Math 8 Midterm 2 Solutions November 8, 2011

(1) (10 pts) Let $f(x) = x^3 \ln(1+x^2)$. Find the Maclaurin series for f. Solution: We know $\frac{1}{1-r} = \sum_{n=0}^{\infty} r^n$ for |r| < 1. Thus,

$$\ln(1+x) = \int \frac{1}{1+x} dx$$

= $\int \sum_{n=0}^{\infty} (-x)^n dx$
= $\int \sum_{n=0}^{\infty} (-1)^n x^n dx$
= $\sum_{n=0}^{\infty} (-1)^n \int x^n dx$
= $\sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1}$
= $\sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1}$.

This means that

$$\ln(1+x^2) = \sum_{n=0}^{\infty} (-1)^n \frac{(x^2)^{n+1}}{n+1} = \sum_{n=0}^{\infty} (-1)^n \frac{(x)^{2n+2}}{n+1}.$$

Finally, we find

$$x^{3}\ln(1+x^{2}) = \sum_{n=0}^{\infty} (-1)^{n} \frac{(x)^{2n+5}}{n+1}.$$

(2) (14 pts) Find the interval of convergence of the following power series.

$$\sum_{n=1}^{\infty} \frac{(x-5)^n}{5^n \sqrt{n}}$$

Solution: We shall use the ratio test.

$$\lim_{n \to \infty} \left| \frac{(x-5)^{n+1}}{5^{n+1}\sqrt{n+1}} \frac{5^n \sqrt{n}}{(x-5)^n} \right| = \lim_{n \to \infty} \left| \frac{(x-5)}{5} \sqrt{\frac{n}{n+1}} \right|$$
$$= \frac{|x-5|}{5}$$

So the series will converge when $\frac{|x-5|}{5} < 1$ or 0 < x < 10. Now we must check the endpoints.

At x = 0, the series becomes $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$. This series converges by the alternating series test.

At x = 10, the series becomes $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$. This series diverges by the p-test. Thus the interval of convergence is $0 \le x < 10$.

(3) Consider the following series.

$$\sum_{n=0}^{\infty} \frac{(-1)^n 4^n x^n}{n!}$$

(a) (4 pts) What function is the series equal to? Solution:

$$\sum_{n=0}^{\infty} \frac{(-1)^n 4^n x^n}{n!} = \sum_{n=0}^{\infty} \frac{(-4x)^n}{n!} = e^{-4x}$$

(b) (10 pts) Suppose the 4th degree Taylor polynomial, $T_4(x)$, is used to approximate the series for |x| < 1. Give a bound on the error in using this approximation.

Solution: We must use the Taylor inequality.

$$|R_4| \le \frac{M}{5!} |x|^5 < \frac{M}{5!}$$

Now

$$M = \sup_{|x| \le 1} |f^5(x)| = \sup_{|x| \le 1} 4^5 e^{-4x} = 4^5 e^4$$

Thus

$$|R_4| < \frac{4^5 e^4}{5!}.$$

- (4) Let O be the origin, P the point (1, 2, 3), and Q the point (0, -2, 2).
 - (a) (6 pts) Find the area of the parallelogram with P and Q the two vertices adjacent to vertex O.
 Solution: OP =< 1, 2, 3 > and OQ =< 0, -2, 2 >. We know that the area of the parallelogram determined by these vectors is given by

$$A = |OP \times OQ| = |<10, 2, -2 > |\sqrt{108}$$

(b) (6 pts) Find an equation for the plane containing O, P, and Q.

Solution: To make a plane, we need a point and a normal vector. We computed the normal vector in the previous problem. $\vec{n} = <10, 2, -2 >$ We shall use the origin as our point.

Thus the plane is given by

$$\vec{n} \cdot \langle x, y, z \rangle = 10x + 2y - 2z = 0.$$

(5) Let a curve in 3-space be given by

$$\boldsymbol{r}(t) = \langle 4t, \, \sin(3t) + 2, \, \cos(3t) - 1 \rangle.$$

(a) (6 pts) Find the tangent line at t = 0. Solution: To make a line, we need a point and a direction. Our point is

 $\mathbf{r}(0)=<0,2,0>.$ Our direction is $\mathbf{r}'(0).$ Now, $\mathbf{r}'(t)=<4,3\cos(3t),3\sin(3t)>.$ Thus $\mathbf{r}'(0)=<4,3,0>$. So our line is determined by the parameterization

$$x = 4t$$
$$y = 2 + 3t$$
$$Z = 0$$

(b) (6 pts) For what b is the length of the curve from t = 0 to t = b equal to 10?

Solution: The length is given by

$$l = \int_0^b |\mathbf{r}'(t)| dt$$

=
$$\int_0^b \sqrt{4 + 9(\cos^2(3t) + \sin^2(3t))} dt$$

=
$$\int_0^b \sqrt{5} dt$$

=
$$5b$$

We want l = 10. Thus b = 2.

(6) (12 pts) Consider again the curve in 3-space given by

$$\boldsymbol{r}(t) = \langle 4t, \ \sin(3t) + 2, \ \cos(3t) - 1 \rangle.$$

Find the curvature.

Solution: Recall, that curvature is

$$\kappa(t) = \frac{|\mathbf{T}'(t)|}{|\mathbf{r}'(t)|} = \frac{|\mathbf{r}''(t)|}{|\mathbf{r}'(t)|^2}$$

Previously, we found $\mathbf{r}'(t) = <4, 3\cos(3t), -3\sin(3t) > \text{and } |\mathbf{r}'(t)| = 5$. So $\mathbf{r}''(t) = <0, -9\sin(3t), -9\cos(3t) >$. Then

$$\kappa(t) = \frac{9\sqrt{2}}{5^2}.$$

(7) (10 pts) Find the distance between the line

$$x = t - 1, y = 2t + 3, z = 2 - t$$

and the point (1, 3, -2). Solution:

Let P = (1, 3, -2), B the a point on the line corresponding to t = 0 (ie. B =

(-1,3,2)) and **v** be the direction vector of the line $\mathbf{v} = <1,2,-1>$. Our goal is to find $d = |\vec{CP}|$. We know $|\vec{CB}| = \frac{\mathbf{v} \cdot \vec{BP}}{|\mathbf{v}|}$. Since $\vec{BP} = <-2,0,4>$, $|\vec{CB}| = \frac{6}{\sqrt{6}}$. By Pythagorean thm,

$$d^{2} = |\vec{BP}|^{2} - |\vec{CB}|^{2} = 20 - 6 = 14.$$

Thus the distance is $d = \sqrt{14}$.

(8) (8 pts) Find $\boldsymbol{r}(t)$ if $\boldsymbol{r}'(t) = \langle \cos(t), e^t, 2 \rangle$ and $\boldsymbol{r}(0) = \langle 1, 1, 1 \rangle$. Solution:

$$\mathbf{r}(t) = \int \langle \cos(t), e^t, 2 \rangle dt$$
$$= \langle \sin(t), e^t, 2t \rangle + \langle c_1, c_2, c_3 \rangle$$

Now $\mathbf{r}(0) = \langle 1, 1, 1 \rangle$ which implies $\langle c_1, c_2, c_3 \rangle = \langle 1, 0, 1 \rangle$. Thus $\mathbf{r}(t) = \langle \sin(t) + 1, e^t, 2t + 1 \rangle$.

- (9) (8 pts) Determine whether the following statements are true or false. You need not show your work and there will be no partial credit.
 - (a) \underline{F} The only curves with constant curvature are straight lines and circles.
 - (b) <u>F</u> The lines $\langle 4t 1, 3 2t, 6t \rangle$ and $\langle 3 2t, t + 1, 4 3t \rangle$ are skew.
 - (c) <u>T</u> The line $\langle 3t+2, t-1, 2t-5 \rangle$ and the plane x-y-z=0 are parallel.
 - (d) $\frac{F}{3\pi/4}$. The angle between the planes 2x y + 3z = 1 and x + y + z = 20 is