| Name: Answer Key | |---| | Circle your section number: 1–Kobayashi 2–DeFord | | Please read the following instructions before starting the exam: | | • This exam is closed book, with no calculators, notes, or books allowed. You may
not give or receive any help during the exam, though you may ask instructors
for clarification if necessary. | | Be sure to show all work whenever possible. Even if your final answer is
incorrect, we can assign an appropriate amount of partial credit if we can see
how you arrived at your answer. | | • Please circle or otherwise indicate your final answer if possible. | | • The test has a total of 9 questions, worth a total of 90 points. Point values are indicated for each question. | | You will have two hours from the start of the exam to complete it. | | • Good luck! | | HONOR STATEMENT: I have neither given nor received help on this exam and I attest that all the answers are my own work. | | Signature: | This page for grading purposes only. | Problem | Points | Scores | |---------|--------|--------| | 1 | 10 | | | 2 | 10 | | | 3 | 10 | | | 4 | 10 | | | 5 | 10 | | | 6 | 10 | | | 7 | 5 | | | 8 | 5 | | | 9 | 10 | | | Total | 80 | | - 1. (10 points) Determine whether the following series converge and explain your reasoning: - a) (5 points) $$\sum_{n=1}^{\infty} \left(\frac{3n-1}{2n+4} \right)^n$$ Root test $$\lim_{n\to\infty} \sqrt[3]{\left(\frac{3n-1}{2n+4}\right)^n} = \lim_{n\to\infty} \frac{3n-1}{2n+4} = \frac{3}{2} > 1$$ $$\sum_{n=1}^{\infty} \frac{2}{\sqrt[3]{6n^4 - 3}}.$$ Limit comporison test with by = nows $$\lim_{N\to\infty} \frac{a_n}{b_n} = \lim_{N\to\infty} \frac{2}{\sqrt[3]{6n^4-3}} = \lim_{N\to\infty} \frac{2}{\sqrt[3]{6-\frac{3}{15}}} = \frac{2}{\sqrt[3]{6}}$$ - 2. (10 points) Determine whether the following series converge, and explain the reason. If a series converges, compute its sum. - a) (3 points) $$\sum_{n=0}^{\infty} e^n$$ - converge/diverge: Diverge - · reason: geometric series with r? - sum (if it converges): - b) (3 points) $$\sum_{n=0}^{\infty} (-e)^{1-n} = (-e)^{\infty} \left(-\frac{1}{e}\right)^{n}$$ - converge/diverge: Converge - reason: Geometric Series with r<1 cr alternating series. -e² sum (if it converges): <u>e+1</u> - c) (4 points) $$\lim_{n\to\infty}\sum_{i=1}^n\frac{3}{5^i} \qquad = \qquad \lim_{N\to\infty}\left(\frac{3}{5}, \frac{1}{5^i}\right)$$ - converge/diverge: Converge - reason: Limit of partial Sums of the geometric suries & 50 - sum (if it converges): - 3. (10 points) Determine if the following series converge, and explain your reasoning. - a) (3 points) $$\sum_{n=1}^{\infty} \frac{2}{\sqrt{n}}$$ - converge/diverge: $\underbrace{\text{Diverge}}^{n=1}$ b) (3 points) $$\sum_{n=1}^{\infty} \frac{2n}{(n^2+4)^3}$$ - converge/diverge: CONVERGE 5 - · reason: Integral test $$\int \frac{2 \times dx}{(x^2 + 4)^3} = \int \frac{du}{u^3} = -\frac{1}{n^2} = \frac{-1}{(x^2 + 4)^2} \Big|_{1}^{\infty} = \frac{1}{25}$$ $$u = x^2 + 4$$ $$du = 2 \times dx$$ (onverges, (4 points) Use the remainder estimate for the integral test to bound the error in approximating the following series with 9 terms: $$\sum_{n=1}^{\infty} n^{-2}$$ $$\int_{10}^{\infty} \frac{1}{x^{2}} dx \leq R_{q}(x) \leq \int_{q}^{\infty} \frac{1}{x^{2}} dx$$ $$\frac{1}{x^{2}} dx \leq R_{q}(x) \leq \frac{1}{x^{2}} dx$$ $$\frac{1}{x^{2}} dx \leq R_{q}(x) \leq \frac{1}{x^{2}} dx$$ $$\frac{1}{x^{2}} dx \leq R_{q}(x) \leq \frac{1}{x^{2}} dx$$ - 4. (10 points) Determine if the following series are absolutely convergent, conditionally convergent, or divergent, and justify your work. If the series converges estimate the error in the approximation with 8 terms using the remainder estimate for alternating series. The convergent series is worth 6 points and the divergent series is worth 4 points. - a) (? points) $$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$$ Alternating Series test |ant| \(\begin{array}{c} |a_{n1}| \\ \eq Lim | anl = 0 lim | = 0 V n = 0 Vn Error estimation R8(x) 2 lagl= = = ## b) (? points) $$\sum_{n=1}^{\infty} (-1)^n \frac{n^2 + 4}{(3n+1)}$$ Altornating Series test $$\lim_{N\to\infty} \frac{n^2+4}{3n+1} = \infty$$ Divoges 5. (10 points) Fill in the small blanks with the appropriate possibilities shown here and fill in the large blanks with an appropriate mathematical term: - \bullet a_n - \bullet $|a_n|$ - \bullet $(-1)^n a_n$ - $\bullet \ (-1)^n |a_n|$ - a) (2 points) Rearrangements can affect the sum of a/an Conditionally convergent series. - b) (3 points) If $\frac{|a_n|}{|a_n|}$ is nonzero, then $\sum_{n=1}^{\infty}$ is an alternating series. - c) (5 points) Definition: $\sum \frac{\alpha_{\Lambda}}{\alpha_{\Lambda}}$ is a <u>conditionally</u> convergent series if $\sum \frac{\alpha_{\Lambda}}{\alpha_{\Lambda}}$ converges and $\sum \frac{|\alpha_{\Lambda}|}{\alpha_{\Lambda}}$ diverges. ## 6. (10 points) a) (7 points) Determine the interval of convergence for the following power series. $$\sum_{n=1}^{\infty} \frac{(x-11)^n}{n^2}$$ Check endpoints: $$\frac{\mathcal{E}_{1}}{\mathcal{E}_{1}} \frac{(10-1)^{n}}{n^{2}} = \frac{\mathcal{E}_{1}}{n^{2}} \frac{(-1)^{n}}{n^{2}} \quad \text{conveyes} - \text{Alternatory}$$ $$\frac{\mathcal{E}_{2}}{n^{2}} \frac{(2-11)^{n}}{n^{2}} = \frac{\mathcal{E}_{1}}{n^{2}} \frac{1}{n^{2}} \quad \text{conveyes} \quad P-\text{Swies} \quad \text{Intermal}$$ $$\frac{\mathcal{E}_{2}}{n^{2}} \frac{(10-1)^{n}}{n^{2}} = \frac{\mathcal{E}_{1}}{n^{2}} \frac{1}{n^{2}} \quad \text{conveyes} \quad P-\text{Swies} \quad \text{Intermal}$$ b) (3 points) List the possible intervals for a power series using endpoints $a, b, \infty, -\infty$ where appropriate. 7. (5 points) Find a power series centered at a=0 and interval of convergence for $f(x)=\frac{2}{3-x}$. $$\frac{2}{3-X} = \frac{2}{3} \left(\frac{1}{1-\frac{x}{3}} \right) = \frac{2}{3} \frac{20}{1-\frac{x}{3}} \left(\frac{x}{3} \right)^{\frac{1}{3}}$$ This is a geometric Series So it conveyes where $$|\frac{x}{3}| < 1$$ i.e. $(-7,3)$ 8. (5 points) Compute the third order Taylor polynomial for $\frac{2}{x}$ at a=1. $$f(x) = \frac{2}{x} \qquad f(x) = 2$$ $$f(x) = \frac{-2}{x^2} f(x) = -2$$ $$f''(x) = \frac{4}{x^3} + f''(1) = 4$$ $$f'''(x) = \frac{X_{11}}{12} f'''(1) = 12$$ $$T_3(x) = 2 = 2(x-1) + 2(x-1)^2 = 2(x-1)^3$$ - 9. (10 points) - a) (4 points) Write out the general Taylor remainder inequality. $$|R_n(x)| \leq \frac{M}{(n+1)^2} |x-a|^{n+1}$$ b) (6 points) Use the Taylor remainder inequality to bound the approximation $e^x \approx e + e(x-1) + \frac{e}{2}(x-1)^2 + \frac{e}{6}(x-1)^3$ on the interval [-1,3].