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Abstract. We introduce the Hopf algebra of uniform block permutations and show that
it is self-dual, free, and cofree. These results are closely related to the fact that uniform
block permutations form a factorizable inverse monoid. This Hopf algebra contains the Hopf
algebra of permutations of Malvenuto and Reutenauer and the Hopf algebra of symmetric
functions in non-commuting variables of Gebhard, Rosas, and Sagan. These two embeddings
correspond to the factorization of a uniform block permutation as a product of an invertible
element and an idempotent one.

Introduction

A uniform block permutation of [n] is a certain type of bijection between two set partitions
of [n]. When the blocks of both partitions are singletons, a uniform block permutation is
simply a permutation of [n]. Let Pn be the set of uniform block permutations of [n] and Sn

the subset of permutations of [n]. The set Pn is a monoid in which the invertible elements
are precisely the elements of Sn. These notions are reviewed in Section 1.

This paper introduces and studies a graded Hopf algebra based on the set of uniform block
permutations of [n] for all n ≥ 0, by analogy with the graded Hopf algebra of permutations
of Malvenuto and Reutenauer [17].

Let V be a complex vector space. Classical Schur-Weyl duality states that the symmetric
group algebra can be recovered from the diagonal action of GL(V ) on V ⊗n: if dim V ≥ n
then

(1) CSn
∼= EndGL(V )(V

⊗n) .

Malvenuto and Reutenauer deduce from here the existence of a multiplication among per-
mutations as follows. Given σ ∈ Sp and τ ∈ Sq, view them as linear endomorphisms of the
tensor algebra

T (V ) :=
⊕
n≥0

V ⊗n
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by means of (1) (σ acts as 0 on V ⊗n if n 6= p, similarly for τ). The tensor algebra is a Hopf
algebra, so we can form the convolution product of any two linear endomorphisms:

T (V )
∆−→ T (V )⊗ T (V )

σ⊗τ−−→ T (V )⊗ T (V )
m−→ T (V ) ,

where ∆ and m are the coproduct and product of the tensor algebra. Since these two maps
commute with the action of GL(V ), the convolution of σ and τ belongs to EndGL(V )(V

⊗n),
where n = p + q. Therefore, there exists an element σ ∗ τ ∈ CSn whose right action equals
the convolution of σ and τ . This is the product of the algebra of permutations. It turns out
that a suitable coproduct can also be defined. The result is the Hopf algebra of permutations
of Malvenuto and Reutenauer.

The same argument can be applied to define a convolution product on the direct sum of
the centralizer algebras EndG(V ⊗n), starting from a linear action of a group G on a vector
space V . In this paper we consider one such instance in which in addition a compatible
coproduct can also be defined.

Consider the complex reflection group G(r, 1, m). The monomial representation is a certain
linear action of this group on an m-dimensional space V (Section 2.1). A result of Tanabe
identifies the centralizer of V ⊗n with the monoid algebra of uniform block permutations (if r
and m are big in comparison to n; see Proposition 2.1). The convolution product is therefore
defined on the space

⊕
n CPn. An explicit description of this operation, similar to that for

the convolution product of permutations, is given in Section 2.2, along with the definition of
a compatible coproduct which turns this space into a graded Hopf algebra (Theorem 2.6).
The Hopf algebra of permutations is a Hopf subalgebra (Proposition 2.7).

Except for the description of CPn as a centralizer algebra, it is not necessary to work over
the complex numbers. Accordingly, we work from the start over an arbitrary commutative
ring k. All modules considered will be free (having in fact a distinguished basis) and are
therefore referred to as spaces.

The Hopf algebra structure of uniform block permutations is studied in Section 3.1. Propo-
sition 3.1 states that this Hopf algebra is self-dual. This result is related to the fact that Pn

carries an involution which turns it into an inverse monoid. This is moreover a factorizable
inverse monoid, which refers to the fact that any element is the product of an invertible
element and an idempotent element. This is used in Section 3.2 to define a partial order on
Pn analogous to the weak order on Sn. Following [2], a second linear basis of the space kPn

is defined in Section 3.3 by performing Möbius inversion with respect to this partial order.
The convolution product admits a simple description on this basis (Proposition 3.4) from
which it follows that the algebra of uniform block permutations is free (and by self-duality
also cofree) (Corollary 3.5).

It turns out that the Hopf algebra of uniform block permutations contains another distin-
guished Hopf subalgebra, namely the Hopf algebra of symmetric functions in non-commutative
variables (Theorem 4.1). This algebra was introduced by Wolf [23]. It is based on the set of
set partitions of [n] for all n ≥ 0. Sagan brought it to the forefront in a series of papers with
Gebhard and Rosas [11, 12, 19]. Bergeron, Hohlweg, Rosas, and Zabrocki studied the Hopf
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algebra structure in [4, 5]. Connections between this and other combinatorial Hopf algebras
are studied in [1]. The embedding of this Hopf algebra is in a sense complementary to the
embedding of the algebra of permutations: permutations arise as the invertible elements
of the monoid of uniform block permutations, while set partitions arise as the idempotent
elements therein. This is discussed in Section 4.

1. Uniform block permutations

1.1. Set partitions. Let n be a non-negative integer and let [n] := {1, 2, . . . , n}. A set
partition of [n] is a collection of non-empty disjoint subsets of [n], called blocks, whose
union is [n]. For example, A =

{
{2, 5, 7}{1, 3}{6, 8}{4}

}
, is a set partition of [8] with 4

blocks. We often specify a set partition by listing the blocks from left to right so that
the sequence formed by the minima of the blocks is increasing, and by listing the elements
within each block in increasing order. For instance, the set partition above will be denoted
A = {1, 3}{2, 5, 7}{4}{6, 8}. We use A ` [n] to indicate that A is a set partition of [n].

The type of a set partition A of [n] is the partition of n formed by the sizes of the blocks of
A. The symmetric group Sn acts on the set of set partitions of [n]: given σ ∈ Sn and A ` [n],
σ(A) is the set partition whose blocks are σ(A) for A ∈ A. The orbit of A consists of those
set partitions of the same type as A. The stabilizer of A consists of those permutations that
preserve the blocks, or that permute blocks of the same size. Therefore, the number of set
partitions of type 1m12m2 . . . nmn (mi blocks of size i) is

(2)
n!

m1! · · ·mn!(1!)m1 · · · (n!)mn
.

1.2. The monoid of uniform block permutations. The monoid (and the monoid alge-
bra) of uniform block permutations has been studied by FitzGerald [10] and Kosuda [14, 15]
in analogy to the partition algebra of Jones and Martin [13, 18].

A block permutation of [n] consists of two set partitions A and B of [n] with the same
number of blocks and a bijection f : A → B. For example, if n = 3, f({1, 3}) = {3} and
f({2}) = {1, 2} then f is a block permutation. A block permutation is called uniform if it
maps each block of A to a block of B of the same cardinality. For example, f({1, 3}) = {1, 2},
f({2}) = {3} is uniform. Each permutation may be viewed as a uniform block permutation
for which all blocks have cardinality 1. In this paper we only consider block permutations
that are uniform.

To specify a uniform block permutation f : A → B we must choose two set partitions A
and B of the same type 1m1 . . . nmn and for each i a bijection between the set of blocks of
size i of A and the set of blocks of size i of B. Since there are mi blocks of size i, it follows
from (2) that the total number of uniform block permutations of [n] is

(3) un :=
∑

1m1 ...nmn`n

(
n!

(1!)m1 · · · (n!)mn

)2
1

m1! · · ·mn!
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where the sum runs over all partitions of n. Starting at n = 0, the first values are

1, 1, 3, 16, 131, 1496, 22482, . . .

This is sequence A023998 in [21]. These numbers and generalizations are studied in [20]; in
particular, the following recursion is given in [20, equation (11)]:

un+1 =
n∑

k=0

(
n

k

)(
n + 1

k

)
uk , u0 = 1 .

We represent uniform block permutations by means of graphs. For instance, either one of
the two graphs in Figure 1 represents the uniform block permutation f given by

{1, 3, 4} → {3, 5, 6}, {2} → {4}, {5, 7} → {1, 2}, {6} → {8}, and {8} → {7} .

r
r
"

"
"

"
"

"
"

"

1

1

r
r

2

2

r
r

���
���

���
�

3

3

r
r

\
\

\
\

\

4

4

r
r

�
�
�
�
��

5

5

r
r

6

6

r
r

7

7

r
r

\
\

\
\

\

8

8

\
\

\
\

\

�
�
�
�
��

\
\

\
\

\

∼ r
r
"

"
"

"
"

"
"

"

1

1

r
r

2

2

r
r

�
���

���
���

3

3

r
r

\
\

\
\

\

4

4

r
r

5

5

r
r

6

6

r
r

7

7

r
r

\
\

\
\

\

8

8

\
\

\
\

\

�
�
�
�
��

\
\

\
\

\

Figure 1. Two graphs representing the same uniform block permutation

Different graphs may represent the same uniform block permutation. For a graph to
represent a uniform block permutation f : A → B of [n] the vertex set must consist of
two copies of [n] (top and bottom) and each connected component must contain the same
number of vertices on the top as on the bottom. The set partition A is read off from the
adjacencies on the top, B from those on the bottom, and f from those in between.

The diagram of f is the unique representing graph in which all connected components are
cycles and the elements in each cycle are joined in order, as in the second graph of Figure 1.

The set Pn of block permutations of [n] is a monoid. The product g · f of two uniform
block permutations f and g of [n] is obtained by gluing the bottom of a graph representing
f to the top of a graph representing g. The resulting graph represents a uniform block
permutation which does not depend on the graphs chosen. An example is given in Figure 2.
Note that gluing the diagram of f to the diagram of g may not result in the diagram of g · f .

The identity is the uniform block permutation that maps {i} to {i} for all i. Viewing
permutations as uniform block permutations as above, we get that the symmetric group Sn

is a submonoid of Pn.
We recall a presentation of the monoid Pn given in [10, 14, 15]. Consider the uniform

block permutations bi and si with diagrams
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Figure 2. Product of uniform block permutations
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The monoid Pn is generated by the elements {bi, si | 1 ≤ i ≤ n−1} subject to the following
relations:

(1) s2
i = 1, b2

i = bi, 1 ≤ i ≤ n− 1;
(2) sisi+1si = si+1sisi+1, sibi+1si = si+1bisi+1, 1 ≤ i ≤ n− 2;
(3) sisj = sjsi, bisj = sjbi, |i− j| > 1;
(4) bisi = sibi = bi, 1 ≤ i ≤ n− 1;
(5) bibj = bjbi, 1 ≤ i, j ≤ n− 1.

The submonoid generated by the elements si, 1 ≤ i ≤ n − 1 is the symmetric group Sn,
viewed as a submonoid of Pn as above.

We will see in Sections 3.1 and 3.2 that Pn is a factorizable inverse monoid. Therefore, a
presentation for Pn may also be derived from the results of [9].

1.3. An ideal indexed by set partitions. Let kPn be the monoid algebra of Pn over a
commutative ring k.

Given a set partition A ` [n], let ZA ∈ kPn denote the sum of all uniform block permuta-
tions f : A → B, where B varies:

(4) ZA :=
∑

f :A→B

f .

For instance,
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Given σ ∈ Sn and A ` [n], the set partition σ(A) ` [n] was defined in Section 1.1.
Given i ∈ [n], let Ai denote the set partition obtained by merging the blocks of i and i+1

of A and keeping the other blocks of A unaltered.

Proposition 1.1. Let A be a set partition of [n] and σ a permutation of [n]. Then

σ · ZA = ZA and ZA · σ = Zσ−1(A) .

In addition,

ZA · bi =

{
ZA if i and i + 1 belong to the same block of A(|A|+|A′|

|A|

)
ZAi

if i and i + 1 belong to different blocks A and A′ of A.

Proof. Let f : A → B be a summand of ZA. Then σ ·f : A → σ(B). Thus left multiplication
by σ preserves the set of uniform block permutations with domain A. Since σ is invertible,
this is a bijection. Therefore, σ ·ZA = ZA. Similarly, right multiplication by σ is a bijection
from the set of uniform block permutations with domain A to the set of uniform block
permutations with domain σ−1(A). Hence ZA · σ = Zσ−1(A).

Let A and A′ be the blocks of i and i + 1 in the set partition A (they may coincide).
Multiplying the uniform block permutation f on the right by bi has the effect of connecting
the vertices i and i + 1 in A. The domain of f · bi is therefore the set partition Ai and
the codomain is the set partition B̄ obtained by merging the blocks f(A) and f(A′) of B.
Moreover, f · bi : Ai → B̄ is the uniform block permutation such that (f · bi)(A ∪ A′) =
f(A) ∪ f(A′) and (f · bi)(A

′′) = f(A′′) on every other block A′′ of A.
On the other hand, let g : Ai → C be a uniform block permutation. The block g(A ∪ A′)

of C can be decomposed as the disjoint union of two subsets C and C ′ with |C| = |A| and

|C ′| = |A′| in
(|A+A′|

|A|

)
ways. For each such decomposition there is a unique set partition

B and a unique uniform block permutation f : A → B such that B̄ = C and f · bi = g.
Therefore,

ZA · bi =

(
|A + A′|
|A|

)
ZAi

.

�

Let Zn denote the subspace of kPn linearly spanned by the elements ZA as A runs over
all set partitions of [n].

Corollary 1.2. Zn is a right ideal of the monoid algebra kPn.

2. The Hopf algebra of uniform block permutations

In this section we define the Hopf algebra of uniform block permutations. It contains the
Hopf algebra of permutations of Malvenuto and Reutenauer as a Hopf subalgebra.
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2.1. Schur-Weyl duality for uniform block permutations. Let r and m be positive
integers. Let Cr denote the cyclic group of order r with generator t:

Cr := 〈t | tr = 1〉.
Consider the complex reflection group

G(r, 1, m) := Cr o Sm .

Let V be the monomial representation of G(r, 1, m). Thus, V is an m-dimensional complex
vector space with a basis {e1, e2, . . . , em} on which G(r, 1, m) acts as follows:

t · e1 = e2πi/re1 , t · ei = ei for i > 1, and σ · ei = eσ(i) for σ ∈ Sm.

Consider now the diagonal action of G(r, 1, m) on the tensor powers V ⊗n,

g · (ei1ei2 · · · ein) = (g · ei1)(g · ei2) · · · (g · ein) .

The centralizer of this representation has been calculated by Tanabe.
Proposition 2.1. [22] There is a right action of the monoid Pn on V ⊗n determined by

(ei1 · · · ein) · bj = δ(ij, ij+1)ei1 · · · ein and (ei1 · · · ein) · σ = eiσ(1)
· · · eiσ(n)

for 1 ≤ i ≤ n − 1 and σ ∈ Sn. This action commutes with the left action of G(r, 1, m) on
V ⊗n. Moreover, if m ≥ 2n and r > n then the resulting map

(5) CPn → EndG(r,1,m)(V
⊗n)

is an isomorphism of algebras.

As explained in the introduction, this result can be used to deduce the existence of a
product on the space

P :=
⊕
n≥0

kPn

for which the map
P → End(T (V ))

(resulting from (5)) is a morphism of algebras, where End(T (V )) is viewed as an algebra
under the convolution product. We proceed to describe the product on P in explicit terms
and to enlarge this structure to a graded connected Hopf algebra.

2.2. Product and coproduct of uniform block permutations. Let f and g be uniform
block permutations of [p] and [q] respectively. Adding p to every entry in the diagram of g
and placing it to the right of the diagram of f we obtain the diagram of a uniform block
permutation of [p + q], called the concatenation of f and g and denoted f × g. Figure 3
shows an example.

Let Sh(p, q) denote the set of (p, q)-shuffles, that is, those permutations ξ ∈ Sp+q such that

ξ(1) < ξ(2) < · · · < ξ(p) and ξ(p + 1) < ξ(p + 2) < · · · < ξ(p + q) .

Let shp,q ∈ kSp+q denote the sum of all (p, q)-shuffles.
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Figure 3. Concatenation of diagrams

The product ∗ on P is defined by

(6) f ∗ g := shp,q · (f × g) ∈ kPp+q

for all f ∈ Pp and g ∈ Pq, and extended by linearity. It is easy to see that this product
corresponds to convolution of endomorphisms of the tensor algebra via the map (5), when
k = C.

For example,rr rr ∗ rr��
rr@@ =

rr rr rr rr��@@ +
rr rr rr rr@@��

�
@@ +

rr rr rr rrHHH
��� +

rr rr rr@@
rr@@�����

@@ +
rr rr@@

rr rrHHH
�����

+

rr rr rrHHH rrHHH
�����

��

The set P0 consists of the unique uniform block permutation of [0]. It is represented by
the empty diagram, which we denote by ∅. It is the unit element for the product ∗.

A breaking point of a set partition B ` [n] is an integer i ∈ {0, 1, . . . , n} for which there
exists a subset S ⊆ B such that

(7)
⋃
B∈S

B = {1, . . . , i} and (hence)
⋃

B∈B\S

B = {i + 1, . . . , n} .

Note that i = 0 and i = n are breaking points of any set partition B.
Given a uniform block permutation f : A → B, we say that i is a breaking point of f if

it is a breaking point of B, and we let B(f) denote the set of breaking points of f . If f is a
permutation, that is if all blocks of f are of size 1, then B(f) = {0, 1, . . . , n}. In terms of
the diagram of f , i ∈ B(f) if it is possible to put a vertical line between the first i and the
last n− i vertices in the bottom row without intersecting any edges joining bottom vertices.

f =
rr��

rr������rrHHH
H rr rr rr�

�
rrPPPPPP rr ⇒ B(f) = {0, 1, 2, 6, 8}.
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Lemma 2.2. If i is a breaking point of f , then there exists a unique (i, n− i)-shuffle ξ ∈ Sn

and unique uniform block permutations f(i) ∈ Pi and f ′(n−i) ∈ Pn−i such that

f = (f(i) × f ′(n−i)) · ξ−1 .

Conversely, if such a decomposition exists, i is a breaking point of f .

We illustrate this statement with an example where i = 4 and ξ =

(
1 2 3 4 5 6
2 3 5 6 1 4

)
:

r
rXXXXXXXXr

r
�

� r
r

�
� r

rH
HHHr

r�
��� r

r�
���

f(4) f ′(2)
f =

= ξ−1

Proof. Suppose i is a breaking point of f : A → B. Let S be the subset of B as in (7). Write⋃
B∈S

f−1(B) = {a1, a2, . . . , ai} and
⋃

B∈B\S

f−1(B) = {ai+1, ai+2, . . . , an}

with 1 ≤ a1 < a2 < · · · < ai, ai+1 < ai+2 < · · · < an ≤ n. Define ξ ∈ Sh(i, n− i) by

ξ(r) = ar for r = 1, . . . , n.

By construction, any element of [i] is connected only to elements of [i] in the diagram of f ·ξ.
Therefore, there exist f(i) ∈ Pi and f ′(n−i) ∈ Pn−i such that f · ξ = f(i) × f ′(n−i).

Assume that such a decomposition is given. Since i is a breaking point of f(i)× f ′(n−i) and
the codomain of f · ξ is the same as the codomain of f , we have that i is a breaking point
of f . Hence we must have ξ([i]) = {a1, a2, . . . , ai}, which makes the shuffle ξ unique. Then
f(i) and f ′(n−1) are determined from f · ξ = f(i) × f ′(n−i). �

We are now ready to define the coproduct on P . Given f ∈ Pn set

(8) ∆(f) :=
∑

i∈B(f)

f(i) ⊗ f ′(n−i),

where f(i) and f ′(n−i) are as in Lemma 2.2. An example follows.

f = rr��rr rr@@ rr@@ rr rr��@@��

∆(f) = f ⊗ ∅ + rr��rr rr@
@ ⊗ rr rr rr��@@ + rr��rr@

@ rr rr�
� rr@@ ⊗ rr+ ∅ ⊗ f .
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We define the counit ε : P → k by

ε(f) =

{
1 if f = ∅ ∈ P0,

0 if f ∈ Pn, n ≥ 1.

Remark 2.3. Recall that an element x ∈ P is called primitive if ∆(x) = x ⊗ ∅ + ∅ ⊗ x.
Every uniform block permutation with breaking set {0, n} is primitive, but there are other
primitive elements in P . For example, the following element of kP3 is primitive:

rr rr rr��@@ − rr rr�� rrHHH
��

The primitive elements of P are determined in Section 3.3.

For the proof of the next theorem we need the following element of the symmetric group.
Given p, q ≥ 0, let ξp,q ∈ Sp+q be the permutation

(9) ξp,q :=

(
1 2 . . . p p + 1 p + 2 . . . p + q

q + 1 q + 2 . . . q + p 1 2 . . . q

)
.

This is a (p, q)-shuffle (it is in fact the maximum element of Sh(p, q) under the weak order;
see Section 3.2). The diagram of ξ3,4 is shown below.r

r��
�

�
�

�
r
r��
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�
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�

r
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r
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r
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HHH
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HHH
HHH

r
rHH

HHH
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The inverse of ξp,q is ξq,p. Let 1n ∈ Sn denote the identity permutation. We need the
following familiar properties.

Lemma 2.4. Let p, q ≥ 0. For any f ∈ Pq, g ∈ Pq, we have

(10) ξp,q · (f × g) = (g × f) · ξp,q .

Lemma 2.5. Let a, b, c, d ≥ 0. For any shuffles ξ1 ∈ Sh(a, b) and ξ2 ∈ Sh(c, d), the permu-
tation

(ξ1 × ξ2) · (1a × ξc,b × 1d)

is an (a + c, b + d)-shuffle. Conversely, let p, q, r, s ≥ 0 be such that

p + q = r + s.

Given a shuffle ξ ∈ Sh(p, q), there are unique numbers a, b, c, d ≥ 0 and unique shuffles
ξ1 ∈ Sh(a, b) and ξ2 ∈ Sh(c, d) such that

a + b = r, c + d = s, a + c = p, b + d = q,

and

ξ = (ξ1 × ξ2) · (1a × ξc,b × 1d).
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Proof. The first assertion is straightforward. For the converse, given ξ ∈ Sh(p, q), we have

ξ−1({1, . . . , r}) = {1, . . . , a} ∪ {p + 1, . . . , p + b}
for some a, b ≥ 0 such that a ≤ p, b ≤ q, and a + b = r (since ξ is increasing on {1, . . . , p}
and on {p+1, . . . , p+ q}). Let c = p− a and d = q− b. A straightforward calculation shows
that

ξ · (1a × ξb,c × 1d) = ξ1 × ξ2

for some shuffles ξ1 ∈ Sh(a, b) and ξ2 ∈ Sh(c, d). This proves existence. The numbers a
and b are uniquely determined from ξ−1({1, . . . , r}) as above, and then c, d and ξ1, ξ2 are
determined as well. �

Theorem 2.6. The graded vector space P equipped with the product ∗, coproduct ∆, unit ∅,
and counit ε, is a graded connected Hopf algebra.

Proof. Associativity and coassociativity follow from basic properties of shuffles (for the prod-
uct one may also appeal to (5) and associativity of the convolution product). The existence
of the antipode is guaranteed in any graded connected bialgebra. The compatibility between
∆ and ∗ requires a special argument.

Take f ∈ kPp and g ∈ kPq. On one hand we have

∆(f ∗ g)
(6)
=

∑
ξ∈Sh(p,q)

∆
(
ξ · (f × g)

)(8)
=

∑
ξ∈Sh(p,q)

r∈B(ξ·(f×g))

α⊗ β,

here we have written, for each breaking point r ∈ B(ξ · (f × g)),

(11) ξ · (f × g) · η = α× β,

where α ∈ kPr, β ∈ kPp+q−r, and η ∈ Sh(r, p + q − r) are the unique elements afforded by
Lemma 2.2.

On the other hand, we have

∆(f) ∗∆(g) =
∑

a∈B(f)
b∈B(g)

(f ′(a) ∗ g′(b))⊗ (f ′′(p−a) ∗ g′′(q−b))

=
∑

ξ1∈Sh(a,b)
ξ2∈Sh(p−a,q−b)

∑
a∈B(f)
b∈B(g)

ξ1 · (f ′(a) × g′(b))⊗ ξ2 · (f ′′(p−a) × g′′(q−b)).

Here, for each pair of breaking points a ∈ B(f) and b ∈ B(g), we have written

(12) f · η1 = f ′(a) × f ′′(p−a) and g · η2 = g′(b) × g′′(q−b),

as in Lemma 2.2, with η1 ∈ Sh(a, p− a) and η2 ∈ Sh(b, q − b).
We show that any summand in ∆(f) ∗∆(g) also occurs in ∆(f ∗ g) and viceversa.
Given breaking points a, b and shuffles η1, η2 as in (12), define

η := (η1 × η2) · (1a × ξb,p−a × 1q−b).



12 MARCELO AGUIAR AND ROSA C. ORELLANA

In addition, given shuffles ξ1 ∈ Sh(a, b) and ξ2 ∈ Sh(p− a, q − b), define

ξ := (ξ1 × ξ2) · (1a × ξp−a,b × 1q−b).

Then η ∈ Sh(a + b, p + q − a− b) and ξ ∈ Sh(p, q), by Lemma 2.5. Moreover, we have:

ξ · (f × g) · η = (ξ1 × ξ2) · (1a × ξp−a,b × 1q−b) · (f × g) · (η1 × η2) · (1a × ξb,p−a × 1q−b)

= (ξ1 × ξ2) · (1a × ξp−a,b × 1q−b) · (f · η1)× (g · η2) · (1a × ξb,p−a × 1q−b)

(12)
= (ξ1 × ξ2) · (1a × ξp−a,b × 1q−b) · (f ′(a) × f ′′(p−a) × g′(b) × g′′(q−b)) · (1a × ξb,p−a × 1q−b)

(10)
= (ξ1 × ξ2) · (f ′(a) × g′(b) × f ′′(p−a) × g′′(q−b)) =

(
ξ1 × (f ′(a) × g′(b))

)
×

(
ξ2 × (f ′′(p−a) × g′′(q−b))

)
.

Therefore, by Lemma 2.2, a + b is a breaking point of ξ · (f × g), and by (11),

ξ1 × (f ′(a) × g′(b)) = α and ξ2 × (f ′′(p−a) × g′′(q−b)) = β.

This shows that every summand in ∆(f) ∗∆(g) also occurs in ∆(f ∗ g).
Now assume that we are given a shuffle ξ and a breaking point r as in (11). We have to

show that the summand α⊗ β of ∆(f ∗ g) also appears in ∆(f) ∗∆(g). Let s := p + q − r.
Applying Lemma 2.5 we find numbers a, b and shuffles ξ1 ∈ Sh(a, b) and ξ2 ∈ Sh(p−a, q− b)
such that a + b = r and

ξ = (ξ1 × ξ2) · (1a × ξp−a,b × 1q−b).

We first claim that a is a breaking point of f and b is a breaking point of g. Consider
the diagram of f . Suppose there is an edge connecting one of the first a bottom vertices to
one of the last p − a bottom vertices. Say the former is i and the latter is j. Then in the
diagram of ξ · (f × g) there is an edge connecting the bottom vertices ξ(i) and ξ(j). But
this contradicts the fact that r is a breaking point of ξ · (f × g), since from the proof of
Lemma 2.5 we know that ξ(i) ∈ {1, . . . , r} and ξ(j) ∈ {r + 1, . . . , r + s}.

Thus a ∈ B(f), and similarly b ∈ B(g). Therefore, we can write

f = (f ′(a) × f ′′(p−a)) · η−1
1 and g = (g′(b) × g′′(q−b)) · η−1

2 ,

where the elements in the right hand side are afforded by Lemma 2.2. We calculate:

ξ · (f × g) = (ξ1 × ξ2) · (1a × ξp−a,b × 1q−b) ·
(
(f ′(a) × f ′′(p−a)) · η−1

1

)
×

(
(g′(b) × g′′(q−b)) · η−1

2

)
= (ξ1 × ξ2) · (1a × ξp−a,b × 1q−b) · (f ′(a) × f ′′(p−a) × g′(b) × g′′(q−b)) · (η−1

1 × η−1
2 )

(10)
= (ξ1 × ξ2) · (f ′(a) × g′(b) × f ′′(p−a) × g′′(q−b)) · (1a × ξp−a,b × 1q−b) · (η−1

1 × η−1
2 )

=
((

ξ1 · (f ′(a) × g′(b))
)
×

(
ξ2 · (f ′′(p−a) × g′′(q−b))

))
· (1a × ξp−a,b × 1q−b) · (η−1

1 × η−1
2 )

By Lemma 2.5, the permutation (1a × ξp−a,b × 1q−b) · (η−1
1 × η−1

2 ) is the inverse of an (a +
b, p + q − a− b)-shuffle. Therefore, by the uniqueness in Lemma 2.2,

η = (η1 × η2) · (1a × ξb,p−a × 1q−b), α =
(
ξ1 · (f ′(a) × g′(b)), and β = ξ2 · (f ′′(p−a) × g′′(q−b)) .
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This proves that the summand α⊗ β appears in ∆(f) ∗∆(g). �

Consider the following graded subspace of P :

S :=
⊕
n≥0

kSn .

As mentioned in the introduction, the space S carries a Hopf algebra structure, first defined
by Malvenuto and Reutenauer [17]. The following result follows by comparing (6) and (8)
with the definitions in [17].

Proposition 2.7. S is a Hopf subalgebra of P.

Let σ be a permutation. In the notation of [2], the element σ ∈ S corresponds to the basis
element F ∗

σ of SSym∗, or equivalently to the element Fσ−1 of SSym.

3. Hopf algebra structure of P

3.1. Inverse monoid structure and self-duality. As S, the Hopf algebra P is self-dual.
To see this, recall that a block permutation is a bijection f : A → B between two set
partitions of [n]. Let f̃ : B → A denote the inverse bijection. If f is uniform then so is f̃ .

The diagram of f̃ ∈ Pn is obtained by reflecting the diagram of f across a horizontal line.
Note that for σ ∈ Sn ⊆ Pn we have σ̃ = σ−1.

The operation f 7→ f̃ is relevant to the monoid structure of Pn. Indeed, the following
properties are satisfied

f = ff̃f and f̃ = f̃f f̃ .

Together with (13) below, these properties imply that Pn is an inverse monoid [7, Theorem
1.17]. The following properties are consequences of this fact [7, Lemma 1.18]:

f̃g = g̃f̃ , ˜̃f = f

(they can also be verified directly). It follows that σ̃ · f = f̃ · σ−1.

The operation f 7→ f̃ is also relevant to the Hopf algebra structure of P . Let P∗ be the
graded dual space of P :

P∗ =
⊕
n≥0

(kPn)∗ .

Let {f ∗ | f ∈ Pn} be the basis of (kPn)∗ dual to the basis Pn of kPn. The product on P∗ for
f ∗ ∈ (kPn)∗ and g∗ ∈ (kPm)∗ is given by

f ∗ ∗ g∗ =
∑

ξ∈Sh(n,m)

(f × g)∗ · ξ−1.

Let Φ : P∗ → P be the linear map such that

Φ(f ∗) := f̃ .
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Proposition 3.1. The map Φ : P∗ → P is an isomorphism of graded Hopf algebras. In
addition, Φ∗ = Φ.

Proof. We have

Φ(f ∗ ∗ g∗) =
∑

ξ∈Sh(n,m)

Φ
(
(f × g)∗ · ξ−1

)
=

∑
ξ∈Sh(n,m)

ξ̃−1 · ˜(f × g)

=
∑

ξ∈Sh(n,m)

ξ · (f̃ × g̃) = Φ(f) ∗ Φ(g) .

Thus Φ preserves products. Since ˜ is an involution, Φ∗ = Φ, and hence Φ preserves coprod-
ucts as well. �

3.2. Factorizable monoid structure and the weak order. Let En denote the poset of
set partitions of [n]: we say that A ≤ B if every block of B is contained in a block of A.
This poset is a lattice, and this structure is related to the monoid structure of uniform block
permutations as follows. If idA : A → A denotes the uniform block permutation which is
the identity map on the set of blocks of A, then

(13) idA · idB = idA∧B .

In other words, viewing En as a monoid under the meet operation ∧, the map

En → Pn , A 7→ idA ,

is a morphism of monoids.
Any uniform block permutation f ∈ Pn decomposes (non-uniquely) as

(14) f = σ · idA
for some σ ∈ Sn and A ∈ En. Note that σ is invertible and idA is idempotent, by (13). It
follows that Pn is a factorizable inverse monoid [6, Section 2], [16, Chapter 2.2]. Moreover,
by Lemma 2.1 in [6], any invertible element in Pn belongs to Sn and any idempotent element
in Pn belongs to (the image of) En. This lemma also guarantees that in (14), the idempotent
idA is uniquely determined by f (which is clear since A is the domain of f). On the other
hand, σ is not unique, and we will make a suitable choice of this factor to define a partial
order on Pn.

Consider the action of Sn on Pn by left multiplication. Given A ∈ En, the orbit of idA
consists of all uniform block permutations f : A → B with domain A, and the stabilizer is
the parabolic subgroup

SA := {σ ∈ Sn | σ(A) = A ∀A ∈ A} .

Consider the set of A-shuffles :

Sh(A) := {ξ ∈ Sn | if i < j are in the same block of A then ξ(i) < ξ(j)} .
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It is well-known that these permutations form a set of representatives for the left cosets of
the subgroup SA. Therefore, given a uniform block permutation f : A → B there is a unique
A-shuffle ξf such that

(15) f = ξf · idA .

We use this decomposition to define a partial order on Pn as follows:

(16) f ≤ g ⇐⇒ f and g have the same domain and ξf ≤ ξg,

where the partial order on the right hand side is the left weak order on Sn (see for instance [2]).
We refer to this partial order as the weak order on Pn. Thus, Pn is the disjoint union of
certain subposets of the weak order on Sn:

Pn
∼=

⊔
A`[n]

Sh(A)

(in fact, each Sh(A) is a lower order ideal in Sn). Figures 4-8 show 5 of the 15 components
of P4. Note that even when A and B are set partitions of the same type the posets Sh(A)
and Sh(B) need not be isomorphic.

The partial order we have defined on Pn should not be confused with the natural partial
order which is defined on any inverse semigroup [8, Chapter 7.1], [16, Chapter 1.4].

Figure 4. The component of P4 corresponding to A = {1, 2}{3}{4}

Remark 3.2. As observed by Sloane [21], there is a connection between uniform block
permutations and the patience games of Aldous and Diaconis [3]. A patience game is played
as follows. Start from a deck of cards numbered 1, . . . , n and arranged in any order. At each
step, draw a card from the top of the deck and either place it on an existing pile which shows
a bigger card, or start a new pile (there are thus several choices at each step). The initial
deck is a permutation of [n] and the resulting piles form a set partition of [n]. Suppose
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Figure 5. The component of P4 corresponding to A = {1}{2, 3}{4}

Figure 6. The component of P4 corresponding to A = {1, 4}{2}{3}

ξ ∈ Sn. The set partitions A such that ξ ∈ Sh(A) are precisely the possible outputs of
patience games played from a deck of cards with ξ−1(1) in the bottom, followed by ξ−1(2),
up to ξ−1(n) on the top. Thus, uniform block permutations are in bijection with the pairs
consisting of the input and the output of a patience game via (ξ,A) ↔ ξ · idA.

3.3. The second basis and the Hopf algebra structure. Following the ideas of [2], we
use the weak order on Pn to define a new linear basis of the spaces kPn, on which the algebra
structure of P is simple.



HOPF ALGEBRA OF UNIFORM BLOCK PERMUTATIONS 17

Figure 7. The component of P4 corresponding to A = {1, 3}{2}{4}

Figure 8. The component of P4 corresponding to A = {1, 4}{2, 3}

For each element g ∈ Pn let

(17) Xg :=
∑
f≤g

f .

By Möbius inversion, the set {Xg | g ∈ Pn} is a linear basis of Pn.
Note that all uniform block permutations f in the right hand side of (17) share the same

domain A ` [n], by (16).

Given set partitions A ` [p] and B ` [q], let A × B be the set partition of [p + q] whose
blocks are the blocks of A and the blocks {b + p | b ∈ B} where B is a block of B. For
example, if A = {1, 3, 4}{2, 5}{6} ` [6] and B = {1, 4}{2}{3, 5} ` [5], then A × B =
{1, 3, 4}{2, 5}{6}{7, 10}{8}{9, 11} ` [11]. This is compatible with concatenation of uniform
block permutations in the sense that if A is the (co)domain of f and B is the (co)domain of
g, then A× B is the (co)domain of f × g. In particular,

idA × idB = idA×B .

Recall the maximum (p, q)-shuffle ξp,q from (9).
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Lemma 3.3. Let λ : Sh(p, q)× Sh(A)× Sh(B) −→ Sh(A× B) be defined by

λ(ξ, σ, τ) := ξ · (σ × τ) .

Endow each set of shuffles with the weak order. Then

(i) λ is bijective;
(ii) λ−1 is order preserving, that is,

ξ · (σ × τ) ≤ ξ′ · (σ′ × τ ′) =⇒ ξ ≤ ξ′, σ ≤ σ′, and τ ≤ τ ′ ;

(iii) λ is order preserving when restricted to any of the following sets:

{ξp,q} × Sh(A)× Sh(B), {1p+q} × Sh(A)× Sh(B), or Sh(p, q)× {(σ, τ)} ,

for any σ ∈ Sh(A), τ ∈ Sh(B).

Proof. The proof is similar to that of Proposition 2.5 in [2]. �

The product of P takes the following simple form on the X-basis.

Proposition 3.4. Let g1 ∈ Pp1 and g2 ∈ Pp2 be uniform block permutations. Then

Xg1 ∗Xg2 = Xξp,q ·(g1×g2) .

Proof. We have:

Xg1 ∗Xg2

(17)
=

∑
f1≤g1
f2≤g2

f1 ∗ f2

(6)
=

∑
ξ∈Sh(p1,p2)

∑
f1≤g1
f2≤g2

ξ · (f1 × f2) .

Let Ai be the domain of gi, i = 1, 2. Choose ξ ∈ Sh(p1, p2) and fi ≤ gi in Ppi
, i = 1, 2.

Then Ai is the domain of fi, and by (15),

fi = ξfi
· idAi

.

Hence
ξ · (f1 × f2) = ξ · (ξf1 × ξf2) · (idA1 × idA2) .

Since fi ≤ gi, we have ξfi
≤ ξgi

, by (16). Therefore, by Lemma 3.3.(iii),

ξ · (ξf1 × ξf2) ≤ ξp,q · (ξg1 × ξg2) .

Hence, by (16),
ξ · (f1 × f2) ≤ ξp,q · (g1 × g2) .

Thus every summand in Xg1 ∗Xg2 occurs in Xξp,q ·(g1×g2).
Conversely, let f be a summand in Xξp,q ·(g1×g2). Since the domain of ξp,q · (g1 × g2) is

A1 ×A2, we have f = ξf · idA1×A2 . Hence

ξf ≤ ξp,q · (ξg1 × ξg2)

and from (i) and (ii) in Lemma 3.3 we obtain ξ ∈ Sh(p1, p2), σi ∈ Sh(Ai) such that

σi ≤ ξgi
and ξf = ξ · (σ1 × σ2) .
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Let fi := σi · idAi
. Then

fi ≤ gi and f = ξ · (f1 × f2) ,

which shows that every summand in Xξp,q ·(g1×g2) occurs in Xg1 ∗Xg2 . �

From Propositions 3.4 and 3.1 we deduce:

Corollary 3.5. The Hopf algebra P is free as an algebra and cofree as a graded coalgebra.

Let V denote the space of primitive elements of P . It follows that the generating series of
P and V are related by

P(x) =
1

1− V (x)
.

Since

P(x) = 1 + x + 3x2 + 16x3 + 131x4 + 1496x5 + 22482x6 + · · ·
we deduce that

V (x) = x + 2x2 + 11x3 + 98x4 + 1202x5 + 19052x6 + · · · .

Let X∗
f be the linear basis of P∗ dual to the basis Xf of P and let Mf be the image of X∗

f

under the isomorphism Φ : P∗ → P of Proposition 3.1. Explicitly, the basis Mf is uniquely
determined by the equations

f̃ =
∑
f≤g

Mg

that hold for every f ∈ P . It follows that the elements Mf , as f runs over all uniform block
permutations that cannot be decomposed as

f = ξp,q · (f1 × f2)

with p and q > 0, form linear basis of the space of primitive elements of P . A uniform block
permutation f ∈ Pn can be decomposed in this manner if and only if there is 0 < p < n
such that the first p elements of the domain of f are not connected to any of the first n− p
elements of the codomain. A permutation σ ∈ Sn satisfies this condition if and only if σ has
a global descent at p, in agreement with [2, Corollary 6.3].

Remark 3.6. A similar conclusion may be derived by introducing another basis

Zg :=
∑
g≤f

f .

This has the property that

Zg1 ∗ Zg2 = Zg1×g2 .

Note that ZidA is the element ZA introduced in (4) and so denoted throughout Section 1.3.
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4. The Hopf algebra of symmetric functions in non-commuting variables

Let X be a countable set, the alphabet. A word of length n is a function w : [n] → X.
Let k〈〈X〉〉 be the algebra of non-commutative power series on the set of variables X. Its
elements are infinite linear combinations of words, finitely many of each length, and the
product is concatenation of words.

The kernel of a word w of length n is the set partition K(w) of [n] whose blocks are the
non-empty fibers of w. Order the set of set partitions of [n] by refinement, as in Section 3.2.
For each set partition A of [n], let

pA :=
∑

K(w)≤A

w ∈ k〈〈X〉〉 .

This is the sum of all words w such that if i and j are in the same block ofA then w(i) = w(j).
For instance

p{1,3}{2,4} = xyxy + xzxz + yxyx + · · ·+ x4 + y4 + z4 + · · · .

The subspace of k〈〈X〉〉 linearly spanned by the elements pA as A runs over all set parti-
tions of [n], n ≥ 0, is a subalgebra Π of k〈〈X〉〉, graded by length. The elements of Π can
be characterized as those power series of finite degree that are invariant under any permu-
tation of the variables. Π is the algebra of symmetric functions in non-commuting variables
introduced by Wolf [23] and recently studied by Gebhard, Rosas, and Sagan [11, 12, 19] in
connection to Stanley’s chromatic symmetric function.

Π is in fact a graded Hopf algebra [1, 4, 5]. The coproduct is defined via evaluation of
symmetric functions on two copies of the alphabet X. In order to describe the product and
coproduct of Π on the basis elements pA we introduce some notation.

To a set partition A ` [n] and a subset of blocks S ⊆ A we associate a new set partition
AS as follows. Write ⋃

A∈S

A = {j1, · · · , js} ⊆ [n]

with j1 < · · · < js. The set S is a partition of {j1, · · · , js}. We turn it into a partition AS of
[s] by replacing each ji by i for 1 ≤ i ≤ m and preserving the block structure. For instance,
if A = {1, 5}{2, 4, 6}{3, 7} and S = {1, 5}{3, 7}, then AS = {1, 3}{2, 4} ` [4].

The product and coproduct of Π are given by

pApB = pA×B ,

∆(pA) =
∑

StT=A

pAS
⊗ pAT

,

the sum over all decompositions of A into disjoint sets of blocks S and T . For example, if
A = {1, 2, 6}{3, 5}{4}, then

∆(pA) = pA ⊗ 1 + p{1,2,5}{3,4} ⊗ p{1} + p{1,2,4}{3} ⊗ p{1,2} + p{1,3}{2} ⊗ p{1,2,3} +

p{1,2,3} ⊗ p{1,3}{2} + p{1,2} ⊗ p{1,2,4}{3} + p{1} ⊗ p{1,2,5}{3,4} + 1⊗ pA .
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Consider now the direct sum of the subspaces Zn of kPn introduced in Section 1.3:

Z :=
⊕
n≥0

Zn ⊂ P .

The elements ZA defined in (4) form a linear basis of Zn.

Theorem 4.1. Z is a Hopf subalgebra of P. Moreover, the map

Θ : Z → Π, Θ(ZA) := pA

is an isomorphism of graded Hopf algebras.

Proof. Recall from Remark 3.6 that ZA = ZidA , and therefore

ZA ∗ ZB = ZA×B .

Thus Θ is a morphism of algebras.
To prove that Θ is a morphism of coalgebras we need to show that

∆(ZA) =
∑

StT=A

ZAS
⊗ ZAT

for every set partition A ` [n]. We have

ZA =
∑

idA≤f

f =
∑

ξ∈Sh(A)

ξ · idA

and hence

ZAS
=

∑
σ∈Sh(AS)

σ · idAS
and ZAT

=
∑

τ∈Sh(AT )

τ · idAT
.

Fix a decomposition A = S t T and consider the summand in ZAS
⊗ ZAT

indexed by
shuffles σ ∈ Sh(AS) and τ ∈ Sh(AT ). Out of this data we construct shuffles η and ξ as
follows. First we write⋃

A∈S

A = {j1, · · · , js} and
⋃
A∈T

A = {k1, · · · , kt}

with j1 < · · · < js and k1 < · · · < kt. We let η be the unique (s, t)-shuffle such that
η([s]) = {j1, · · · , js} (and hence η([s + 1, n]) = {k1, · · · , kt}), and we define ξ by

ξ(ji) = σ(i) ∀ i ∈ [s] and ξ(ki) = s + τ(i) ∀ i ∈ [t] .

Then ξ is increasing in each block of A, so ξ ∈ Sh(A), and by construction

ξ · idA · η = (σ · idAS
)× (τ · idAT

) .

Therefore, by Lemma 2.2, s is a breaking point of ξ · idA, and by (8), (σ · idAS
)⊗ (τ · idAT

)
is a summand in ∆(ZA).

A similar argument shows that conversely, every summand in ∆(ZA) occurs in this manner.
�
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Thus the Hopf algebra of uniform block permutations P contains the Hopf algebra Π of
symmetric functions in non-commuting variables. Note also that this reveals the existence
of a second operation on Π: according to Corollary 1.2, each homogeneous component Πn

carries an associative non-unital product that turns it into a right ideal of the monoid algebra
kPn.
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