Worksheet \#26

(1) Find all critical points. Indicate whether each point gives a local minimum, local maximum, or a saddle point.

$$
f(x, y)=x y^{2}-6 x^{2}-3 y^{2}
$$

Solution: First, we must find the critical points (ie. where does $f_{x}=0$ and $f_{y}=0$.)

$$
f_{x}=y^{2}-12 x \quad f_{y}=2 x y-6 y
$$

Setting each of these equal to zero and solving for x and y, we find the critical points are $(0,0),(3,6)$, and $(3,-6)$.

Now we use the second derivative test to classify the points.
Note

$$
f_{x x}=-12 \quad f_{x y}=2 y \quad f_{y y}=2 x-6
$$

Case 1: $(0,0) D(0,0)=72>0$ Since $f_{x x}<0,(0,0)$ is a local max.
Case 2: $(3,6) D(3,6)=-12^{2}<0$ This implies $(3,6)$ is a saddle point.
Case 3: $(3,-6) D(3,-6)=-12^{2}<0$ This implies $(3,-6)$ is a saddle point.
(2) Find the global minimum value and global maximum value of $f(x, y)=4 x+6 y-x^{2}-y^{2}$ on $S=\{(x, y): 0 \leq x \leq 4,0 \leq y \leq 5\}$ and indicate where they occur.

Solution: First, we find the critical points (ie. where does $f_{x}=0$ and $f_{y}=0$.)

$$
f_{x}=4-2 x \quad f_{y}=6-2 y
$$

Setting each of these equal to zero and solving for x and y, we find the critical point is $(2,3)$. This point is in S so we use the second derivative test to determine if it is a local \max or min.

$$
f_{x x}=-2 \quad f_{x y}=0 \quad f_{y y}=-2
$$

Since $D(2,3)=4>0$ and $f_{x x}<0,(2,3)$ is a local max. $f(2,3)=13$.
Now we must check the boundary.
$x=0$ edge

$$
g_{1}(y)=f(0, y)=6 y-y^{2}
$$

$y=3$ is a critical point. $g_{1}^{\prime \prime}<0$ implies $y=3$ is a local maximum. $f(0,3)=9$. $x=4$ edge

$$
g_{2}(y)=f(4, y)=6 y-y^{2}
$$

$y=3$ is a critical point. $g_{2}^{\prime \prime}<0$ implies $y=3$ is a local maximum. $f(4,3)=9$.
$y=0$ edge

$$
g_{3}(x)=f(x, 0)=4 x-x^{2}
$$

$x=2$ is a critical point. $g_{3}^{\prime \prime}<0$ implies $x=2$ is a local maximum. $f(2,0)=4$. $y=5$ edge

$$
g_{4}(x)=f(x, 5)=4 x-x^{2}+5
$$

$x=2$ is a critical point. $g_{4}^{\prime \prime}<0$ implies $x=2$ is a local maximum. $f(2,5)=9$.
Checking the corners, we find $f(0,0)=f(4,0)=0$.
Thus, the global max value is 13 at $(2,3)$ and the global min value is 0 at $(0,0)$ and $(4,0)$.
(3) Find the 3-dimensional vector with length 9 , the sum of whose components is a maximum.

Solution: Let $\langle x, y, z\rangle$ denote the vector we are searching for. We know that

$$
L^{2}=x^{2}+y^{2}+z^{2}=81
$$

and we want to maximize

$$
S(x, y, z)=x+y+z .
$$

Solving for z in L^{2}, we find $z= \pm \sqrt{81-x^{2}-y^{2}}$. We want S to be maximized thus z must be positive, ie. $z=\sqrt{81-x^{2}-y^{2}}$. Plugging this into S, we find $S(x, y)=$ $x+y+\sqrt{81-x^{2}-y^{2}}$ for $0 \leq x^{2}+y^{2} \leq 9$.

We must find the critical points.

$$
S_{x}=1-\frac{x}{\sqrt{81-x^{2}-y^{2}}} \quad S_{y}=1-\frac{y}{\sqrt{81-x^{2}-y^{2}}}
$$

Setting both equal to zero, we find

$$
x=\sqrt{81-x^{2}-y^{2}} \quad y=\sqrt{81-x^{2}-y^{2}} .
$$

Thus the only critical point is $x=y=3 \sqrt{3}$. We find $z=3 \sqrt{3}$ and

$$
S(3 \sqrt{3}, 3 \sqrt{3}, 3 \sqrt{3})=9 \sqrt{3} .
$$

Checking the boundary ($x=3 \cos t, y=3 \sin t$), we find the $\max S$ can be is $\frac{18}{\sqrt{2}}<9 \sqrt{3}$.
Thus the vector we are looking for is $3 \sqrt{3}<1,1,1\rangle$.

