Math 8 Midterm 2 Solutions

November 8, 2011
(1) (10 pts) Let $f(x)=x^{3} \ln \left(1+x^{2}\right)$. Find the Maclaurin series for f. Solution: We know $\frac{1}{1-r}=\sum_{n=0}^{\infty} r^{n}$ for $|r|<1$. Thus,

$$
\begin{aligned}
\ln (1+x) & =\int \frac{1}{1+x} d x \\
& =\int \sum_{n=0}^{\infty}(-x)^{n} d x \\
& =\int \sum_{n=0}^{\infty}(-1)^{n} x^{n} d x \\
& =\sum_{n=0}^{\infty}(-1)^{n} \int x^{n} d x \\
& =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n+1}}{n+1} \\
& =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n+1}}{n+1} .
\end{aligned}
$$

This means that

$$
\ln \left(1+x^{2}\right)=\sum_{n=0}^{\infty}(-1)^{n} \frac{\left(x^{2}\right)^{n+1}}{n+1}=\sum_{n=0}^{\infty}(-1)^{n} \frac{(x)^{2 n+2}}{n+1}
$$

Finally, we find

$$
x^{3} \ln \left(1+x^{2}\right)=\sum_{n=0}^{\infty}(-1)^{n} \frac{(x)^{2 n+5}}{n+1} .
$$

(2) (14 pts) Find the interval of convergence of the following power series.

$$
\sum_{n=1}^{\infty} \frac{(x-5)^{n}}{5^{n} \sqrt{n}}
$$

Solution: We shall use the ratio test.

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{(x-5)^{n+1}}{5^{n+1} \sqrt{n+1}} \frac{5^{n} \sqrt{n}}{(x-5)^{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{(x-5)}{5} \sqrt{\frac{n}{n+1}}\right| \\
& =\frac{|x-5|}{5}
\end{aligned}
$$

So the series will converge when $\frac{|x-5|}{5}<1$ or $0<x<10$. Now we must check the endpoints.

At $x=0$, the series becomes $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}$. This series converges by the alternating series test.

At $x=10$, the series becomes $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$. This series diverges by the p-test.
Thus the interval of convergence is $0 \leq x<10$.
(3) Consider the following series.

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n} 4^{n} x^{n}}{n!}
$$

(a) (4 pts) What function is the series equal to?

Solution:

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n} 4^{n} x^{n}}{n!}=\sum_{n=0}^{\infty} \frac{(-4 x)^{n}}{n!}=e^{-4 x}
$$

(b) (10 pts) Suppose the 4th degree Taylor polynomial, $T_{4}(x)$, is used to approximate the series for $|x|<1$. Give a bound on the error in using this approximation.

Solution: We must use the Taylor inequality.

$$
\left|R_{4}\right| \leq \frac{M}{5!}|x|^{5}<\frac{M}{5!}
$$

Now

$$
M=\sup _{|x| \leq 1}\left|f^{5}(x)\right|=\sup _{|x| \leq 1} 4^{5} e^{-4 x}=4^{5} e^{4}
$$

Thus

$$
\left|R_{4}\right|<\frac{4^{5} e^{4}}{5!}
$$

(4) Let O be the origin, P the point $(1,2,3)$, and Q the point $(0,-2,2)$.
(a) (6 pts) Find the area of the parallelogram with P and Q the two vertices adjacent to vertex O.
Solution: $\overrightarrow{O P}=<1,2,3>$ and $\overrightarrow{O Q}=<0,-2,2>$. We know that the area of the parallelogram determined by these vectors is given by

$$
A=|\overrightarrow{O P} \times \overrightarrow{O Q}|=|<10,2,-2>| \sqrt{108}
$$

(b) (6 pts) Find an equation for the plane containing O, P, and Q.

Solution: To make a plane, we need a point and a normal vector. We computed the normal vector in the previous problem. $\vec{n}=<10,2,-2>$ We shall use the origin as our point.

Thus the plane is given by

$$
\vec{n} \cdot<x, y, z>=10 x+2 y-2 z=0
$$

(5) Let a curve in 3 -space be given by

$$
\boldsymbol{r}(t)=\langle 4 t, \sin (3 t)+2, \cos (3 t)-1\rangle
$$

(a) $(6 \mathrm{pts})$ Find the tangent line at $t=0$.

Solution: To make a line, we need a point and a direction. Our point is $\mathbf{r}(0)=<0,2,0>$. Our direction is $\mathbf{r}^{\prime}(0)$.
Now, $\mathbf{r}^{\prime}(t)=<4,3 \cos (3 t), 3 \sin (3 t)>$. Thus $\mathbf{r}^{\prime}(0)=<4,3,0>$. So our line is determined by the parameterization

$$
\begin{aligned}
x & =4 t \\
y & =2+3 t \\
Z & =0
\end{aligned}
$$

(b) (6 pts) For what b is the length of the curve from $t=0$ to $t=b$ equal to 10 ?

Solution: The length is given by

$$
\begin{aligned}
l & =\int_{0}^{b}\left|\mathbf{r}^{\prime}(t)\right| d t \\
& =\int_{0}^{b} \sqrt{4+9\left(\cos ^{2}(3 t)+\sin ^{2}(3 t)\right)} d t \\
& =\int_{0}^{b} \sqrt{5} d t \\
& =5 b
\end{aligned}
$$

We want $l=10$. Thus $b=2$.
(6) (12 pts) Consider again the curve in 3 -space given by

$$
\boldsymbol{r}(t)=\langle 4 t, \sin (3 t)+2, \cos (3 t)-1\rangle .
$$

Find the curvature.
Solution: Recall, that curvature is

$$
\kappa(t)=\frac{\left|\mathbf{T}^{\prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|}=\frac{\left|\mathbf{r}^{\prime \prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|^{2}}
$$

Previously, we found $\mathbf{r}^{\prime}(t)=<4,3 \cos (3 t),-3 \sin (3 t)>$ and $\left|\mathbf{r}^{\prime}(t)\right|=5$. So $\mathbf{r}^{\prime \prime \prime}(t)=<$ $0,-9 \sin (3 t),-9 \cos (3 t)>$. Then

$$
\kappa(t)=\frac{9 \sqrt{2}}{5^{2}} .
$$

(7) (10 pts) Find the distance between the line

$$
x=t-1, \quad y=2 t+3, \quad z=2-t
$$

and the point $(1,3,-2)$.

Solution:

Let $P=(1,3,-2), B$ the a point on the line corresponding to $t=0$ (ie. $B=$ $(-1,3,2))$ and \mathbf{v} be the direction vector of the line $\mathbf{v}=<1,2,-1\rangle$.

Our goal is to find $d=|\overrightarrow{C P}|$. We know $|\overrightarrow{C B}|=\frac{\mathbf{v} \cdot \overrightarrow{B P}}{|\mathbf{v}|}$. Since $\left.\overrightarrow{B P}=<-2,0,4\right\rangle$, $|\overrightarrow{C B}|=\frac{6}{\sqrt{6}}$. By Pythagorean thm,

$$
d^{2}=|\overrightarrow{B P}|^{2}-|\overrightarrow{C B}|^{2}=20-6=14
$$

Thus the distance is $d=\sqrt{14}$.
(8) (8 pts) Find $\boldsymbol{r}(t)$ if $\boldsymbol{r}^{\prime}(t)=\left\langle\cos (t), e^{t}, 2\right\rangle$ and $\boldsymbol{r}(0)=\langle 1,1,1\rangle$. Solution:

$$
\begin{aligned}
\mathbf{r}(t) & =\int\left\langle\cos (t), e^{t}, 2\right\rangle d t \\
& =\left\langle\sin (t), e^{t}, 2 t\right\rangle+\left\langle c_{1}, c_{2}, c_{3}\right\rangle
\end{aligned}
$$

Now $\boldsymbol{r}(0)=\langle 1,1,1\rangle$ which implies $\left.\left\langle c_{1}, c_{2}, c_{3}\right\rangle=<1,0,1\right\rangle$. Thus

$$
\mathbf{r}(t)=\left\langle\sin (t)+1, e^{t}, 2 t+1\right\rangle
$$

(9) (8 pts) Determine whether the following statements are true or false. You need not show your work and there will be no partial credit.
(a) F The only curves with constant curvature are straight lines and circles.
(b) $\quad F \quad$ The lines $\langle 4 t-1,3-2 t, 6 t\rangle$ and $\langle 3-2 t, t+1,4-3 t\rangle$ are skew.
(c) $\quad T$ The line $\langle 3 t+2, t-1,2 t-5\rangle$ and the plane $x-y-z=0$ are parallel.
(d) $\frac{F}{3 \pi / 4}$. The angle between the planes $2 x-y+3 z=1$ and $x+y+z=20$ is

