COVERED TODAY: The Chain Rule. The method used in class is not in the book.



DUE NEXT TIME:

(1) Given that


\begin{displaymath}f\left( \begin{array}{c} x  y \end{array} \right)=\left(
\b...
...)=\left(
\begin{array}{c} u+v  2u  v^2 \end{array} \right),\end{displaymath}

find the derivative matrix of the composite function $g \circ f$ at $(x,y)=(1,1)$. Do the same at $(x,y) = (0,0)$.


(2) Consider the function $f:R \longrightarrow R^3$ given by:


\begin{displaymath}f(t) = \left( \begin{array}{c} t t^2-4  e^{t-2} \end{array}\right).\end{displaymath}

Let $g:R^3 \longrightarrow R$ be a differentiable function. If $x_\circ = (2,0,1)$, and

\begin{displaymath}\frac{\partial g}{\partial x}(x_\circ) = 4,   \frac{\partia...
...(x_\circ) = 2,   \frac{\partial g}{\partial z}(x_\circ) =
2, \end{displaymath}

find $d(g \circ f) /dt$ at $t=2$.


(3) The functions $f$ and $g$ are defined by


\begin{displaymath}f\left( \begin{array}{c} u v \end{array} \right) = \left(
\...
...}{l} 0 < u < \infty,  -\pi/2 < v < \pi/2,
\end{array} \right.\end{displaymath}


\begin{displaymath}g\left( \begin{array}{c} x y \end{array} \right) = \left(
\...
...displaystyle \frac{y}{x}}\end{array}\right),   0 < x< \infty.\end{displaymath}

(a) Find the derivative matrix of $g \circ f$ at $\left(
\begin{array}{c}u v \end{array} \right)$.

(b) Find the derivative matrix of $f \circ g$ at $\left(
\begin{array}{c}x y \end{array} \right)$.


>From the Textbook, Section 15.5:

3

4

10

14

22

28

33

43





Math 9 Fall 2000 2000-11-14