# Math 8: Calculus of Functions of One and Several Variables Midterm 2 Thursday, February 16

| indisday, rebidaly 10                                                                                              |                                     |                |                 |                                                      |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------|-----------------|------------------------------------------------------|--|--|--|--|
| Name:                                                                                                              | Answer                              | Key            |                 |                                                      |  |  |  |  |
|                                                                                                                    | Circle your section                 | O              | 1-Kobayashi     | 2–DeFord                                             |  |  |  |  |
| Please rea                                                                                                         | ad the following i                  | nstructions    | before starting | the exam:                                            |  |  |  |  |
| not giv                                                                                                            |                                     | elp during the |                 | oooks allowed. You may<br>ou may ask instructors     |  |  |  |  |
| incorre                                                                                                            |                                     | an appropriate |                 | if your final answer is<br>tial credit if we can see |  |  |  |  |
| • Please circle or otherwise indicate your final answer if possible.                                               |                                     |                |                 |                                                      |  |  |  |  |
| • The test has a total of 18 questions, worth a total of 160 points. Point values are indicated for each question. |                                     |                |                 |                                                      |  |  |  |  |
| • You will have two hours from the start of the exam to complete it.                                               |                                     |                |                 |                                                      |  |  |  |  |
| • Good                                                                                                             | luck!                               |                |                 |                                                      |  |  |  |  |
| _                                                                                                                  | R STATEMENT<br>t that all the answe |                |                 | ived help on this exam,                              |  |  |  |  |
|                                                                                                                    |                                     |                |                 |                                                      |  |  |  |  |
| Signatur                                                                                                           | re:                                 |                |                 |                                                      |  |  |  |  |

This page for grading purposes only.

| Problem | Points | Scores                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Problem | Points | Scores |
|---------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|--------|
| 1       | 10     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10      | 5      |        |
| 2       | 5      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11      | 5      |        |
| 3       | 5      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12      | 10     |        |
| 4       | 10     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13      | 10     |        |
| 5       | 10     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14      | 10     |        |
| 6       | 10     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15      | 10     |        |
| 7       | 10     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16      | 10     |        |
| 8       | 10     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17      | 10     |        |
| 9       | 10     | The state of the s | 18      | 10     |        |
|         | To     | otal:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /160    | )      |        |

### 1. (10 points)

(a) (2 points) What are the initial and terminal points of the vector  $\langle 1, 2, 3 \rangle$  when its initial end is placed on the curve  $\vec{r}(t) = \langle 2t, \ln(t-2), t^2 - 4 \rangle$  at t = 3?

Initial point  $\Gamma(3) = (6,0,6)$ Terminal point  $\Gamma(3) + (1,2,3) = (7,2,8)$ 

(b) (2 points) Find a unit vector pointing in the same direction as  $\langle 5, 3, \sqrt{2} \rangle$ .

 $|\langle 5, 3, \sqrt{2} \rangle| = \sqrt{25+9+2} = 6$ unit vector  $\langle 5/6, \frac{1}{2}, \frac{\sqrt{2}}{6} \rangle$ 

(c) (6 points) Find a vector with integer entries that is parallel to the tangent line of the graph of  $sin(x) + (4x + 2)^2$  at x = 0.

 $f(x) = \sin(x) + (4x+2)^{2}$   $f'(x) = \cos(x) + 2(4x+2) \cdot 4$  Slope = f'(0) = 1 + 16 = 17 < 1, 17 >

#### 2. (5 points)

(a) (3 points) Use vectors to decide if the triangle with vertices P = (1, 1, 1), Q = (2, 2, 2), and R = (-1, 3, 5) is a right triangle.

$$a = Q - P = \langle 1, 1, 1 \rangle$$

$$b = Q - R = \langle 3, -1, -3 \rangle$$

$$(= R - P = \langle -2, 2, 4 \rangle$$

$$a \cdot b = -1$$

$$a \cdot c = 4$$

$$a \cdot c = 4$$

$$a \cdot c = 4$$

$$a \cdot c = -2$$

(b) (2 points) Use the cross product to find the area of the triangle in part (a).

3. (5 points) Let  $\vec{a} = \langle 1, 2, 2 \rangle$  and  $\vec{b} = \langle 3, -4, 0 \rangle$ . Find the following:

(a) 
$$3\vec{a} - 2\vec{b}$$
  $\langle 3, 6, 6 \rangle - \langle 6, -8, 0 \rangle = \langle -3, 14, 6 \rangle$ 

- (b)  $\operatorname{comp}_{\vec{a}} \vec{b}$   $\frac{a \cdot b}{|a|} = \frac{3 8 + 0}{\sqrt{1 + 2^2 + 2^2}} = \frac{-5}{3}$
- (c)  $\operatorname{proj}_{\vec{b}}\vec{a}$

$$\left(\frac{a \cdot b}{16l^2}\right) b = \frac{-5}{3^2 + 4l^2} \langle 3, -4, 0 \rangle = \langle -\frac{3}{5}, \frac{4}{5}, 0 \rangle$$

4. (10 points) Find the acute angle between the lines: 
$$3x - y + 4 = 0$$
 and  $-8x + 3y = 2$ .

Slope of line 1 is 3 
$$\langle 1,3 \rangle = 9$$
  
Slope of line 2 is  $83 \langle 1,83 \rangle = 6$ 

$$\Theta = Cos'\left(\frac{a \cdot b}{|a| \cdot |b|}\right) = \left(os'\left(\frac{9}{\sqrt{750}}\right) = \left(os'\left(\frac{27}{\sqrt{750}}\right)\right)$$

## 5. (10 points) Determine if each of the pairs below is parallel, skew, or intersecting:

(a) (2 points) The planes 
$$x - 2y + 3z = 17$$
 and  $4x + 2y + 8z = 23$ .

(b) (2 points) The planes 
$$3x - 4y + 5z = 6$$
 and  $-9x + 12y - 15z = 0$ .

(c) (2 points) The lines 
$$\langle -5t-1, 10t+2, 35t-4 \rangle$$
 and  $\langle t+1, -2t, -7t \rangle$ .

(d) (2 points) The lines 
$$(0,2t,-t-3)$$
 and  $(1,4t,t+3)$ .

t=4 → 5=4

(e) (2 points) The lines 
$$(t-3, 2t-6, -t+7)$$
 and  $(3t-11, -2t+10, t-1)$ .

$$t-3=35-11$$
 $2t-6=-25+10$ 
 $3t-9=5-1$ 
 $3t-8=5$ 
 $t-3=9t-35$ 
 $t-3=9t-35$ 
 $t-3=9t-35$ 
 $t-3=9t-35$ 

- 6 (10 points)
  - (a) (2 points) Give an example of two vectors where  $\operatorname{comp}_{\vec{a}} \vec{b} = \operatorname{comp}_{\vec{b}} \vec{a}$ .

(b) (2 points) Give an example of two vectors where  $\vec{a} \times \vec{b} = \vec{b} \times \vec{a}$ .

(c) (4 points) Determine if  $\vec{a}=\langle 1,0,1\rangle,\ \vec{b}=\langle -1,2,0\rangle,\ \text{and}\ \vec{c}=\langle 3,2,1\rangle$  are coplanar. Scalar triple product:

$$\begin{vmatrix} 101 \\ -120 \\ 321 \end{vmatrix} = 2-0+(-8)=-6 \pm 0$$
 rot coplonor

(d) (2 points) If  $\vec{a}$  and  $\vec{b}$  are unit vectors what are the largest and smallest possible values of  $|\vec{a} \times \vec{b}|$ ? What about  $\vec{a} \cdot \vec{b}$ ?

Largest: 
$$|\vec{a} \times \vec{b}|$$
  $\vec{a} \cdot \vec{b}$ 

Smallest: 
$$|\vec{a} \times \vec{b}|$$
  $O$   $\vec{a} \cdot \vec{b}$   $-1$ 

- 7. (10 points) Determine which of the following expressions are meaningful where  $\vec{a}, \vec{b}, \vec{c}$ , and  $\vec{d}$  are all 3-vectors. If not, explain why. If so, is the output a vector or a scalar?
  - (i)  $(\vec{a} \cdot \vec{b}) \times \vec{c}$ Meaningful:  $\underline{NO}$ Output/explanation: Cannot cross a Scalar and a uc (to
  - (ii)  $\vec{a} \cdot (\vec{b} \times \vec{c})$ Meaningful: Ye SOutput/explanation: Scalar
  - (iii)  $((\vec{a} \times \vec{b}) \times \vec{c}) \cdot \vec{d}$ Meaningful:  $\cancel{>} \cancel{c} \cancel{>}$ Output/explanation:  $\cancel{>} \cancel{c}$
  - (iv)  $(\vec{a} \cdot \vec{b}) \cdot (\vec{c} \times \vec{d})$ Meaningful: No

    Output/explanation:

    (annot do + a  $\leq$  calor and a  $\vee$  cltar
  - (v)  $(\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d})$ Meaningful:  $\underline{\checkmark e 5}$ Output/explanation:

8. (10 points) Compute the parametric and symmetric equations for the line through the points (2, 5, -7) and (-3, 1, 2).

$$\frac{x-z}{-s} = \frac{y-s}{-u} = \frac{z+7}{9}$$

9. (10 points) Find an equation of the plane through the points (0,0,1), (1,1,0), and (1,0,0).

$$V = \langle |_{I_{I}^{-1}} \rangle$$

$$W = \langle |_{I_{I}^{0}} |_{I_{I}^{-1}} \rangle$$

$$(x, 0, 0)$$
  $(x - 0, y - 0, 7.0 - 1) = 0$ 

10. (5 points) Find the distance of the point (1, 2, 3) from the plane described by -2x + 6y - z = 4.





11. (5 points) Find the distance between the parallel planes x + 2y - z + 7 = 0 and 3x + 6y - 3z = 0.

Point (0,0,7) lies on the first plane

$$\frac{|0(7) + (0) \cdot 6 + 7(-3) + 0|}{\sqrt{9 + 36 + 9}} = \frac{21}{\sqrt{54}} = \frac{7}{\sqrt{6}}$$

#### 12. (10 points)

(a) (3 points) Find the angle between the intersecting planes -x+3y-2z+1=0 and x+6y-z+2=0.

Same as angle between normal 
$$Ve(tors)$$

$$\theta = \cos^{-1}\left(\frac{\Pi_{1} \cdot \Pi_{2}}{|\Pi_{1}| |\Pi_{1}|}\right) = \cos^{-1}\left(\frac{-1}{3}, -2 \right) \cdot \left(\frac{1}{6}, -1 \right)$$

$$= \cos^{-1}\left(\frac{19}{\sqrt{14} \cdot \sqrt{38}}\right)$$

(b) (7 points) Find the equation of the line that lies at the intersection of these planes. Set y = 0 to find point:

$$-X-2Z=-1$$
  
 $X-Z=-2$   
 $-3Z=-3$  Point  $0=(-1,0,1)$   
 $Z=1$   
 $X=-1$ 

direction Vector is the cross product of normal Vectors:

- 13. (10 points) For each equation below, determine the type of surface described by the equation. Then, determine the type of curve described by the intersection of the surface and the given plane:
  - (a) (3 points)  $1 = \frac{x^2}{12} + \frac{y^2}{17} + \frac{z^2}{2}$  and x = 2. Quadric Surface: *ellipsoid*

Intersection with x = 2:

(b) (3 points)  $1 = \frac{x^2}{12} - \frac{y^2}{17} + \frac{z^2}{2}$  and z = 1.

Quadric Surface: Hyperboloid of one Shelt

Intersection with z = 1: Hyperbolo

(c) (4 points)  $0 = \frac{x^2}{12} - \frac{y^2}{17} - \frac{z}{2}$  and y = 2.

Quadric Surface: Hypothelic probability probability.

Intersection with y = 2: Yeabala

14. (10 points) Compute the derivative of  $\vec{r}(t) = \langle 2t^2 - t, \frac{4}{t}, e^{t-2} \rangle$  and determine the unit tangent vector to  $\vec{r}$  at t = 2. What points are the initial and terminal points of this vector?

$$\Gamma'(4) = \langle 44-1, \frac{4}{2^2}, e^{4-2} \rangle$$

$$\Gamma'(2) = \langle 7, -1, 1 \rangle$$

$$\Gamma'(2)1 = \sqrt{49+1+1} = \sqrt{51}$$

$$U(2) = \langle \frac{7}{551}, \frac{1}{551}, \frac{1}{551$$

15. (10 points) Find 
$$\vec{r}(t)$$
 if  $\vec{r}'(t) = \langle \sin(t), \cos(t), e^t \rangle$  and  $\vec{r}(0) = \langle 2, 3, -4 \rangle$ .

$$\Gamma(t) = \int r'(t) dt = \langle -\cos(t), \sin(t), e^t \rangle + \langle \cos(t), \cos(t), \cos(t), e^t \rangle + \langle \cos(t), \cos(t), \cos(t), e^t \rangle + \langle \cos(t), \cos(t), \cos(t), \cos(t), e^t \rangle + \langle \cos(t), \cos($$

- 16. **(10 points)** Let  $\vec{r}(t) = \langle \frac{1}{2}t^2, 17, \sqrt{2}t^2 \rangle$ 
  - (a) (6 points) Find the arc length function for  $\vec{r}$  starting at t=0.

$$| | | = \langle u, 0, 2\sqrt{2}u \rangle$$
 $| | | = \sqrt{u^2 + 8u^2} = 3u$ 

$$S(t) = \int_{0}^{t} |r'(u)| du = \int_{0}^{t} 3u du = \frac{3t^{2}}{2}$$

(b) (4 points) Compute the length of  $\vec{r}$  from t=2 to t=4.

$$5(2) = \frac{3(2)^2}{2} = 6$$

- 17. (10 points) Let  $\vec{r}(t) = \langle 4t, 3\cos(t), 3\sin(t) \rangle$  and consider the point  $P = (8\pi, 3, 0)$  which lies on the curve of  $\vec{r}$ .
  - (a) (2 points) Find the unit tangent vector to  $\vec{r}$  at  $\vec{P}$ .  $\Gamma'(t) = (4, -35/n(t), 3\cos(t))$   $\Gamma'(t) = \sqrt{16+9} = 5$   $\Gamma'(t) = (5, -35/n(t), 3\cos(t))$   $\Gamma'(t) = \sqrt{16+9} = 5$   $\Gamma'(t) = \sqrt{16+9} = 5$
  - (b) (2 points) Find the unit normal vector to  $\vec{r}$  at P.  $u'(t) = \langle 0, -\frac{2}{5} \cos(t), -\frac{2}{5} \sin(t) \rangle \qquad |u'(t)| = \sqrt{\frac{9}{25}} = \frac{3}{5}$   $N(t) = \langle 0, -\log(t), -\sin(t) \rangle$   $N(2\pi) = \langle 0, -\log(t), -\sin(t) \rangle$
  - (c) (2 points) Find the binormal vector to  $\vec{r}$  at P.

B(t) = U(t) × N(t)   

$$\frac{1}{5} = \frac{1}{5} \sin(x) = \frac{3}{5} = \frac{4}{5} \sin(x) = \frac{4}{5} \cos(x)$$

$$\frac{4}{5} = \frac{2}{5} \sin(x) = \frac{4}{5} \cos(x)$$

$$\frac{4}{5} = \frac{2}{5} \sin(x) = \frac{4}{5} \sin(x) = \frac{4}{5} \sin(x) = \frac{4}{5} \sin(x) = \frac{4}{5} \cos(x)$$

(d) (2 points) Write the equation of the normal plane to  $\vec{r}$  at P.

Normal vector is  $u(z\vec{n})$ 

$$\langle \frac{4}{5}, 0, \frac{3}{5} \rangle \cdot \langle x - 8 \tilde{1}, y - 3, z - 0 \rangle = 0$$

(e) (2 points) Write the equation of the osculating plane to  $\vec{r}$  at P

$$\langle \frac{3}{5}, 0, \frac{4}{5} \rangle \cdot 2 \times -8\pi, \ 9-3, \ z-0 \rangle = 0$$

18. (10 points) Find the curvature of  $\vec{r}(t) = \langle \frac{4}{3}t^{\frac{3}{2}}, t^2 + t, \sqrt{3}t \rangle$  for a general t and evaluate the specific point  $(36, 90, 9\sqrt{3})$ .

$$K(t) = \frac{|r'(t) \times r''(t)|}{|r'(t)|^{3}}$$

$$\Gamma(t) = \langle \frac{1}{3}t^{\frac{3}{2}}, t^{\frac{1}{2}} + t, \sqrt{3}t \rangle$$

$$\Gamma''(t) = \langle 2t^{\frac{1}{2}}, 2t + 1, \sqrt{3} \rangle$$

$$\Gamma''(t) = \langle t^{\frac{1}{2}}, 2, 0 \rangle$$

numerator:

Denominator:

$$K(t) = \frac{2(t^{\frac{1}{2}} + t^{-\frac{1}{2}})}{(2 + t^{-\frac{1}{2}})^3}$$

The point 
$$L36, 90, 9\sqrt{3}$$
 occurs at  $t=9$  and  $K(9) = \frac{2(3+\frac{1}{3})}{15(20)^3} = \frac{1}{1200}$