Math 8: Calculus in one and several variables Winter 2019 - Homework 3

Return date: Friday 01/25/19

keywords: limits and integrals with Taylor series, vectors, dot product

Instructions: Write your answers neatly and clearly on straight-edged paper, use complete sentences and label any diagrams. Please show your work; no credit is given for solutions without work or justification.

exercise 1. (3 points) Use the power series of $\tan^{-1}(x)$ to prove the following expression for π as the sum of an infinite series:

$$\pi = 2\sqrt{3} \cdot \sum_{n=0}^{\infty} \frac{(-1)^n}{3^n \cdot (2n+1)}$$

Hint: What is $\tan(\frac{\pi}{6})$?

exercise 2. (5 points) Use Taylor series to evaluate the limit

$$\lim_{x \to 0} \frac{\sin(x) - x}{2x^3}$$

exercise 3.(6 points) Let $f(x) = \ln(1 + \frac{1}{2}x)$.

- a) Write down the Maclaurin series for f(x) and indicate its radius of convergence. Don't use the ratio test, use what you know about a related series.
- b) Find the Maclaurin series for $\int f(x) dx$.
- c) Write down a series that converges to $\int_0^1 f(x) dx$.
- d) Estimate your result in c) with the first four non-zero values of the series of $\int_0^1 f(x) dx$.

exercise 4. (6 points) Describe in words the regions of \mathbb{R}^3 represented by the following equation(s) or inequalities. Make a simple sketch to clarify your answer.

- a) $z \ge -2$.
- b) $y^2 = 4$.
- c) x = z.
- d) $x^2 + y^2 = 4$ and z = 1.