Worksheet #8

(1)
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt{n}}$$

Also determine which partial sum is accurate to 0.01.

Solution: Note that the $\lim_{n\to\infty} \frac{1}{\sqrt{n}} = 0$ and $\frac{1}{\sqrt{n}} > \frac{1}{\sqrt{n+1}} > 0$ for all n. Thus by the alternating series test, the series converges.

We need to find N such that $\sqrt{N+1} > 100$. Thus $N > 100^2 - 1$.

(2) Does $\sum_{n=1}^{\infty} \frac{\ln n}{n}$ converge or diverge?

Solution: We will use integral test.

$$\int_{1}^{\infty} \frac{\ln x}{x} dx = \lim_{b \to \infty} \int_{1}^{b} \frac{\ln x}{x} dx$$
$$= \lim_{b \to \infty} \int_{0}^{\ln b} u du \quad (\text{usub } u = \ln x)$$
$$= \lim_{b \to \infty} \frac{1}{2u^{2}} |_{0}^{\ln b}$$
$$= \lim_{b \to \infty} \frac{1}{2(\ln b)^{2}} = \infty$$

Therefore, the series diverges.

(3) Does $\sum_{n=1}^{\infty} \frac{n}{n^2 + 1}$ converge or diverge? Solution: Limit comparison test with $b_n = \frac{1}{n}$.

$$\lim_{n \to \infty} \frac{\frac{n}{n^2 + 1}}{\frac{1}{n}} = \lim_{n \to \infty} \frac{n^2}{n^2 + 1} = 1$$

Thus we can compare. We know that $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges. Therefore by the limit comparison test the series diverges.

 $\frac{\infty}{2}$ (3)ⁿ

(4) Does $\sum_{n=1}^{\infty} \left(-\frac{3}{4}\right)^n$ converge or diverge? Solution: This is a geometric series where $r = -\frac{3}{4}$

Solution: This is a geometric series where $r = -\frac{3}{4} < 1$. Thus it is convergent. In fact, we know what it equals.

$$\sum_{n=1}^{\infty} \left(-\frac{3}{4}\right)^n = \frac{1}{1 - \left(-\frac{3}{4}\right)} = \frac{4}{7}$$

Classify the series as absolutely convergent, conditionally convergent, or divergent.

(1) $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n}{10n+1}$ Solution: $\lim_{n\to\infty} (-1)^{n+1} \frac{n}{10n+1} \neq 0$. Thus, by the divergence test, the series diverges. (2) $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{5n}$ Solution: Let $f(n) = \frac{1}{5n}$. Then $f'(n) = -\frac{1}{5n^2} < 0$ for all n. Therefore, the sequences is

Solution: Let $f(n) = \frac{1}{5n}$. Then $f'(n) = -\frac{1}{5n^2} < 0$ for all n. Therefore, the sequences is decreasing. We know f(n) > 0. Thus by the alternating series does converge. However, $\sum_{n=1}^{\infty} \frac{1}{5n}$ is divergent. Thus $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{5n}$ converges conditionally.

(3) $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n^4}{e^n}$

Solution: Does $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n^4}{e^n}$ converge? Yes, it does by the integral test. Thus the series converges absolutely.

(4) $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{\cos n}{n^2}$

Solution: Does $\sum_{n=1}^{\infty} \frac{|\cos n|}{n^2}$ converge? Let's compare with $b_n = \frac{1}{n^2}$. We know $\frac{|\cos n|}{n^2} \leq \frac{1}{n^2}$. Also, by p- test the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges.

Therefore
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{\cos n}{n^2}$$
 converges absolutely.