Math 8: Calculus in one and several variables Winter 2019 - Homework 3

Return date: Friday 01/25/19
keywords: limits and integrals with Taylor series, vectors, dot product
Instructions: Write your answers neatly and clearly on straight-edged paper, use complete sentences and label any diagrams. Please show your work; no credit is given for solutions without work or justification.
exercise 1. (3 points) Use the power series of $\tan ^{-1}(x)$ to prove the following expression for π as the sum of an infinite series:

$$
\pi=2 \sqrt{3} \cdot \sum_{n=0}^{\infty} \frac{(-1)^{n}}{3^{n} \cdot(2 n+1)} .
$$

Hint: What is $\tan \left(\frac{\pi}{6}\right)$?
exercise 2. (5 points) Use Taylor series to evaluate the limit

$$
\lim _{x \rightarrow 0} \frac{\sin (x)-x}{2 x^{3}} .
$$

exercise 3. (6 points) Let $f(x)=\ln \left(1+\frac{1}{2} x\right)$.
a) Write down the Maclaurin series for $f(x)$ and indicate its radius of convergence. Don't use the ratio test, use what you know about a related series.
b) Find the Maclaurin series for $\int f(x) d x$.
c) Write down a series that converges to $\int_{0}^{1} f(x) d x$.
d) Estimate your result in c) with the first four non-zero values of the series of $\int_{0}^{1} f(x) d x$.
exercise 4. (6 points) Describe in words the regions of \mathbb{R}^{3} represented by the following equation(s) or inequalities. Make a simple sketch to clarify your answer.
a) $z \geq-2$.
b) $y^{2}=4$.
c) $x=z$.
d) $x^{2}+y^{2}=4$ and $z=1$.

