 10}{3, 4, 7, 8}

The equivalence classes of graphs corresponding to set partitions are called partition
diagrams or k-partition diagrams if it is necessary to specify the number of vertices.
One can define a multiplication of partition diagrams as follows.

Let x be any indeterminate. We multiply two k-partition diagrams d1 and d2

to obtain the product d1d2 as follows:

(1) Stack d1 on top of d2 so that the bottom vertices of d1 are identified with
the top vertices of d2. This results in a graph with 3k vertices, top, middle
and bottom.

(2) Let c be the number of connected components that contain only vertices
from the middle row. Remove these blocks from the product graph.

(3) Create a new partition diagram d3 that eliminates middle vertices, but
connecting any top vertex with a bottom vertex if they were connected
through a middle vertex.

Then, one defines d1d2 = xcd3, for an example of this product see Fig. 5.
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Figure 5. Product of partition diagrams.

From now on Ak(n) denotes the centralizer algebra EndGn(V
⊗k). We also

identify the matrices TB with their corresponding set partition diagrams.

3.3. Generators And Relations of Ak(n). We introduce the following spe-
cial elements of Ak(n) corresponding to the following set partitions:

bi = {1, k + 1}{2, k + 2} . . . {i, i+ 1, k + i, k + i+ 1} . . . {k, 2k};

ei = {1, k + 1}{2, k + 2} . . . {i, i+ 1}{k + i, k + i+ 1} . . . {k, 2k};

si = {1, k + 1}{2, k + 2} . . . {i, k + i+ 1}{i+ 1, k + i} . . . {k, 2k},

where 1 ≤ i ≤ k − 1. See Fig. 6 for the corresponding partition diagrams.
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Figure 6. Generators bi, si and ei.

Proposition 3.2. The set {ei, bi, si | 1 ≤ i ≤ k − 1} generate Ak(n)

The proof of this proposition is by induction on k, and it is exactly the same as
the proof of Prop. 2 in [Ma], therefore we omit it. This proposition has also been
proved in [T]

Proposition 3.3. The generators bi, ei and si, 1 ≤ i ≤ k − 1 satisfy the

following relations:

s2i = 1, e2i = nei, eisi = siei = ei, for 1 ≤ i ≤ k − 1;

sisj = sjsi, siej = ejsi, eiej = ejei, for 1 ≤ i ≤ k − 1;

sisi+1si = si+1sisi+1, eiei+1ei = ei, ei+1eiei+1 = ei+1, for 1 ≤ i ≤ k − 2;
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siei+1ei = si+1ei, ei+1eisi+1 = ei+1si, for 1 ≤ i ≤ k − 2;

b2i = bi, bibj = bjbi, biei = eibi = ei, for 1 ≤ i, j ≤ k − 1;

biej = ejbi, sjbi = bisj for |i− j| > 1;

ei±1biei±1 = ei, biei±1bi = bi±1bi. for 1 ≤ i ≤ k − 1;

sibi = bisi = bi, sisi+1bisi+1si = bi+1. for 1 ≤ i ≤ k − 1.

It is a straightforward exercise to check that these relations hold by using
partition diagrams.

Remark: One can show that this generators and relations are a presentations for
this algebra by doing word analysis. We will not carry out these computations in
this paper.

4. Bratteli diagram

In this section we give an indexing set for the irreducible components of Ak(n)
and describe its Bratteli diagram. From this diagram one can easily read restriction
and induction of the irreducibles of Ak(n). We first recall the definition of a Bratteli
diagram as described in [GHJ].

Recall that one may represent the inclusion of A ⊂ B of multimatrix algebras
(with the same unit) by a bipartite graph. The vertices in the graph are labeled
by the simple summands of A and B. The number of edges joining a vertex v for
A to a vertex w for B is the number of times the representation v occurs in the
restriction of the representation w to A.

Given a sequence of inclusions A0 ⊂ A1 ⊂ A2 ⊂ · · · of multimatrix algebras,
one may connect the bipartite graphs describing the inclusions Ai ⊂ Ai+1, to obtain
the Bratteli diagram of the sequence.

We can think of Ak−1(n) ⊂ Ak(n) by identifying the elements in Ak−1(n) with
the elements of Ak(n) that contain the block {k, 2k}, in other words the partition
diagrams that contain a vertical line joining k and 2k with no other connections.

Since Ak(n) is a centralizer algebra, we know by double centralizer theory that
the decomposition of V ⊗k as a Gn-module yields the decomposition of Ak(n). The
vertices at the k-th level of the Bratteli diagram are indexed by the irreducible
components of V ⊗k as a Gn-module and the number of edges joining a vertex
indexed by ρ in the (k − 1)st level to a vertex π in the kth level is given be the
multiplicity of π in Vρ ⊗ V as a Gn-module.

From Theorem 2.1 we have that for n ≥ 2k the irreducible representation of
Ak(n) are indexed by the following subset of ordered pairs of partitions:

Γ(k) = {([n− j, α], β) |β ` k − 2i, α ` r, 0 ≤ r ≤ i, 0 ≤ i ≤ b
j

2
c, j = |α|+ |β|}

Observation: There is a bijection from Γ(k) to a subset of ordered pair of Young
diagrams with k or less boxes given by removing the first part of the first coordinate
in the pairs in Γ(k), i.e ([n−j, α], β)→ (α, β), where α and β satisfy the conditions
in the definition of Γ(k).

As a direct consequence of the double centralizer theory and Theorem 2.1 we
have the following result.
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Proposition 4.1. The Bratteli diagram of the chain

A0(n) ⊂ A1(n) ⊂ A2(n) ⊂ A3(n) ⊂ · · ·

is the graph where the vertices in k-th level are labeled by the elements in the set

Γ(k), k ≥ 0, and the edges are defined as follows: a vertex (α, β) in the i-the level
is joined to a vertex (λ, µ) in the (i + 1)-st level if (λ, µ) can be obtained from the

pair (α, β) by removing a box from the Young diagram in one coordinate and adding

it to the Young diagram in the other coordinate.

See Fig. 7 for the first three rows of the Bratteli diagram where we have
removed the first part n − j from the diagram in the first coordinate as in the
observation before the statement of the proposition. The 4th row of the Bratteli
diagram contains 13 pairs.
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Figure 7. Bratteli diagram for the first three levels.
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