# TAYLOR POLYNOMIALS 

DARYL DEFORD

## 1. Introduction

Taylor polynomials are a generalization of the linearizations that we studied earlier in the week. The linearization of a function $f$ at a point $a$ is the function given by

$$
L(x)=f(a)+f^{\prime}(a)(x-a) .
$$

This is the same as the equation of the tangent line to $f$ at $a$, and we have seen that for values of $x$ close to $a$ that $f(x) \approx L(x)$. The linearization uses two pieces of information, the value of $f$ at $a$ and the instantaneous rate of change of $f$ at $a$, to provide a simple approximation. If we want to include more information about $f$ in an approximation we need a higher degree polynomial.

## 2. Taylor Polynomials

The Taylor polynomial of degree $n$, denoted $T_{n}(x)$, allows us to approximate $f$ near a point $a$ with a degree $n$ polynomial whose first $n$ derivatives at $a$ are the same as the first $n$ derivatives of $f$ at $a$. The linearization discussed above is the first Taylor polynomial: $T_{1}(x)$ - its derivative at $a$ is exactly the same as the derivative of $f$ at $a$ by construction. To construct this polynomial we need to know the values of the first $n$ derivatives of $f$ at $a$. Then, the Taylor polynomial can be written as:

$$
T_{n}(x)=f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

Sometimes, in order to simplify the notation, we write this as:

$$
T_{n}(x)=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+c_{3}(x-a)^{3}+\cdots+c_{n}(x-a)^{n}
$$

with

$$
c_{0}=f(a)
$$

and

$$
c_{k}=\frac{f^{(k)}(a)}{k!} .
$$

## 3. FOUR STEP PROCESS

This leads us to the following four-step process for finding Taylor polynomials:
(1) Compute the first $n$ derivatives of $f$
(2) Compute $f(a), f^{\prime}(a), f^{\prime \prime}(a), \ldots, f^{(n)}(a)$
(3) Compute $c_{0}, c_{1}, \ldots, c_{n}$
(4) Substitute in to the formula for $T_{n}(x)$

## 4. Examples

Example 1. Find the fourth degree Taylor polynomial of $f(x)=e^{2 x}+x^{2}$ near $a=0$.
(1) First, we need to compute the first 4 derivatives of $f$ :

$$
\begin{aligned}
f(x) & =e^{2 x}-x^{2} \\
f^{\prime}(x) & =2 e^{2 x}-2 x \\
f^{\prime \prime}(x) & =4 e^{2 x}-2 \\
f^{\prime \prime \prime}(x) & =8 e^{2 x} \\
f^{\prime \prime \prime \prime}(x) & =16 e^{2 x}
\end{aligned}
$$

(2) Next, we need to compute the values of the derivatives at $a=0$ :

$$
\begin{aligned}
f(0) & =e^{0}-0= & 1 \\
f^{\prime}(0) & =2 e^{0}-0= & 2 \\
f^{\prime \prime}(0) & =4 e^{0}-2= & 2 \\
f^{\prime \prime \prime}(0) & =8 e^{0}= & 8 \\
f^{\prime \prime \prime \prime}(0) & =16 e^{0}= & 16
\end{aligned}
$$

(3) Now we can solve for the coefficients:

$$
\begin{aligned}
& c_{0}=f(0)=1 \\
& c_{1}=\frac{f^{\prime}(0)}{1!}=\frac{2}{1}=2 \\
& c_{2}=\frac{f^{\prime \prime}(0)}{2!}=\frac{2}{2}=1 \\
& c_{3}=\frac{f^{\prime \prime \prime}(0)}{3!}=\frac{8}{6}=\frac{4}{3} \\
& c_{4}=\frac{f^{\prime \prime \prime \prime}(0)}{4!}=\frac{16}{24}=\frac{2}{3}
\end{aligned}
$$

(4) Finally, we can substitute:

$$
\begin{gathered}
T_{4}(x)=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+c_{3}(x-a)^{3}+c_{4}(x-a)^{4} \\
T_{4}(x)=1+2(x-0)+1(x-0)^{2}+\frac{4}{3}(x-0)^{3}-\frac{2}{3}(x-0)^{4} \\
T_{4}(x)=1+2 x+x^{2}+\frac{4}{3} x^{3}-\frac{2}{3} x^{4}
\end{gathered}
$$

Example 2. Find the sixth degree Taylor polynomial of $f(x)=\sin (x)+\cos (x)$ at $a=\pi$.
(1) First, we need to compute the first 6 derivatives of $f$ :

$$
\begin{aligned}
f(x) & =\sin (x)+\cos (x) \\
f^{\prime}(x) & =\cos (x)-\sin (x) \\
f^{\prime \prime}(x) & =-\sin (x)-\cos (x) \\
f^{\prime \prime \prime}(x) & =-\cos (x)+\sin (x) \\
f^{\prime \prime \prime \prime \prime}(x) & =\sin (x)+\cos (x) \\
f^{\prime \prime \prime \prime \prime \prime}(x) & =\cos (x)-\sin (x) \\
f^{\prime \prime \prime \prime \prime \prime \prime}(x) & =-\sin (x)-\cos (x)
\end{aligned}
$$

(2) Next, we need to compute the values of the derivatives at $a=\pi$ :

$$
\begin{array}{rlr}
f(\pi) & =\sin (\pi)+\cos (\pi)= & -1 \\
f^{\prime}(\pi) & =\cos (\pi)-\sin (\pi)= & -1 \\
f^{\prime \prime}(\pi) & =-\sin (\pi)-\cos (\pi)=1 \\
f^{\prime \prime \prime \prime}(\pi) & =-\cos (\pi)+\sin (\pi)=1 \\
f^{\prime \prime \prime \prime \prime}(\pi) & = & \sin (\pi)+\cos (\pi)= \\
f^{\prime \prime \prime \prime \prime}(\pi) & =\cos (\pi)-\sin (\pi)=-1 \\
f^{\prime \prime \prime \prime \prime \prime \prime}(\pi) & =-\sin (\pi)-\cos (\pi)=1
\end{array}
$$

(3) Now we can solve for the coefficients:

$$
\begin{aligned}
& c_{0}=f(\pi)=-1 \\
& c_{1}=\frac{f^{\prime}(\pi)}{1!}=\frac{-1}{1} \\
& c_{2}=\frac{f^{\prime \prime}(\pi)}{2!}=\frac{1}{2} \\
& c_{3}=\frac{f^{\prime \prime \prime}(\pi)}{3!}=\frac{1}{6} \\
& c_{4}=\frac{f^{\prime \prime \prime \prime}(\pi)}{4!}=\frac{-1}{24} \\
& c_{5}=\frac{f^{\prime \prime \prime \prime \prime}(\pi)}{5!}=\frac{-1}{120} \\
& c_{6}=\frac{f^{\prime \prime \prime \prime \prime \prime}(\pi)}{6!}=\frac{1}{720}
\end{aligned}
$$

Finally, we can substitute:

$$
\begin{gathered}
T_{6}(x)=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+c_{3}(x-a)^{3}+c_{4}(x-a)^{4}+c_{5}(x-a)^{5}+c_{6}(x-a)^{6} \\
T_{6}(x)=-1-1(x-\pi)+\frac{1}{2}(x-\pi)^{2}+\frac{1}{6}(x-\pi)^{3}-\frac{1}{24}(x-\pi)^{4}-\frac{1}{120}(x-\pi)^{5}+\frac{1}{720}(x-\pi)^{6} .
\end{gathered}
$$



Figure 1. The first six Taylor Polynomials approximating $f(x)=\sin (x)+\cos (x)$ at $a=\pi$

Department of Mathematics, Dartmouth College
E-mail address: ddeford@math.dartmouth.edu

