1. Which of the following statements are always true? Write "T" for true and "F" for false. As a reminder, $n \in \mathbb{N}$ means that n is a non-negative integer. Your computations will not be graded on this problem.
(a)

If $\lim _{n \rightarrow \infty} a_{2 n}=L$ and $\lim _{n \rightarrow \infty} a_{2 n+1}=L$ then $\lim _{n \rightarrow \infty} a_{n}=L$.
(b)

If $\lim _{n \rightarrow \infty} a_{n}=0$ then $\lim _{n \rightarrow \infty} \frac{1}{a_{n}}=+\infty$.

The series $\sum_{k=0}^{\infty} c_{k} x^{k}$ and $\sum_{k=1}^{\infty} k c_{k} x^{k-1}$ always have the same radius of convergence.

The series $\sum_{k=0}^{\infty} c_{k} x^{k}$ and $\sum_{k=0}^{\infty} \frac{1}{k+1} c_{k} x^{k+1}$ always have the same interval of convergence.
We can use the integral test to determine whether the series $\sum_{k=1}^{\infty} \frac{\sin k}{k}$ converges.

If $\lim _{n \rightarrow \infty}\left|\frac{a_{k+1}}{a_{k}}\right|=L<1$, then $\sum_{k=0}^{\infty} a_{k}$ converges absolutely.
If $\lim _{n \rightarrow \infty}\left|\frac{a_{k+1}}{a_{k}}\right|=L>1$, then $\sum_{k=0}^{\infty} a_{k}$ does not converge absolutely but might converge conditionally.
Because the function $f(x)=\frac{1}{1+x^{2}}$ has no vertical asymptotes or points of discontinuity, the interval of convergence of its Taylor series must be $(-\infty, \infty)$.

If $0 \leq a_{n} \leq b_{n} \leq c_{n}$ for all n, and the sequences $\left(a_{n}\right)$ and $\left(c_{n}\right)$ both converge, then (b_{n}) must converge also.

If $\left(a_{n}\right)$ is an increasing sequence all of whose terms are negative, then it must converge.

If the area under the curve $y=f(x)$ between $x=1$ and $x=a$ is always between $\ln (a)$ and a, then $\int_{0}^{\infty} f(x) d x$ converges.
2. Find two ways of determining whether the series $\sum_{k=2}^{\infty} \frac{k}{k^{2}-1}$ converges. Way 1:

Way 2 :
3. Taylor's inequality says: If $\left|f^{(k+1)}(x)\right| \leq M$ for all x with $|x-a| \leq d$, then

$$
\left|R_{k}(x)\right| \leq \frac{M}{(k+1)!}|x-a|^{k+1} \quad \text { for all } x \text { with }|x-a| \leq d
$$

Use Taylor's inequality to show that

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}=\ln (2)
$$

4. For each of the following 4 series, exlpain why the suggested test is applicable and determine whether the series converges.
$\sum_{n=1}^{\infty} \frac{3}{n^{4}}$ (Integral Test)
$\sum_{n=2}^{\infty} \frac{\cos (n \pi)}{n^{2}-n}$ (Alternating Series Test)

$$
\sum_{n=1}^{\infty} \frac{n+1}{\sqrt{n^{4}+2 n}} \text { (Limit Comparison Test) }
$$

$\sum_{n=0}^{\infty} \frac{2^{n}}{n!}$ (Ratio Test)
5. Determine the interval of convergence of the power series $\sum_{n=0}^{\infty}(-3)^{n+1}(x-2)^{n}$. In case you want a challange: Which function has this series as its Taylor series at 2?
6. Find the Taylor series for

$$
f(x)=\int_{0}^{x} \frac{d t}{1+t^{4}}
$$

What is the interval of convergence of your series?

