## Worksheet \#5

(1) Determine if the sequence converges. If it does, find its limit.
(a) $a_{n}=\frac{3 n+2}{n+1}$

## Solution:

$$
\lim _{n \rightarrow \infty} \frac{3 n+2}{n+1}=\lim _{n \rightarrow \infty} \frac{3+\frac{2}{n}}{1+\frac{1}{n}}=3
$$

(b) $a_{n}=e^{-n} \sin n$

Solution: We know that $-e^{-n} \leq a_{n} \leq e^{-n}$, we also know $\lim _{n \rightarrow \infty}-e^{-n}=0$ and $\lim _{n \rightarrow \infty} e^{-n}=0$. Therefore by the Squeeze Theorem, $\lim _{n \rightarrow \infty} e^{-n} \sin n=0$.
(c) $a_{n}=\frac{5 n^{3}+2 n+4}{n^{2}+6}$

## Solution:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} a_{n} & =\lim _{n \rightarrow \infty} \frac{5 n^{3}+2 n+4}{n^{2}+6} \\
& =\lim _{n \rightarrow \infty} \frac{5 n+\frac{2}{n}+\frac{4}{n^{2}}}{1+\frac{6}{n^{2}}} \\
& \rightarrow \infty
\end{aligned}
$$

Thus the sequence diverges.
(d) $a_{n}=\left(1+\frac{2}{n}\right)^{n / 2}$

Solution: Since there is an $n$ in the exponent, we need to think outside the box. Recall that $a_{n}=\left(1+\frac{2}{n}\right)^{n / 2}=e^{\ln \left(\left(1+\frac{2}{n}\right)^{n / 2}\right)}$. Thus we can move the limit to the exponent and work on it there.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \ln \left(\left(1+\frac{2}{n}\right)^{n / 2}\right) & =\lim _{n \rightarrow \infty} \frac{n}{2} \ln \left(1+\frac{2}{n}\right) \\
& =\lim _{n \rightarrow \infty} \frac{\ln \left(1+\frac{2}{n}\right)}{\frac{2}{n}}
\end{aligned}
$$

Both the numerator and the denominator go to 0 with $n$, therefore we can use L'Hopital's rule.

$$
\lim _{n \rightarrow \infty} \frac{\ln \left(1+\frac{2}{n}\right)}{\frac{2}{n}}=\lim _{n \rightarrow \infty} \frac{\frac{-2}{n^{2}\left(1+\frac{2}{n}\right)}}{-\frac{2}{n^{2}}} \quad=\lim _{n \rightarrow \infty} \frac{1}{1+\frac{2}{n}}=1
$$

Thus, $\lim _{n \rightarrow \infty} a_{n}=e^{1}=e$.
(2) Indicate if the series converges. If it converges, find its sum.
(a) $\sum_{k=0}^{\infty}\left[2\left(\frac{1}{4}\right)^{k}+3\left(-\frac{1}{5}\right)^{k}\right]$

Solution: Notice we are summing two geometric series where $r_{1}=\frac{1}{4}$ and $r_{2}=\frac{-1}{5}$.

$$
\begin{aligned}
\sum_{k=0}^{\infty}\left[2\left(\frac{1}{4}\right)^{k}+3\left(-\frac{1}{5}\right)^{k}\right] & =2 \sum_{k=0}^{\infty}\left(\frac{1}{4}\right)^{k}+3 \sum_{k=0}^{\infty}\left(-\frac{1}{5}\right)^{k} \\
& =\frac{2}{1-\frac{1}{4}}+\frac{3}{1-\left(\frac{-1}{5}\right)} \\
& =\frac{2}{\frac{3}{4}}+\frac{3}{\frac{6}{5}}
\end{aligned}
$$

(b) $\sum_{k=0}^{\infty}\left(\frac{9}{8}\right)^{k}$

Solution: This series diverges.
(c) $\sum_{k=1}^{\infty} \frac{2}{(k+2) k}$

Solution: Notice that we can split the fraction up via partial fractions.

$$
\frac{2}{(k+2) k}=\frac{A}{k}+\frac{B}{k+2}=\frac{A k+2 A+B k}{k(k+2)}
$$

Matching coefficients, we find that $A=1$ and $B=-1$. Thus,

$$
\sum_{k=1}^{\infty} \frac{2}{(k+2) k}=\sum_{k=1}^{\infty}\left(\frac{1}{k}-\frac{1}{k+2}\right)
$$

We look at the partial sums of this series.

$$
\begin{gathered}
S_{1}=1-\frac{1}{3} \\
S_{2}=1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4} \\
S_{3}=1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}=1+\frac{1}{2}-\frac{1}{4}-\frac{1}{5} \\
S_{4}=1+\frac{1}{2}-\frac{1}{4}-\frac{1}{5}+\frac{1}{4}-\frac{1}{6} \\
S_{N}=1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+\cdots-\frac{1}{N+2} \\
=1+\frac{1}{2}-\frac{1}{N+1}-\frac{1}{N+2}
\end{gathered}
$$

Now we can take the limit.

$$
\sum_{k=1}^{\infty} \frac{2}{(k+2) k}=\lim _{N \rightarrow} S_{N}=\frac{3}{2}
$$

