Math 9 Fall 2003

Homework project II (20 points)

Instructors: V. Chernov, D. Little, A, Shumakovitch, M. Skandera

Directional Derivatives and Differentiable Functions

Due date Monday, November 24, at the end of the lecture

Description of the Project

Let $f(x, y): \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function defined as follows:

$$
f(x, y)= \begin{cases}0 & \text { for }(x, y)=(0,0) ; \tag{1}\\ \frac{5 x y^{2}}{x^{2}+y^{2}} & \text { for }(x, y) \neq(0,0)\end{cases}
$$

(1) Prove that f defined this way is a continuous function on the whole real plane \mathbb{R}^{2}.
(2) Let $\mathbf{u}=\left\langle\frac{a}{\sqrt{a^{2}+b^{2}}}, \frac{b}{\sqrt{a^{2}+b^{2}}}\right\rangle$ be a unit vector. Find the value of the directional derivative $D_{\mathbf{u}} f(0,0)$ as a function of a and b.
(3) Find the gradient $\nabla f(0,0)$.
(4) Show that $D_{\mathbf{u}}(0,0) \neq \mathbf{u} \cdot \nabla f(0,0)$, for some vectors \mathbf{u}.
(5) Use Theorem 15.6.3 to conclude that the function $f(x, y)$ is not differentiable at the point $(0,0)$ despite the fact that it is continuous on \mathbb{R}^{2} and has all the directional derivatives at $(0,0)$.

Hint: You can not conclude that f is continuous at $(0,0)$ as a ratio of two continuous functions, since the denominator is zero at $(0,0)$. For the same reasons you can not differentiate the function with respect to x and y variables at $(0,0)$ in the straightforward way. Instead use Definitions 15.2.1, 15.2.4, 15.3.4, 15.6.2, and 15.6.3 from the Stewart "Calculus" textbook.

REGULATIONS CONCERNING THIS PROJECT

1: Students are encouraged to work in groups of 3 or 4 . No group may consist of more than 4 students. Students from different sections of Math 9 may work together in a single group.
2: Each group must submit exactly one written report to exactly one of the Math 9 instructors. Each student in a group is responsible for understanding everything in the written report and should be ready to present it to a professor if asked. Write the names of all the students from the group and their instructors on the first page of the project.
3: The report must be written in claim-proof form and in full sentences. (See "proof-writing suggestions" on the Math 9 homework assignments page.) Correct answers without proper justification are not acceptable.
4: Students will collaborate within one group, but must not collaborate with members of other groups.
5: Students are encouraged to consult mathematical textbooks and Math 9 instructors.
6: The project is due on Monday November 24. Each group must designate one member to submit the written report at the beginning of that member's Math 9 lecture.

