Mathematics 8

Problems for Exam 1
The following problems were considered for the exam, but ultimately not included. This document is not indicative of the length or the distribution of problems on the actual exam.

1. A particle moving along the x-axis has position $x=0$ at time $t=0$, and at time t has velocity $v(t)=\frac{1}{\sqrt{1+t^{2}}}$.
(a) Find the position of the particle at time t, for $t \geq 0$.
(b) Find the average acceleration of the particle between times $t=0$ and $t=10$.
2. Find the volume of the solid obtained by rotating the area under the curve $y=\sin x$, for $0 \leq x \leq \pi$, about the x-axis.
3. Evaluate the following integrals
(a) $\int_{0}^{\infty} e^{-x} \sin x d x$
(b) $\int_{0}^{4} \frac{d x}{\left(9+x^{2}\right)^{3 / 2}}$
(c) $\int_{0}^{\sqrt{5}} \frac{x^{3}}{\sqrt{x^{2}+4}} d x$
4. Determine whether the following converge or diverge. Be sure to explain your reasoning.
(a) $\sum_{n=1}^{\infty} \frac{\ln n-3}{n}$.
(b) $\sum_{n=2}^{\infty} \frac{\ln (n)}{\ln \left(n^{2}\right)}$
(c) $\sum_{n=1}^{\infty} \ln \left(1+\frac{1}{n}\right)$
5. Evaluate the following. (Your answer should be a number, $+\infty,-\infty$, or "diverges" if it diverges but not to $+\infty$ or $-\infty$.) Be sure to explain your reasoning.
(a) $\lim _{n \rightarrow \infty} \frac{\ln \left(n^{3}+5\right)}{n}$
(b) $\lim _{n \rightarrow \infty} \frac{n \ln (n)}{n^{2}+5}$
(c) $\lim _{n \rightarrow \infty} n^{2}(\cos (1 / n)-1)$
6. Let $a_{n}=\frac{1}{(n+3)^{3}}$.

Assume you want to use the partial sum $s_{c}=\sum_{n=1}^{c} a_{n}$ to approximate the value of $\sum_{n=1}^{\infty} a_{n}$.
To guarantee an error of at most $\frac{8}{10^{6}}$, how large must c be?

