Worksheet #5

- (1) Determine if the sequence converges. If it does, find its limit.
 - (a) $a_n = \frac{3n+2}{n+1}$ Solution:

$$\lim_{n \to \infty} \frac{3n+2}{n+1} = \lim_{n \to \infty} \frac{3+\frac{2}{n}}{1+\frac{1}{n}} = 3$$

(b) $a_n = e^{-n} \sin n$ (~) ∞_n = 0 = 5mⁿ
 Solution: We know that -e⁻ⁿ ≤ a_n ≤ e⁻ⁿ, we also know lim_{n→∞} -e⁻ⁿ = 0 and lim_{n→∞} e⁻ⁿ = 0. Therefore by the Squeeze Theorem, lim_{n→∞} e⁻ⁿ sin n = 0.
 (c) a_n = 5n³+2n+4/n²+6

Solution:

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{5n^3 + 2n + 4}{n^2 + 6}$$
$$= \lim_{n \to \infty} \frac{5n + \frac{2}{n} + \frac{4}{n^2}}{1 + \frac{6}{n^2}}$$
$$\to \infty$$

Thus the sequence diverges.

(d) $a_n = \left(1 + \frac{2}{n}\right)^{n/2}$ Solution: Since there is an *n* in the exponent, we need to think outside the box. Recall that $a_n = \left(1 + \frac{2}{n}\right)^{n/2} = e^{\ln\left(\left(1 + \frac{2}{n}\right)^{n/2}\right)}$. Thus we can move the limit to the exponent and work on it there.

$$\lim_{n \to \infty} \ln\left(\left(1 + \frac{2}{n}\right)^{n/2}\right) = \lim_{n \to \infty} \frac{n}{2} \ln\left(1 + \frac{2}{n}\right)$$
$$= \lim_{n \to \infty} \frac{\ln\left(1 + \frac{2}{n}\right)}{\frac{2}{n}}$$

Both the numerator and the denominator go to 0 with n, therefore we can use L'Hopital's rule.

$$\lim_{n \to \infty} \frac{\ln\left(1 + \frac{2}{n}\right)}{\frac{2}{n}} = \lim_{n \to \infty} \frac{\frac{-2}{n^2(1 + \frac{2}{n})}}{-\frac{2}{n^2}} = \lim_{n \to \infty} \frac{1}{1 + \frac{2}{n}} = 1$$

Thus, $\lim_{n \to \infty} a_n = e^1 = e$.

(2) Indicate if the series converges. If it converges, find its sum.

(a)
$$\sum_{k=0}^{\infty} \left[2(\frac{1}{4})^k + 3(-\frac{1}{5})^k \right]$$

Solution: Notice we are summing two geometric series where $r_1 = \frac{1}{4}$ and $r_2 = \frac{-1}{5}$.

$$\begin{split} \sum_{k=0}^{\infty} \left[2(\frac{1}{4})^k + 3(-\frac{1}{5})^k \right] &= 2\sum_{k=0}^{\infty} (\frac{1}{4})^k + 3\sum_{k=0}^{\infty} (-\frac{1}{5})^k \\ &= \frac{2}{1-\frac{1}{4}} + \frac{3}{1-(\frac{-1}{5})} \\ &= \frac{2}{\frac{3}{4}} + \frac{3}{\frac{6}{5}} \end{split}$$

- (b) $\sum_{k=0}^{\infty} (\frac{9}{8})^k$ Solution: This series diverges.
- (c) $\sum_{k=1}^{\infty} \frac{2}{(k+2)k}$ Solution: Notice that we can split the fraction up via partial fractions.

$$\frac{2}{(k+2)k} = \frac{A}{k} + \frac{B}{k+2} = \frac{Ak+2A+Bk}{k(k+2)}$$

Matching coefficients, we find that A = 1 and B = -1. Thus,

$$\sum_{k=1}^{\infty} \frac{2}{(k+2)k} = \sum_{k=1}^{\infty} \left(\frac{1}{k} - \frac{1}{k+2}\right)$$

We look at the partial sums of this series.

$$S_{1} = 1 - \frac{1}{3}$$

$$S_{2} = 1 - \frac{1}{3} + \frac{1}{2} - \frac{1}{4}$$

$$S_{3} = 1 - \frac{1}{3} + \frac{1}{2} - \frac{1}{4} + \frac{1}{3} - \frac{1}{5} = 1 + \frac{1}{2} - \frac{1}{4} - \frac{1}{5}$$

$$S_{4} = 1 + \frac{1}{2} - \frac{1}{4} - \frac{1}{5} + \frac{1}{4} - \frac{1}{6}$$

$$S_{N} = 1 - \frac{1}{3} + \frac{1}{2} - \frac{1}{4} + \frac{1}{3} - \frac{1}{5} + \dots - \frac{1}{N+2}$$

$$= 1 + \frac{1}{2} - \frac{1}{N+1} - \frac{1}{N+2}$$

Now we can take the limit.

$$\sum_{k=1}^{\infty} \frac{2}{(k+2)k} = \lim_{N \to} S_N = \frac{3}{2}$$