Mathematics 8 Problems for Exam 1

The following problems were considered for the exam, but ultimately not included. This document is not indicative of the length or the distribution of problems on the actual exam.

- 1. A particle moving along the x-axis has position x = 0 at time t = 0, and at time t has velocity $v(t) = \frac{1}{\sqrt{1+t^2}}$.
 - (a) Find the position of the particle at time t, for $t \ge 0$.
 - (b) Find the average acceleration of the particle between times t = 0 and t = 10.

2. Find the volume of the solid obtained by rotating the area under the curve $y = \sin x$, for $0 \le x \le \pi$, about the x-axis.

3. Evaluate the following integrals

(a)
$$\int_0^\infty e^{-x} \sin x \, dx$$

(b) $\int_0^4 \frac{dx}{(9+x^2)^{3/2}}$
(c) $\int_0^{\sqrt{5}} \frac{x^3}{\sqrt{x^2+4}} dx$

4. Determine whether the following converge or diverge. Be sure to explain your reasoning.

(a)
$$\sum_{n=1}^{\infty} \frac{\ln n - 3}{n}.$$

(b)
$$\sum_{n=2}^{\infty} \frac{\ln(n)}{\ln(n^2)}$$

(c)
$$\sum_{n=1}^{\infty} \ln\left(1 + \frac{1}{n}\right)$$

5. Evaluate the following. (Your answer should be a number, $+\infty$, $-\infty$, or "diverges" if it diverges but not to $+\infty$ or $-\infty$.) Be sure to explain your reasoning.

(a)
$$\lim_{n \to \infty} \frac{\ln(n^3 + 5)}{n}$$

(b)
$$\lim_{n \to \infty} \frac{n \ln(n)}{n^2 + 5}$$

(c) $\lim_{n \to \infty} n^2 (\cos(1/n) - 1)$

6. Let $a_n = \frac{1}{(n+3)^3}$.

Assume you want to use the partial sum $s_c = \sum_{n=1}^{c} a_n$ to approximate the value of $\sum_{n=1}^{\infty} a_n$. To guarantee an error of at most $\frac{8}{10^6}$, how large must c be?