Power Series

October 19, 2007

Definition of a power series

A power series is a series of the form

$$
\sum_{n=0}^{\infty} c_{n} x^{n}=c_{0}+c_{1} x+c_{2} x^{2}+\cdots
$$

where x is a variable and c_{n} 's are constants called coefficients.

A power series about a is a series of the form:
$\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+\cdots$ where a is a constant.

Theorem About Convergence of Power Series

Theorem: For a power series

$$
\sum_{n=0}^{\infty} c_{n}(x-a)^{n}
$$

there are three possibilities:

1. The series converges only when $x=a$.
2. The series converges for all x.
3. There is a positive number R such that the series converges if $|x-a|<R$ and diverges if $|x-a|>R$.

Radius of Convergence

The number R in part (3) of the theorem is called radius of convergence . By convention if the series only converges at $x=a$, then we say the radius of convergence is $R-0$ and if the series converges for all x, we say the radius of convergence is $R=\infty$.

The interval of convergence is either

1. $[a-R, a+R]$ or
2. $[a-R, a+R)$ or
3. $(a-R, a+R]$ or
4. $(a-R, a+R)$.

Differentiation and Integration of Power Series

Theorem: If $f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ with radius of convergence $R>0$, then f is differentiable (hence continuous) in the interval ($a-R, a+R$) and

$$
\begin{aligned}
f^{\prime}(x) & =\sum_{n=1}^{\infty} n c_{n}(x-a)^{n-1} \\
& =c_{1}+2 c_{2}(x-a)+3 c_{3}(x-a)^{2}+\cdots \\
\int f(x) d x & =C+\sum_{n=0}^{\infty} c_{n} \frac{(x-a)^{n+1}}{n+1} \\
& =C+c_{0}(x-a)+c_{1} \frac{(x-a)^{2}}{2}+c_{2} \frac{(x-a)^{3}}{3}+\cdots
\end{aligned}
$$

