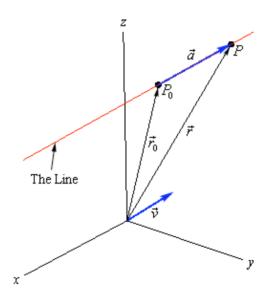
Lines and Planes in \mathbb{R}^3

Nov. 2, 2007

Lines in \mathbb{R}^3



Equations of a line in \mathbb{R}^3

Given a point $P(x_0, y_0, z_0)$ on the line and parallel vector $\mathbf{v} = \langle a, b, c \rangle$.

Vector Equation of the line: $\mathbf{r_0} = \langle x_0, y_0, z_0 \rangle$

$$\mathbf{r} = \mathbf{r_0} - t\mathbf{v}$$

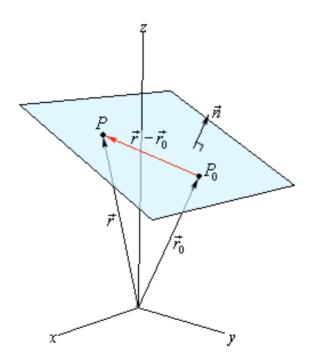
Parametric Equation:

$$x = x_0 + at$$
$$y = y_0 + bt$$
$$z = z_0 + ct$$

Symmetric Equation of a line:

$$\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}$$

A Plane in \mathbb{R}^3



Equation of a plane in \mathbb{R}^3

Given a vector normal (perpendicular) to the plane $\mathbf{n} = \langle a, b, c \rangle$ and a point (x_0, y_0, z_0) on the plane.

Let
$$\mathbf{r} - \mathbf{r_0} = \langle x - x_0, y - y_0, z - z_0 \rangle$$

Vector Equation:

$$\mathbf{n} \cdot (\mathbf{r} - \mathbf{r}_0) = 0$$

Scalar Equation:

$$a(x-x_0) + b(y-y_0) + c(z-z_0) = 0$$