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Abstract. In this paper we study the representation theory of two partition algebras
related to complex reflection groups. The colored partition algebras, Pk(n, r) intro-
duced by Bloss [2] and the algebras, Tk(n, r) introduced by Tanabe [26]. In particular,
we describe the decomposition of these algebras in terms of irreducible representations.

Introduction

The partition algebra, Pk(x), was introduced in the the early 1990’s independently
by Jones [10] and Martin [15]. The main motivation for introducing this algebra was
generalizing the Temperley-Lieb algebra and the Potts model in statistical mechan-
ics to higher dimensions. Since its introduction this algebra has been widely studied
[4, 8, 9, 16, 17, 19, 18, 27] and it is for the most part well-understood. For example Mar-
tin and Woodcock [18] have extensively studied the structure of the general partition
algebra Pk(ξ), where ξ ∈ C. They have demonstrated that this algebra is semisimple
whenever ξ is not an integer between 0 and 2k−1 and they have analyzed the irreducible
representations in both the semisimple and nonsemisimple cases.

Jones [10] introduced the partition algebra as a centralizer algebra of the symmetric
group, Sn, over tensor space. That is, let V be the permutation representation of Sn,
then the partition algebra can be defined by

EndSn(V ⊗k),

where V ⊗k is an Sn-module defined via the diagonal action of Sn on V ⊗k. In particular,
he explicitly described the Schur-Weyl duality between Pk(n) and the symmetric group
Sn. It is natural to look for a similar construction for groups other than the symmetric
groups. An obvious choice are wreath products, G o Sn, where G is a finite group. In
this paper we will discuss two generalizations that focus on the case that G is a cyclic
group and hence Gn,r := Z/rZ o Sn. The first generalization is by Tanabe [26] and the
second is by Bloss [2]. Tanabe’s algebra turned out to be a subalgebra of Pk(n) while
Bloss’s algebra contains Pk(n) as a subalgebra. To study the representation theory of
these two algebras we need information about the representation theory of the group
G, in this paper we assume that G is cycic. In [11] Kosuda has studied the algebra of
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uniform block permutations, this algebra is a subalgebra of Tanabe’s algebra in the case
when the r in Gn,r is chosen to be larger than n.

The objective of this paper is to study the representation theory of Tanabe’s algebra,
Tk(n, r), and the colored partition algebra of Bloss, Pk(n, r). The representation theory
of these algebras is closely tied to the Kronecker product of characters of the group Gn,r.
In the construction of both algebras we choose a Gn,r-module M and define the algebras

EndGn,r(M
⊗k),

since M is a Gn,r-module, then M⊗k is a Gn,r-module defined via the diagonal action
of Gn,r. Using double centralizer theory one can decompose the algebra EndGn,r(M

⊗k)
in terms of irreducible representations if one knows how to decompose M⊗k in terms of
irreducibles.

The main result of this paper is the decomposition of the colored partition algebra,
Pk(n, r), and the subalgebras Tk(n, r) in terms of irreducible representations. We de-
scribe an indexing set for the irreducible representations whenever these algebras are
semisimple. We prove decomposition rules for the Kronecker product of some repre-
sentations of the complex reflection groups Gn,r, and use these rules to construct the
Bratteli diagram for the algebras Pk(n, r) and Tk(n, r). Our aim throughout is to give a
unified approach.

This paper is organized as follows, in the first section we discuss some basic nota-
tion about partitions of numbers, and r-tuples of partitions, we also recall some of the
basic facts about the group Gn,r, its irreducible representations and their relation to
symmetric functions via the Frobenius characteristic map. Finally we discuss the per-
mutation representation of Gn,r and prove its decomposition in terms of irreducible Gn,r

representations.
In Section 2, we prove our branching rules. We use the relationship between irre-

ducible characters and Schur functions to prove the decomposition of tensor powers of
the modules used in the construction of Pk(n, r) and Tk(n, r). In Section 3 we recall
some known results about the Partition algebra to motivate the results that we obtain
in Section 4 on the colored partition algebra, Pk(n, r), and in Section 5 on the algebras
Tk(n, r).

Acknowledgment: I would like to thank Arun Ram for reading this paper and making
useful suggestions.

1. Preliminaries

A partition λ of a positive integer n, denoted λ ` n, is a sequence of nonnegative
integers λ = (λ1, λ2, . . . , λ`) such that |λ| = λ1+λ2+· · ·+λ` = n and λ1 ≥ λ2 ≥ · · · ≥ λ`.
The length of a partition, `(λ), is the number of nonzero parts of λ. Given two partitions
λ and µ we say that µ ⊆ λ if µi ≤ λi for all i. If µ ⊆ λ, let λ/µ denote the skew shape
given by removing µ from λ. As usual we identify a partition with its corresponding
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Young diagram, the left-justified array of boxes with λi boxes in the i-th row. For
example

λ = (7, 5, 4, 2, 1), `(λ) = 5 and |λ| = 19.

We will denote the empty partition or Young diagram by ∅. An r-tuple of Young

diagrams ~λ := (λ(1), λ(2), . . . , λ(r)) of total size n is an ordered sequence of length r such

that each λ(i) is a Young diagram and |~λ| =
r∑

i=1

|λ(i)| = n. For example, the following is

a 5-tuple: (
, , ∅, ,

)
~λ = ((3, 2, 1), (5, 2), ∅, (2, 1), (4)) and |~λ| = 20.

If ~ξ = (ξ(1), . . . , ξ(r)) and ~ν = (ν(1), . . . , ν(r)), then we say ~ξ ⊆ ~ν if ξ(i) ⊆ ν(i) for all

i = 1, . . . , r. If ~ξ ⊆ ~ν, then we let ~ν/~ξ = (ν(1)/ξ(1), . . . , ν(r)/ξ(r)).
For a positive integer k define the power symmetric function in the variables x1, x2, . . .

to be

pk(x1, x2, . . .) = xk
1 + xk

2 + · · · ,

and for a partition λ

pλ = pλ1pλ2 · · · p`(λ).

For a partition λ ` n, a semi-standard Young tableau T of shape λ is a filling of the
boxes of the Young diagram of λ with positive integers in such a way that the numbers
in each column increase strictly when read from top to bottom and the entries in each
row weakly increase when read from left to right. The type of a semi-standard Young
tableau is the sequence: type(T ) = (t1, t2, . . .) where ti is the number of entries in T
that are equal to i. Then we define the weight of a semi-standard Young tableau w(T )
to be the monomial: w(T ) = xt1

1 xt2
2 · · · .

Using the above notation one can define the Schur function combinatorially as follows:

sλ(x1, x2, . . .) =
∑

T

w(T ),

where the sum is over all semi-standard Young tableaux, T , of shape λ. It is well-known,
see [14], Ch. I, (7.8), that for any partition µ ` n

pµ =
∑
λ`n

χλ
µsλ,
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where χλ
µ is the irreducible character of the symmetric group Sn evaluated at the conju-

gacy class indexed by µ.

1.1. λ-Ring Notation. Let A be a set of formal commuting variables and A∗ the set of
words in A. The empty word will be identified with 1. Let c ∈ C, γ = (γ1, . . . , γ`) ` n,
x = a1a2 . . . ai be any word in A∗, and X1, X2, . . . be any sequence of formal sums of the
words in A∗ with complex coefficients. Define λ-ring notation on the power symmetric
functions by

pr[0] = 0, pr[1] = 1.
pr[x] = xr = ar

1 · · · ar
i , pr[cX1] = c pr[X1].

pr[
∑
i

Xi] =
∑
i

pr[Xi], pγ[X] = pγ1 [X] · · · pγ`
[X].

where r is a nonnegative integer. These definitions imply that pr[X1X2] = pr[X1]pr[X2]
and therefore pγ[X1]pγ[X2]. And for any complex number c and γ ` n, pγ[cX] =
c`(γ)pγ[X]. When X = x1 + x2 + · · · then

pk[X] =
∑
i≥1

xk
i

is the usual power symmetric function. And for any partition λ, pλ[X] = pλ(x1, x2, . . .).
Recall that the power symmetric functions form a basis for the ring of symmetric func-
tions. In this notation the Schur functions can be described by

sλ[X] =
∑
µ`n

χλ
µ

zµ

pµ[X],

where χλ
µ is the irreducible character of Sn indexed by λ evaluated at the conjugacy class

indexed by µ. And zµ := 1m12m2 · · ·nmnm1!m2! · · ·mn!, where mi is the number of parts
in µ of size i.

Remark: The definition given in this section for λ-ring notation, see [20] for details,
has been extended to allow for factoring out complex numbers from the function pr.
This notation allows us to derive the formulas in Section 1.3.

1.2. Complex Reflection Groups. Let (Z/rZ) be the cyclic group isomorphic to 〈ε〉,
where ε = e2πi/r. Then Gn,r = (Z/rZ) o Sn is the wreath product of (Z/rZ) with the
symmetric group, Sn, of degree n. Then Gn,r is a unitary reflection group and can be
identified with the group of all the permutation matrices of size n whose non-zero entries
are r-th roots of unity. If r = 1, then Gn,r is isomorphic to Sn and if r = 2, then Gn,r

is isomorphic to the the Weyl group of type Bn (the hyperoctahedral group). The order
of Gn,r is rnn!. Gn,r has the following well-known presentation:

Proposition 1.1. The group Gn,r is generated by t, s1, s2, . . . , sn−1 that satisfy the fol-
lowing relations:

(1) tr = 1;
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(2) s2
i = 1 for 1 ≤ i ≤ n− 1;

(3) ts1ts1 = s1ts1t;
(4) sisj = sjsi if |i− j| > 1;
(5) sisi+1si = si+1sisi+1, if 1 ≤ i ≤ n− 2.

Any element g ∈ Gn,r can be uniquely represented as the product of a permutation
matrix w of size n and a diagonal matrix diag(εa1 , εa2 , . . . , εan):

g = w diag(εa1 , εa2 , . . . , εan).

The elements in Gn,r can also be represented by braid-like diagrams such that the
strands are labelled with elements in Z/rZ, if the label is one we omit it. For example,
the generators in Proposition 1.1 have the following labelled diagrams:

t =
rrε

rr · · · rr rr si =
rr · · · rr rr��

i rr@
@

i + 1 rr · · · rr
where the ε is a label on the the first strand of t.

The product στ ∈ Gn,r can be obtained by placing τ above σ, connecting the strands
and multiplying corresponding labels on the strands.

The irreducible representations of Gn,r are indexed by r-tuples of Young diagrams ~γ =
(γ(1), γ(2), . . . , γ(r)) of total size n. The irreducible representations can be constructed as
follows, see [21] for details. Let ρλ denote the irreducible representation of Sn indexed
by λ ` n. And let φi denote the irreducible representation of Z/rZ defined by φi(ε) = εi.
Suppose that k1, k2, . . . , kr ≥ 0 are integers such that n = k1 + k2 + . . . + kr and let
γ(i) ` ki. Then the irreducible representation of Gn,r corresponding to ~γ is obtained by

inducing the irreducible representation ργ(1)
φ0 × ργ(2)

φ1 × · · · × ργ(r)
φr−1 of the Young

type subgroup Gk1,r ×Gk2,r × · · ·×Gkr,r. Here ργ(i)
φi−1 is the irreducible representation

of Gki,r obtained as follows: Let g = w diag(εu1 , εu2 , . . . , εuk) ∈ Gk,r where w ∈ Ski
.

Then the representing matrix ργ(i)
φi−1(g) is given by

ργ(i)

φi(g) = φi(ε

kP
j=1

uj

)ργ(i)

(w).

Let f~γ denote the degree of the irreducible representation parametrized by ~γ. Then

f~γ =

(
n

|γ(1)|, . . . , |γ(r)|

)
fγ(1)

fγ(2) · · · fγ(r)

,

where fγ(i)
is the degree of the irreducible representation of Sn indexed by γ(i). Combi-

natorially, this is the number of standard Young tableaux of shape γ(i).
We have the following inclusion of groups, G0,r ⊂ G1,r ⊂ G2,r ⊂ G3,r ⊂ · · · . Recall

that the Bratteli diagram is a graph that encodes the inclusion of two algebras A ⊂ B.
The vertices of the graph are labelled by an indexing set of the simple summands of
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A and B. The number of edges joining a vertex v for A to a vertex w for B is the
number of times that the representation indexed by v occurs in the restriction to A of
the representation index by w. The following is the Bratteli diagram for the inclusion
G0,r ⊂ G1,r ⊂ G2,r.

,( )

,( ) ( , )

( , ) ( , )( , ) ( , ) ( , )

1.3. Frobenius Characteristic Map. For details on the content of this section and
the proofs and derivations of the formulas see [14] Ch. I, Appendix B, or [20]. Let
R(Gn,r) denote the center of the group algebra of Gn,r, that is, R(Gn,r) is the set of
complex valued functions on Gn,r that are constant on conjugacy classes. Denote by 1~γ

the function in R(Gn,r) such that if c~γ denotes the conjugacy class indexed by ~γ, then

1~γ(g) =

{
1 if g ∈ c~γ

0 otherwise.

Hence, {1~γ |~γ ` n} is a basis for R(Gn,r). Recall that the inner product for f, g ∈
R(Gn,r) is defined as follows:

〈f, g〉Gn,r :=
1

rnn!

∑
σ∈Gn,r

f(σ)g(σ).

Under this inner product we have

〈1~γ, 1~ν〉Gn,r = δ~γ~ν

r∏
i+1

1

zγ(i)
(1/r)`(γ(i)) .

For i = 1, . . . , r and variables xi
1, x

i
2, . . . . Let X i = xi

1 + xi
2 + · · · . Define

Λn(Gn,r) :=
⊕

n1+···+nr=n

r⊗
i=1

Λni
(X i).
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where Λni
(X) denotes the ring of symmetric functions of degree ni in the variables X.

For any basis {aλ |λ ` n} of λn(X i), we get that{
r∏

i=1

aγ(i) [X i] : ~γ ` n

}
is a basis for Λn(Gn,r).

The Frobenius characteristic map, ch : R(Gn,r) → Λn(Gn,r) is the isomophism defined
by

ch(1~γ) =
r∏

i=1

pγ(i) [X i]

zγ(i)

.

Set Pt(σ) :=
∏r

i=1 pγ(i) [X i]r`(γ(i)), where t(σ) denotes the conjugacy type of σ, in this case
t(σ) = ~γ. For any f ∈ R(Gn,r) we have

ch(f) :=
1

rnn!

∑
σ∈Gn,r

f(σ)Pt(σ).

Using λ-ring notation one can derive the following proposition, for the details of the
proof see [20], Corollary 13. The proposition has been proved in greater generality for
any wreath product of any finite group G with Sn in [14], Ch. I, Appendix B, (9.4).

Proposition 1.2. For ~γ ` n,

ch(χ~γ) =
r∏

i=1

sγ(i) [
r∑

j=1

φi
jX

j].

where φi
j is the character of Z/rZ indexed by j evaluated at εi.

1.4. A permutation representation of Gn,r. There exists an action of Gn,r on the
set {1, 2, . . . , n} × Z/rZ defined by

g · (i, εj) = (σ(i), εui+j), where g = σ diag(εu1 , . . . , εur).

It is straightforward to show that this action is well-defined. Using this action we define
a Gn,r-module. Let W ∼= C-Span{v(i,εj) : 1 ≤ i ≤ n, 0 ≤ j ≤ r − 1} where for any
g ∈ Gn,r,

(1) g · v(i,εj) = vg·(i,εj).

We remark that the representation W is isomorphic to the permutation representation of

Gn,r with respect to Gn−1,r. That is, 1 ↑Gn,r

Gn−1,r
, where 1 denotes the trivial representation

of Gn−1,r.

Remarks: (1) The dimension of W is nr.



8 ROSA C. ORELLANA

(2) If r = 1, then Gn,r is isomorphic to the symmetric group and in this case W is the
permutation representation of Sn. It is well-known that in this case W = V(n)⊕V(n−1,1),
where for any partition λ ` n, Vλ denotes the corresponding irreducible representation.

(3) Throughout this paper we will use the indexing of the irreducible representations of
Gn,r used by Ariki-Koike [1] Corollary 3.14. In particular, the representations indexed
by (λ, ∅, . . . , ∅) correspond to the representations of the symmetric group Sn in a natural
way. That is, the generator t acts trivially on all these modules.

In the next proposition we decompose the Gn,r-module W in terms of its irreducible
constituents. We will use the next proposition in Section 2 to decompose W⊗k.

Proposition 1.3. As a Gn,r-module the decomposition of W is

(2) W ∼= V((n),∅,...,∅) ⊕ V((n−1,1),∅,...,∅) ⊕
r⊕

k=2

V
((n−1),∅,...,∅, (1)︸︷︷︸

k

,∅,...,∅).

Proof. We will construct r subspaces and show that under the action described in Equa-
tion (1) they correspond to the representations in the right hand side of (2).

For 0 ≤ i ≤ r − 1 define the subspace W i as the linear span of the following vectors:

wi
j := εi·rv(j,ε0) + εi(r−1)v(j,ε1) + · · ·+ εi·2v(j,εr−2) + εi·1v(j,εr−1), for j = 1, . . . , n.

It is an easy exercise in linear algebra to check that as vector spaces W ∼= ⊕r−1
i=0W i.

Observe that
t.wi

1 = εi wi
1 and t.wi

j = wi
j, for j > 1,

and for any permutation σ ∈ Sn

σ.wi
j = wi

σ(j).

According to Corollary 3.14 in [1], if i > 0, then W i ∼= V
((n−1),∅,...,∅, (1)︸︷︷︸

i+1

,∅,...,∅). And if i =

0, then t acts trivially on W 0, hence W 0 is isomorphic to the permutation representation
of the symmetric group. It is well-known that W 0 ∼= V((n),∅,...,∅) ⊕ V((n−1,1),∅,...,∅). Thus,
the claim follows. �

2. Kronecker products of characters of Gn,r

Let f1, f2 ∈ R(Gn,r) define the Kronecker product f1⊗f2 by (f1⊗f2)(g) = f1(g)f2(g).
Hence f1 ⊗ f2 ∈ R(Gn,r). Given finite-dimensional representations of Gn,r, ρ1 : Gn,r →
GL(V1) and ρ2 : Gn,r → GL(V2), then define the tensor product representation ρ1 ⊗ ρ2 :
Gn,r → GL(V1 ⊗ V2) via the diagonal action:

g.(x⊗ y) = g.x⊗ g.y.

Then the character of ρ1 ⊗ ρ2 is known as the Kronecker product of the characters χρ1

and χρ2 , i.e. the pointwise product χρ1 ⊗ χρ2(w) = χρ1
(w)⊗ χρ2

(w), for w ∈ Gn,r.
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For ~γ ` n we will set s~γ :=
r∏

i=1

sγ(i) [
r∑

j=1

ε(i−1)jXj]. In this notation we have that

ch(χ~γ) = s~γ.

With this notation we have that sγ(i) [
r∑

j=1

ε(i−1)jXj] = s(∅,...,∅,γ(i),∅,...,∅). Hence,

s~γ = s(γ(1),∅,...,∅)s(∅,γ(2),∅,...∅) · · · s(∅,...,∅,γ(r)).

One can easily see that for ~γ ` n and ~δ ` m we have

s~γs~δ =
∑

~ν`n+m

r∏
i=1

cν(i)

γ(i),δ(i)s(∅,...,∅,ν(i),∅,...,∅),

where cν(i)

γ(i),δ(i) are the Littlewood-Richardson coefficients. For simplicity, we let χ~γ

denote the character of the irreducible representation of Gn,r indexed by ~γ and χ~γ×~δ

denote the corresponding irreducible character of Gn,r × Gm,r. Using the Frobenius

characteristic map we have that ch(χ
~γ×~δ↑

Gn+m,r
Gn,r×Gm,r ) = s~γs~δ. Then in terms of the inner

product we have

〈χ~ν , χ
~γ×~δ↑

Gn+m,r
Gn,r×Gm,r 〉 =

r∏
i=1

cν(i)

γ(i),δ(i) .

We set C~γ

~γ,~δ
:=

∏r
i=1 cν(i)

γ(i),δ(i) to simplify the expressions. By Frobenius reciprocity we

also have that

(3) χ~ν ↓Gn+m,r

Gn,r×Gm,r
=

∑
~γ`n

~δ`m

C~ν
~γ,~δ

χ~γχ
~δ.

We can now define the Kronecker product of Schur functions by

s~γ ⊗ s~δ := ch(χ~γ ⊗ χ
~δ).

The trivial representation of Gn,r is indexed by χ((n),∅,...,∅). Hence χ~ν⊗χ((n),∅,...,∅) = χ~ν .
The proof of the following theorem is in [20], it is a combinatorial proof that uses the
notion of ?-rim hook tableaux.

Theorem 2.1 ([20], Th. 24). Let ν = (ν(1), ν(2), . . . , ν(r)), then for k ≥ 2

χ~ν ⊗ χ(∅,...,∅,(n)k,∅,...,∅) = χ(ν(r−i+2),...,ν(r),ν(1),...,ν(r−i+1))

where (∅, . . . , ∅, (n)k, ∅, . . . , ∅) denotes that the partition (n) occurs in the k-th coordinate.

Garsia-Remmel [5] (6.15) proved that

sλsµ ⊗ sν =
∑
α`n
α⊆ν

(sλ ⊗ sα)(sµ ⊗ sν/α).
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The following theorem generalizes this result to Schur functions corresponding to the
characters of complex reflection groups. We will use the formula in the theorem to
decompose more general tensor products that we will need for the partition algebras.

Theorem 2.2. Let ~γ ` n, ~δ ` m. Then

s~γs~δ ⊗ s~ν =
∑
~µ`n

~µ⊆~ν

(s~γ ⊗ s~µ)(s~δ ⊗ s~ν/~µ)

Proof. Using the Frobenius characteristic map from Section 1.3 we have

s~γs~δ ⊗ sν = ch(χ
~γ×~δ↑

Gn+m,r
Gn,r×Gm,r ⊗ χ~ν)

=
1

|Gn+m,r|
∑

φ∈Gn+m,r

χ
~γ×~δ↑

Gn+m,r
Gn,r×Gm,r (φ)⊗ χ~ν(φ)Pt(φ)

Now we apply the definition of induced representation and simplify

s~γs~δ ⊗ sν =
1

|Gn,r||Gm,r|
∑

σ∈Gn,r

τ∈Gm,r

χ~γ(σ)χ
~δ(τ)χ~ν(γ, τ)Pt(γ,τ)

=
1

|Gn,r||Gm,r|
∑

σ∈Gn,r

τ∈Gm,r

χ~γ(σ)χ
~δ(τ)

∑
~γ`n

~δ`m

C~ν
~ξ,~η

χ
~ξ(σ)χ~η(τ)Pt(σ)Pt(τ)

The last equality follows from the fact that χ~γ(σ, τ) is restricted to Gn,r × Gm,r and
equation (3). We now regroup the terms and we get that the right-handside of our last
equation can be rewritten as∑
~γ`n

~δ`m

C~ν
~ξ,~η

 ∑
γ∈Gn,r

χ~γ(σ)χ
~ξ(σ)Pt(σ)

|Gn,r|

  ∑
τ∈Gm,r

χ
~δ(τ)χ~η(τ)Pt(τ)

|Gm,r|

 =
∑
~ξ`n

~η`m

C~ν
~ξ,~η

(s~γ⊗s~ξ)(s~δ⊗s~η)

Since s~ν/~ξ =
∑
~η`m

C~ν
~ξ,~η

s~η then by substituting in the last expression we obtain the right-

handside in the last equation is equal to
∑
~ξ`n

~ξ⊆~ν

(s~γ ⊗ s~ξ)(s~δ ⊗ s~ν/~ξ). �

Theorem 2.3. For i = 2, . . . , r, let ((n − 1), ∅, . . . , ∅, (1)i, ∅, . . . , ∅) denote the r-tuple
with partition (1) in the ith coordinate and (n − 1) in the first coordinate. Then for
~ν ` n,

s((n−1),∅,...,∅,(1)i,∅,...,∅) ⊗ s~ν =
∑

~µ

s~µ

where ~µ runs over all ~µ ` n that are obtained by removing a box from ~ν, then adding
a box in such a way that if the box removed was in the k-th position we add to the
i + k − 1-th modulo r coordinate.
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Proof. By Theorem 2.2

(4) s((n−1),∅,...,∅)s(∅,...,∅,(1)i,∅,...,∅) ⊗ s~ν =
∑

~ξ`n−1

~ξ⊆~ν

(s((n−1),∅,...,∅) ⊗ s~ξ)(s(∅,...,∅,(1)i,∅,...,∅) ⊗ s~ν/~ξ).

Notice that s((n−1),∅,...,∅) ⊗ s~ξ = s~ξ and s~ν/~ξ = s(∅,...,∅,(1)k,∅,...,∅) for some k = 1, . . . , r.

Hence, s(∅,...,∅,(1)i,∅,...,∅)⊗s~ν/~ξ = s(∅,...,∅,(1)i,∅,...,∅)⊗s(∅,...,∅,(1)k,∅,...,∅). By Theorem 2.1 we have

s(∅,...,∅,(1)i,∅,...,∅) ⊗ s(∅,...,∅,(1)k,∅,...,∅) = s(∅,...,∅,(1)j ,∅,...,∅) where 1 ≤ j ≤ r − 1 and k − 1 + i ≡
j(mod r). This implies that the right hand side of Equation 4 is equal to∑

~ξ`n−1

~ξ⊆~ν

s~ξs(∅,...,∅,(1)j ,∅,...,∅).

This last expression is equivalent to our claim. �

Example. Let r = 3 and ~γ =
(

, ,
)
. And let U = V((5),(1),∅). Then,

U ⊗ V~γ = V„
, ,

« ⊕ V„
, ,

« ⊕ V( , , ) ⊕ V„
, ,

« ⊕
V„

, ∅,
« ⊕ V„

, ∅,
« ⊕ V„

, ,

« ⊕ V„
, ,

« ⊕
V0@ , ,

1A.

Proposition 2.4. Let ~γ ` n, then

(s((n),∅,...,∅) + s((n−1,1),∅,...,∅))⊗ s~γ =
∑

~µ

s~µ

where the sum runs over all ~µ that are obtained from ~γ by first removing a box from the
k- coordinate of ~γ and then adding a box to the Young diagram in the k-th coordinate,
where 1 ≤ k ≤ r.

Proof. The proof of this proposition is similar to the proof of 2.3. Notice that

s((n−1),∅,...,∅)s((1),∅,...,∅) = s((n),∅,...∅) + s((n−1,1),∅,...,∅).

Now by Theorem 2.2

s((n−1),∅,...,∅)s(∅,...,∅,(1)i,∅,...,∅) ⊗ s~ν =
∑

~ξ`n−1

~ξ⊆~ν

(s((n−1),∅,...,∅) ⊗ s~ξ)(s((1),∅,...,∅) ⊗ s~ν/~ξ).
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Suppose that ~ν/~ξ = (∅, . . . , ∅, (1)k, ∅, . . . , ∅) for some 1 ≤ k ≤ r, then s((1),∅,...,∅) ⊗ s~ν/~ξ =

s(∅,...,∅,(1)k,∅,...,∅). Hence the right-handside of the previous equation can be simplified to∑
~ξ`n−1

~ξ⊆~ν

s~ξs(∅,...,∅,(1)k,∅,...,∅).

Hence, the last expression can be interpreted as first removing and then adding a box
from the k-th coordinate as claimed in the statement of the theorem. �

Corollary 2.5. Let W be the permutation module defined in (1) and denote by V~γ the
irreducible Gn,r-module indexed by ~γ. Then

W ⊗ V~γ
∼=

⊕
~δ

V~δ,

where the sum runs over all r-tuples ~δ ` n that are obtained by removing a box from any

possible component of ~γ to obtained an r-tuple ~ξ ` n− 1 and then adding a box to ~ξ in

any possible component to obtain ~δ ` n.

Proof. This is a direct consequence of 2.3 and Proposition 2.4. �

Example. Let r = 2 and ~γ =
(

,
)
. Then,

W ⊗ V~γ = V( , ) ⊕ V„
,

« ⊕ V„
,

« ⊕ V„
,

« ⊕ V„
,

« ⊕
V„

,

« ⊕ V0@ ,

1A ⊕ 3V„
,

« ⊕ V0@ ,

1A ⊕ V( , ) ⊕

V„
,

«.

Note that this product is not multiplicity free.

3. Partition algebras of the symmetric group

In this section we recall some of the known results about the partition algebra that will
be used when we show similar results for the partition algebras related to the complex
reflection groups. The results in this section can be found in [9, 15, 16, 17, 18], the
reader interested in more details should consult these papers. The exposition given here
follows that of [9].

Let k be a positive integer and define

Ak := {set partitions of {1, 2, . . . , k, 1′, . . . , k′}}.
The set partitions d ∈ Ak are represented by a graph with k vertices in the top row la-
belled 1, 2, . . . , k from left to right, and k vertices on the bottom row, labelled 1′, 2′, . . . , k′
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from left to right. In some cases we will identify i′ with i + k to simplify some of the
exposition. In this diagram a vertex i and a vertex j are connected by a path if i and
j are in the same block of the set partition. The graph representing a set partition is
not unique. We say that two graphs are equivalent if they give rise to the same set
partition. The term partition diagram will be used to mean the equivalence class of the
given graph. For example,

rr rr rr@
@ rr��rr@

@ rr rr@
@
�

� ≡ rr rr rr @
@ rr rr rr��

��

�
�
@

@

The composition d2 ◦ d1 of partition diagrams, d1, d2 ∈ Ak is the set partition obtained
by placing d1 above d2 and identifying the bottom vertices of d1 with the top vertices of
d2, removing any connected components that contain only vertices in the middle row.

Let x be an indeterminate. The partition algebra Pk(x) is defined as the associative
algebra over C(x) with basis Ak,

Pk(n) := C(x)-span {d ∈ Ak},
with multiplication defined by d2d1 = nγ(d2 ◦ d1), where γ is the number of blocks
removed from the middle row when constructing the composition d1 ◦ d2. For example,
if

d1 = rr rr rr�
� rr rr and d2 = rr rr rr��rr��

�� rr then

d2d1 =
rr rr rr�

� rr rr
rr rr rr��rr���

� rr
= x2 rr rr rr rr rr���

�

�
�

Halverson and Ram [9] have proved a presentation for Pk(n). Let k be a positive integer.
For 1 ≤ i ≤ k − 1 and 1 ≤ j ≤ k, define

pi+ 1
2

= rr · · · rr rr
i

rr rr · · · rr pj = rr · · · rr rr
j

rr · · · rr si = rr · · ·
i

rr rr��rr\
\ rr · · · rr

Proposition 3.1 ([9], Theorem 1.11). The set {pi+ 1
2
, pj, si : 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n}

together with the relations given below yield a presentation for Pk(x). Let ai = 1 if
i ∈ 1

2
Z>0 and zero otherwise.

p2
i = xaipi, pipi± 1

2
pi = pi and pipj = pjpi, for |i− j| > 1/2.
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s2
i = 1, sisi+1si = si+1sisi+1, and sisj = sjsi, for |i− j| > 1.

and

sipipi+1 = pipi+1si = pipi+1, sipi+ 1
2

= pi+ 1
2
si = pi+ 1

2
, sipisi = pi+1,

sisi+1pi+ 1
2
si+1si = pi+ 3

2
, and sipj = pjsi, for j 6= i− 1

2
, i, i +

1

2
, i + 1, i +

3

2
.

Theorem 3.2 (Martin and Saleur [19]). For each integer n ≥ 0, Pk(x) is semisimple
over C(x), and Pk(ξ) is semisimple over C whenever ξ is not an integer in {0, 1, . . . , 2k−
1}.

3.1. Schur-Weyl Duality. Let V = Cn with standard basis v1, v2, . . . , vn and let the
permutation group Sn act on V as follows,

(5) σ(vi) = vσ(i), for σ ∈ Sn and 1 ≤ i ≤ n.

Hence, V is the permutation module of Sn. For each positive integer k, V ⊗k is an
Sn-module where Sn acts on V ⊗k via the diagonal action,

σ(vi1 ⊗ vi2 ⊗ · · · ⊗ vik) = vσ(i1) ⊗ · · · ⊗ vσ(ik).

For d ∈ Ak and values i1, . . . , ik, ik+1, . . . , i2k ∈ {1, . . . , n} define

(6) (d)i1,...,ik
ik+1,...,i2k

=

{
1 if ir = is when r and s are in the same block of d,
0 otherwise.

Define an action of a partition diagram d ∈ Pk(n) on V ⊗k by defining it on the standard
basis by

(vi1 ⊗ vi2 ⊗ · · · ⊗ vik) · d =
∑

1≤ik+1,...,i2k≤n

(d)i1,...,ik
ik+1,...,i2k

vi1 ⊗ · · · ⊗ vi2k
.

Theorem 3.3 (Jones [10]). Sn and Pk(n) generate full centralizers of each other in
End(V ⊗k).

(i) Pk(n) generates EndSn(V ⊗k), and when n ≥ 2k, Pk(n) ∼= EndSn(V ⊗k).
(ii) Sn generates EndPk(n)(V

⊗k).

3.2. The irreducible representations of Pk(n). The irreducible representations of
the symmetric group Sr are indexed by partitions λ ` n. We denote these representa-
tions by Sλ. It is well known that the permutation module V of Sn, see Equation (5),
decomposes as follows:

V ∼= S(n) ⊕ S(n−1,1).

The rule for decomposing the Kronecker product of the module for V with any other
Sn-module is well known [14] Ex. 23(d). Let λ ` n, then we have

V ⊗ Sλ ∼=
⊕

µ

Sµ,
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where the sum is over all µ ` n that can be obtained by removing one box from λ to
get ν ` n− 1 and then adding a box back to ν. Using this rule we can now recursively
construct the Bratteli diagram for the tower of partition algebras:

P0(n) ⊂ P1(n) ⊂ P2(n) ⊂ P3(n) ⊂ · · · .

Let λ = (λ1, λ2, . . . , λ`(λ)) be a partition of n and λ∗ = (λ2, λ3, . . . , λ`(λ)). In the Bratteli
diagram below we label the vertices with partitions λ∗ with the understanding that
they can be completed to a partition of n by adding the first row, λ1 = n − |λ∗|. In
the following diagram we give the first four levels of the Bratteli diagram for P0(n) ⊂
P1(n) ⊂ P2(n) ⊂ P3(n):

The results in the following theorem have appeared in several papers, for example [17]
and [18], the formulation presented here is the one given in [9].

Theorem 3.4. Let n, k ∈ Z≥0. Let Sλ denote the irreducible Sn-module indexed by λ.
Then we have the following

(a) The irreducible representations of Pk(n) are indexed by the same set the irre-
ducible Sn-modules in V ⊗n. In particular this set is given by

Λ(n, k) = {λ ` n | |λ∗| ≤ n},

where λ∗ = (λ2, . . . , λ`(λ)).
(b) The dimension of an irreducible representation Mλ of Pk(n) is equal to the mul-

tiplicity of Sλ in V ⊗k. This number is equal to the number of paths from the top
of the Bratteli diagram to λ.
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(c) The decomposition of V ⊗k as a bimodule for Sn × Pk(n) is

V ⊗k ∼=
⊕

λ∈Λ(n,k)

Sλ ⊗Mλ,

where Mλ denotes the irreducible representations of Pk(n).

Proof. The proof of this theorem is a direct consequence of the double centralizer theory,
in particular the Centralizer Theorem [7] Theorem 3.5, or [3] Sect. 3D. �

4. Colored partition algebra

The colored partition algebra was introduced by Bloss [2] as a generalization of the
partition algebra. Let Cr denote the cyclic group generated by ε = e2πi/r. A colored
partition diagram is a partition graph so that the edges are oriented and each edge is
labelled by the elements of Cr, and in addition these graphs are subject to the following
equivalence relation:

• The underlying partition diagrams are equivalent.
• ”Vector Addition Property”: The following hold for edge colored diagrams:r r-εa

is equivalent to rr� ε−a

r
r

r-
6

εa

εb

is equivalent to

r
r
r -
6

�
�

��
εa

εb

εa+b

Here the ”underlying” diagram refers to the unlabelled partition diagram with equiva-
lence relation given by path connectedness, see Section 3. For example, the following
are equivalent colored partition diagrams:r

r?
r
r�

�
��

r
r

qr
r�

���
��* r

r?

r
r� ?

εa εb

εc

εd εe

εf

εg ∼
r
r

-r
r�

�
�	

r
r
)

- -

r
r�

�
�	

r
r 6

r
r

εa+b

ε−b

ε−c

εe+f

εe+f+d ε−f

ε−g

Denote by B(k, r) the set of colored partition diagrams with 2k vertices and edges
labelled by elements of Cr. Then the colored partition algebra is the associative algebra
over C(x) with identity defined as

Pk(x, r) := C(x)span-{d : d ∈ B(k, r)}.
The multiplication of colored partition diagrams is as follows: Let d1, d2 ∈ B(k, r), to

form the product d2d1 of d2 and d1

• Multiply the underlying partition diagrams d1 and d2, this yields the underlying
partition diagram for the colored partition diagram d2d1.

• If when we place d1 on top of d2 and a bottom edge of d1 coincides with a top
edge of d2 and both edges have the same direction but different labels, then the
product d2d1 = 0.
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• To label the underlying diagram we use the ”vector addition property” making
sure this property holds for all edges of the underlying diagram.

• Let γ be the number of connected components containing only ”middle vertices”,
then we multiply d2d1 by (rx)γ.

For example, let

d1 =

r
r -

r
r@

@
@I

r
r

- r
r q

PPPPPPPPPq

r
r

- r
r6

εa

εb

εc

εd

εe

εf εg d2 =

r
r?

r
r�

�
�	

r
r

HHH
HHHj

r
r q

1 r
r 6

r
rεh εi εj εk

εl εm

Hence, we have

d2d1 = (δa,h−iδf,−kxr)

r
r?

r
r q q

r
r

- r
r

PPPPPPPPPq

r
r

- r
r6εh−b−a

εj−i εl

εc εe

εd−m εg+m

By counting colored partition diagrams we obtain the dimension of Pk(x, r), see Section
6 in [2] for details.

Proposition 4.1. The dimension of Pk(x, r) is given by

dim(Pk(x, r)) =
2k∑
i=1

r2k−iS(2k, i),

where S(2k, i) is the Stirling number of the second kind, i.e. the number of set partitions
of a set with 2k elements into i blocks.

Consider the following elements in Pk(x, r):

t =

r
r6

r
r6· · ·

r
r6ε 1 1 s̃i =

r
r61 · · ·

r
r61

r
r��

��
1

r
r@

@
@I

1

r
r61 · · ·

i r
r61

p̃j =

r
r6· · ·

r
r6

r
r
j r

r6· · ·
r
r61 1 1 1 p̃i+ 1

2
=

r
r61 · · ·

r
r61

r
r61

-

-

i r
r61

r
r61 · · ·

1

1

r
r61

Note that s̃i, p̃j and p̃i+ 1
2

correspond to the generators of the Partition algebra in a

natural way.

Proposition 4.2. The elements {s̃i, t, p̃j, p̃i+ 1
2
} generate Pk(x, r) and the elements s̃i, p̃j, p̃i+ 1

2

satisfy the relations of Proposition 3.1 and in addition we have:

tr = 1, ts̃1ts̃1 = s̃1ts̃1t, ts̃i = s̃it for i > 1;

p̃1t = tp̃1 = p̃1, p̃jt = tp̃j, for j > 1.
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4.1. Schur-Weyl duality. Using the permutation representation of Gn,r on W , see
equation (1), we can define an action of Gn,r on W⊗k for any non-negative integer k via
the diagonal action:

g.(v(i1,εj1 ) ⊗ · · · ⊗ v(ik,εjk )) = vg.(i1,εj1 ) ⊗ · · · ⊗ vg.(ik,εjk ).

There is an action of Pk(n, r) on W⊗k that commutes with the diagonal action of Gn,r.
We define the action of a colored partition diagram as follows: let d ∈ Pk(n, r), we first
label the top vertices 1, . . . , k from left to right and the bottom vertices k + 1, . . . , 2k
from left to right also. Define a function Φ : Pk(n, r) → End(W⊗k) as follows:

Φ(d) = (Φ(d)
(i1,εjk ),...,(ik,εjk )

(ik+1,εjk+1 ),...,(i2k,εj2k )
)

= ((d)i1,...,ik
ik+1,...,i2k

)δjl1
+a1,jl2

· · · δjlm+am,jlm

where ((d)i1,...,ik
ik+1,...,i2k

) is the matrix defined in Section 3, equation (6) for the partition
algebra. We also have that in the colored diagram d, vertex l1 and vertex l2 are connected
and the arrow points from l1 to l2, and the label of this edge is g1, similarly we can do
this for every pair of vertices that are connected, in our formula we assume that there
are m edges. Therefore, we can define an action of Pk(n, r) on W⊗k as follows:

d.(v(i1,εj1 ) ⊗ · · · ⊗ v(ik,εjk )) = Φ(d)(v(i1,εj1 ) ⊗ · · · ⊗ v(ik,εjk )).

For the proof of the following Theorem see [2] Theorem 6.6.

Theorem 4.3. Gn,r and Pk(n, r) generate full centralizers of each other in End(W⊗k).
That is, for n ≥ 2k, we have

(i) Pk(n, r) ∼= EndGn,r(W
⊗k).

(ii) CGn,r generates EndPk(n,r)(W
⊗k).

4.2. Irreducible representations of Pk(n, r). The colored partition algebra Pk−1(n, r)
is embedded in Pk(n, r) by adding a horizontal edge connecting the k-th and the k′-th
vertex and labelling this edge by 1. We have the following tower of algebras

P0(n, r) ⊂ P1(n, r) ⊂ P2(n, r) ⊂ · · · .

In this section we will describe the branching rules for this tower of partition algebras.
We will describe an indexing set for the irreducible representations and describe the
Bratteli diagram which encodes the induction and restriction rules.

Recall from Section 1.2 that the irreducible representations of Gn,r are indexed by r-
tuples of partitions of total size n. By Theorem 4.3 we have that Pk(n, r) is isomorphic to
the centralizer algebra over the tensor product W⊗k, where W is the permutation module
defined in Section 1.4. Hence, in order to decompose Pk(n, r) we need to decompose
W⊗k. From Corollary 2.5 we have that the rule for decomposing this tensor product is
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done in a recursive way using the Kronecker product rule:

W ⊗ V~γ
∼=

⊕
~δ

V~δ,

where ~δ is obtained by removing a box from ~γ and then adding a box to the resulting
r-tuple. Let ~γ∗ be the r-tuple of partitions so that the first part of the first component
of γ(1) has been removed.

Proposition 4.4. The irreducible representations of Pk(n, r) are indexed by the same
set as the irreducible Gn,r-modules in W⊗k. In particular, this set for n ≥ 2k is given by

Γ(k, n, r) := {~γ ` n : |~γ∗| ≤ k}

where ~γ∗ = ((γ(1))∗, γ(2), . . . , γ(r)).

Proof. By the double centralizer theorem, all we have to show is that when we decompose
the Gn,r-module W⊗k in terms of irreducibles we get every partition in Γ(k, n, r). This
can be easily shown by induction on k. Notice that this is trivially true for k = 0, and
for k = 1 it follows from Proposition 1.3. Now if we assume that Γ(k − 1, n, r) is an
indexing set for Pk−1(n, r), then we can see that according to the rule in Corollary 2.5
we can remove a box and then add it to the same exact position, hence every diagram
in Γ(k − 1, n, r) is contained in Γ(k, n, r), to obtain those diagrams such that | ~γ∗| = k
we just remove a box from the the first row of γ(1) and add it in every possible way to

the diagrams ~δ ∈ Γ(k − 1, n, r) such that |~δ∗| = k − 1. It is not possible to get a ~ξ such

that |~ξ∗| > k because we have added at most k boxes. �

To construct the Bratteli diagram for the tower of colored partition algebras we label
the vertices in the k-th level using the r-tuples in Γ(k, n, r). There are edges from an

r-tuple in level k− 1, ~δ, to an r-tuple in level k, ~γ, if it is possible to obtain ~γ from ~δ by

first removing one box from ~δ and then adding one box to the resulting diagram. The

number of edges from ~δ to ~γ is the multiplicity of V~γ in V~δ ⊗W .

Below we give an example of the first three levels of the Bratteli diagram for Pk(n, r)
where r = 2. In the diagram we have removed the first row from every ~γ ∈ Γ(k, n, r),
that is we have indexed the vertices by ~γ∗ instead of ~γ. Notice that there are two edges
from ((n − 1), (1)) to itself and also two edges from ((n − 1, 1), ∅). In general, every
r-tuple will occur such that 0 ≤ |~γ| ≤ k in level k by Proposition 4.4.
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,( )

,( )

,( ) ,( ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )

,( ) ( , )

Bratteli diagram for P0(n, 2) ⊂ P1(n, 2) ⊂ P2(n, 2).

Recall that for the partition algebra every partition λ such that 0 ≤ |λ| ≤ k occurs
in the decomposition of Pk(n), thus in this way Pk(n, r) can be seen as the natural
generalization of Pk(n) to the complex reflection groups. To obtain the dimension for
the irreducible representation, N~γ of Pk(n, r) we jut count the number of paths from
(∅, . . . , ∅) to ~γ in the k-th level of the Bratteli diagram. We summarize these results on
the following theorem that is a direct consequence of the Centralizer Theorem, Theorem
4.3 and Corollary 2.5.

Theorem 4.5. Let n, k, r ∈ Z≥0. Let V~γ denote the irreducible Gn,r-module indexed by

~γ and let N
~δ index the irreducible representation of Pk(n, r) indexed by ~δ. Then

(a) The dimension of the irreducible representation N~γ of Pk(n, r) is equal to the
multiplicity of V~γ in W⊗k. This number is equal to the number of paths from the
top of the Bratteli diagram to ~γ.

(b) The decomposition of W⊗k as a bimodule for Gn,r × Pk(n, r) is

W⊗k ∼=
⊕

~γ∈Γ(n,k,r)

V~γ ⊗N~γ.

5. A subalgebra of the Partition Algebra

In [26] Tanabe introduced a subalgebra of the partition algebra by considering the
following situation. Let U be the monomial representation of the complex reflection
group Gn,r. Then define the centralizer algebra

EndGn,r(U
⊗k).

The matrices corresponding to the representation U are the n×n permutation matrices
such that the non-zero entry in each row and column is an r-th root of unity. The
dimension of this representation is n and it is known to be isomorphic to V((n−1),(1),∅,...,∅).

If B is a block of a set partition d define

κ(B) = |{(# top vertices in B)− (# bottom vertices of B)}|,
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and let
Ak,r = {d ∈ Ak : for all blocks B of d, κ(B) ≡ 0 mod r}.

Then the algebra of Tanabe can be defined by

Tk(n, r) := C-span{d | d ∈ Ak,r}.
Tk(n, r) is a subalgebra of Pk(n). In fact,

Tk(n, 1) = Pk(n).

Furthermore, if we let r go to infinity, we have

Uk := Tk(n,∞) = {d ∈ Ak : κ(B) = 0 for all blocks B of d}.
The algebras Uk are the algebras studied by Kosuda [11, 12] and these algebras do not
depend on the parameter n.

Define the following elements in Pk(n):

fr := p 1
2
p 3

2
· · · p r−1

2
p1p2 · · · prp 1

2
p 3

2
· · · p r−1

2
.

Here, it is understood that if r > k, then fr := 0. This element can be represented as
follows when r ≤ k using partition diagrams.

fr = rr rr rr . . .

. . . rr rr rr . . .
r1

rr

Proposition 5.1 ([26],Lemma 3.1). Tk(n, r) is generated by s1, . . . , sk−1, p 3
2

and fr.

The generator fr satisfy the following relations:

f 2
r = nfr, p 3

2
= frp 3

2
, sifr = frsi, for i 6= r.

In addition if we let fi,r denote the partition diagram that corresponds to the set partition
{{i, . . . , i + r − 1}{i′, . . . , i′ + r − 1}}, then we have fr = f1,r and

s1s2 · · · srfi,rsr · · · s2s1 = fi+1,r.

Remark: The Temperley-Lieb algebra and the Brauer algebra are subalgebras only
for Tk(n, 2), when we set r = 2. In the case r = 2, the fi,2 are the well-known generators
of the Temperley-Lieb algebra.

Let S̃(2k, l) be the number of set partitions in Ak,r into l blocks. Notice that in

general, S̃(2k, l) is less than or equal to the Stirling number of the second kind. Hence,

dim(Tk(n, r)) =
2k∑
l=1

S̃(2k, l).

Remark: In the case that r = 2 we have that the dimension of EndGn,2(U
⊗k) is the

number of set partitions such that all the blocks have even cardinality, in this case the
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formula has the following simple recursive description. Let dk denote the dimension of
EndGn,2(U

⊗k), then

dk =
k∑

i=1

(
2k − 1

2i− 1

)
· dk−i.

Futhermore, the exponential generating function for this sequence is exp(cos(x) − 1).
This is sequence A005046 in the Encyclopedia of Integer Sequences [24].

There is a recursion formula for the dimensions of Uk. Let uk denote the dimension
of Uk. The formula can easily be derived by counting set partitions so that each block
contains the same number of ”top” vertices as ”bottom” vertices.

(7) uk :=
∑

1m1 ...nmk`k

(
k!

(1!)m1 · · · (n!)mk

)2
1

m1! · · ·mk!

where the sum runs over all partitions of k. Starting at k = 0, the first values are

1, 1, 3, 16, 131, 1496, 22482, . . .

This is sequence A023998 in [24]. These numbers and generalizations are studied in [25];
in particular, the following recursion is given in [25, equation (11)]:

uk+1 =
k∑

i=0

(
k

i

)(
k + 1

i

)
ui , u0 = 1 .

Although there is no known explicit formula for dim(Tk(n, r)), we do know that

lim
r→∞

dim(Tk(n, r)) = uk.

5.1. Schur-Weyl Duality for Tk(n, r). The algebra Tk(n, r) was constructed by Tan-
abe as a centralizer algebra of the complex reflection group Gn,r. Let U = Cn, and let
v1, . . . , vn be its standard basis vectors. There is a natural action of Gn,r on U :

t.vi =

{
εv1 if i = 1
vi otherwise,

where ε = e2πi/r. And

σ.vi = vσ(i) for σ ∈ Sn.

This representation is called the monomial representation of Gn,r. Using this represen-
tation we can define a diagonal action of Gn,r on U⊗k via the diagonal action.

g(vi1 ⊗ · · · ⊗ vi,) = g · vi1 ⊗ · · · ⊗ g · vik , for g ∈ Gn,r.

Remark: It is well-known that the monomial representation of Gn,r is irreducible and
furthermore, it is indexed by the r-tuple of partitions ((n− 1), (1), ∅, . . . , ∅).
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For any element X ∈ EndGn,r(U
⊗k) we denote by (Xb1,··· ,bk

a1,···ak
), 1 ≤ ai, bi ≤ n, its matrix

of coefficients with respect to the basis {vi1 ⊗ · · · ⊗ vik : 1 ≤ ij ≤ n} of U⊗k.

The following lemma is Lemma 3.2 in [26].

Lemma 5.2. X ∈ End(U⊗k) if and only if Xb1,...,bk
a1,...,ak

= X
σ(b1)),...,σ(bk)
σ(a1),...,σ(ak) for any permutation

σ and |{i : ai = j}| ≡ |{i : bi = j}| mod r for all j = 1, . . . , n and i = 1, . . . , k.

Proof. For X ∈ EndGn,r(U
⊗k) and σ ∈ Sn we have

σ−1Xσ(va1 ⊗ · · · ⊗ vak
) =

∑
b1,...,bk∈[n]

X
σ(b1),...,σ(bk)
σ(a1),...,σ(ak)vb1 ⊗ · · · vbk

.

We also have for the generator t:

t−1Xt(va1 ⊗ · · · ⊗ vak
) =

∑
b1,...,bk∈[n]

ε|{i : ai=j}|−|{i : bi=j}|Xb1,...,bk
a1,...ak

vb1 ⊗ · · · ⊗ vbk
.

Since ε|{i : ai=j}|−|{i : bi=j}| = 1 if and only if |{i : ai = j}| − |{i : bi = j}| ≡ 0 mod r
we have the second condtion of the lemma. The result follows in general since Gn,r is
generated by t and the permutations in Sn. �

Lemma 5.2 implies that X commutes with the action of Gn,r on U⊗k if and only if
the matrix entries are equal on Gn,r-orbits on the 2k cartesian product {1, . . . , n}×2k.
These orbits are in one-to-one correspondence with set partitions B = {B1, . . . , Bs} of
{1, . . . , 2k} such that |Bi∩{1, . . . , k}| ≡ |Bi∩{k+1, . . . , 2k}| mod r, for all i = 1, . . . , s.

Example: For r = 2, we have that Gn,2 is the hyperoctahedral group, in this case
the Gn,2-orbits are in one-to-one correspondence with the set of partitions such that all
blocks have even cardinality.

Notice that every set partition will have at most n blocks and each set partition gives
rise to an equivalence relation, i.e. two elements i, j ∈ {1, 2, . . . , 2k} are equivalent if
and only if they belong to the same block. This is equivalent to requiring that ai = aj

where we have identified bl = al+k for simplicity.
For each set partition B we define the matrix MB

(MB)a1,...,ak
ak+1,...,a2k

=

{
1 if ai = aj if and only if i and j are in the same block.
0 otherwise.

Notice that MB will be zero if the number of blocks in B is greater than n, thus as long
as 2k ≤ n we will always get all these matrices to be nonzero.

Another way to write the MB is in terms of the elementary matrices Ei1,...,ik
ik+1,...,i2k

, these

are the nk × nk matrices with a 1 in the (i1, . . . , ik), (ik+1, . . . , i2k) position and zeros
everywhere else. Then we have

MB =
∑

Ei1,...,ik
ik+1,...,i2k

,
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where the sum is over all 1 ≤ i1, . . . , i2k ≤ n with the condition that ia = ib if and only
if a, b are in the same block of B. Hence we have the following proposition.

Proposition 5.3. The set {MB 6= 0 : B ∈ Ak,r} form a basis for EndGn,r(U
⊗k).

The following is a reformulation of the results obtained in [26].

Theorem 5.4. Gn,r and Tk(n, r) generate full centralizers of each other in End(U⊗k).
In other words, for n ≥ 2k, we have the following

(i) Tk(n, r) ∼= EndGn,r(U
⊗k),

(ii) Gn,r generates EndTk(n,r)(U
⊗k).

A special case of 5.4 is when r is very large, in this case we obtain

Corollary 5.5. There is a right action of Uk on U⊗n determined by

(vi1 ⊗· · ·⊗vin) · bj = δ(ij, ij+1)vi1 ⊗· · ·⊗vin and (vi1 ⊗· · ·⊗vin) ·σ = viσ(1)
⊗· · ·⊗viσ(n)

for 1 ≤ i ≤ n − 1 and σ ∈ Sn. This action commutes with the left action of Gn,r on
U⊗n. Moreover, if m ≥ 2n and r > n then the resulting map

(8) Uk → EndGn,r(U
⊗k)

is an isomorphism of algebras.

5.2. The Irreducible representations of Tk(n, r). The monomial representation of
Gn,r denoted by U in Section 5.1 is known to be isomorphic to the irreducible represen-
tation V((n−1),(1),∅,...,∅). Then by Theorem 2.3 we have that

U ⊗ V~γ
∼=

⊕
~δ

V~δ,

where the sum is over all r-tuples of Young diagrams that are obtained from removing
a box from γ(i) and then adding it to γ(i+1), for any possible i = 1, . . . , r− 1. And if we
remove a box from γ(r), then we add it to γ(1).

Proposition 5.6. The irreducible representations of Tk(n, r) are indexed by the same
set as the irreducible Gn,r-modules in U⊗k. This set can be recursively described as
follows: Let Ω0(n, r) := {((n), ∅, . . . , ∅)} be the indexing set for T0(n, r) and for k ≥ 1
let Ωk(n, r) denote the index set for the irreducible representations of Tk(n, r). Then the
set Ωk+1(n, r) can be constructed from Ωk(n, r) as follows: ~γ ∈ Ωk+1(n, r) if there exists

a ~δ ∈ Ωk(n, r) such that ~γ is the result of removing a box from δ(i) and then adding a box
to δ(i+1) for i = 1, . . . r − 1, or removing a box from δ(r) and then adding a box to δ(1).

This proposition is a direct consequence of the double centralizer theorem, Theorem
5.4 and Theorem 2.3 for k = 2.

Example. Let r = 2, then Ωk(n, r) has an easy closed form

Ωk(n, 2) := {((n− j, α), β) : β ` k− 2i, α ` m, 0 ≤ m ≤ i, 0 ≤ i ≤ bj
2
c, j = k +m− 2i}.
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Remark: If n ≥ k, then it is always possible to remove a box from the first coordinate
and add it to the second coordinate, hence every diagram of the form (∅, λ, ∅, . . . , ∅) for
λ ` k is an element in Ωk(n, r). These representations are isomorphic to the irreducible
representations of the symmetric group.

Using this rule we can now recursively construct the Bratteli diagram for the tower
of algebras

T0(n, r) ⊂ T1(n, r) ⊂ T2(n, r) ⊂ T3(n, r) ⊂ · · · .

The vertices in the k-th level are indexed by Ωk(n, r) and there is an edge from ~δ in

the k-th level to ~γ in the k + 1-st level if it is possible to obtain ~γ from ~δ using rule
of removing a box from the i-th coordinate and adding a box to the i + 1-st, with the
understanding that if i = r, then we add the box to the first coordinate. In the examples
below we give the first few levels of the Bratteli diagrams for Tk(n, r) when r = 2 and
r = 3. Notice that we have labelled the vertices of the Bratteli diagram with ~γ∗ instead
of ~γ ∈ Ωk(n, r).

( , )

( , )

( , ) ( , )

( , )

( , )

( , ) ( , )

( , )

( , ) ( , )

Bratteli diagram for T0(n, 2) ⊂ T1(n, 2) ⊂ T2(n, 2) ⊂ T3(n, 2).
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( , , )

,( ),

( , ), ( , ), ),( ,

( , ), ( , ), ( , ), ( , ), ( , , ),( ),
Bratteli diagram for T0(n, 3) ⊂ T1(n, 3) ⊂ T2(n, 3) ⊂ T3(n, 3).

In complete analogy with the Partition algebra we obtain the following theorem as a
consequence of the Centralizer Theorem, Theorem 5.4 and Theorem 2.3.

Theorem 5.7. Let n, k, r ∈ Z. Let V~γ denote the irreducible Gn,r-module indexed by ~γ

and let M
~δ index the irreducible representation of Tk(n, r) indexed by ~δ. Then

(a) The dimension of the irreducible representation M~γ of Tk(n, r) is equal to the
multiplicity of V~γ in U⊗k. This number is equal to the number of paths from the
top of the Bratteli diagram to ~γ.

(b) The decomposition of U⊗k as a bimodule for Gn,r × Tk(n, r) is

U⊗k ∼=
⊕

~γ∈Ω(n,k,r)

V~γ ⊗M~γ.

Remark: Notice that the colored partition algebra Pk(n, r) contains a copy of the
group algebra of Gk,r, while Tk(n, r) does not, it only contains an isomorphic copy of
the symmetric group algebra CSk.
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