Worksheet \#25

(1) Find the equation of the tangent plane and the normal line to the surface $x+y+z=e^{x y z}$ at $(0,0,1)$.
Solution: The normal vector is the gradient evaluated at the point. Let $F(x, y, z)=$ $x+y+z-e^{x y z}$. The gradient is

$$
\begin{gathered}
\nabla F(x, y, z)=<F_{x}, F_{y}, F_{z}>=<1-y z e^{x y z}, 1-x z e^{x y z}, 1-x y e^{x y z}> \\
\nabla F(0,0,1)=<1,1,1>
\end{gathered}
$$

The tangent plane is

$$
<1,1,1>\cdot<x, y, z-1>=0
$$

or $x+y+z-1=0$. The normal line (i.e. the line with direction given by the normal vector through $(0,0,1)$ is

$$
\mathbf{r}(t)=<t, t, 1+t>
$$

(2) Find the directional derivative of $f(x, y)=e^{x} \sin y$ at $P(0, \pi / 4)$ in the direction of $\mathbf{a}=<1, \sqrt{3}\rangle$.
Solution: We know $D_{\mathbf{u}} f=\left.\nabla f\right|_{P} \cdot \mathbf{u}$.

$$
\begin{gathered}
\nabla f(x, y)=<e^{x} \sin y, e^{x} \cos y>\quad \nabla f(0, \pi / 4)=<\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}> \\
\mathbf{u}=\frac{\mathbf{a}}{|\mathbf{a}|}=<1 / 2, \frac{\sqrt{3}}{2}> \\
D_{\mathbf{u}} f=\left.\nabla f\right|_{P} \cdot \mathbf{u}=<\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}>\cdot<1 / 2, \frac{\sqrt{3}}{2}>=\frac{\sqrt{2}+\sqrt{6}}{4}
\end{gathered}
$$

(3) Find a unit vector in the direction in which $f(x, y, z)=x^{2} y z$ increases most rapidly at $P(1,-1,2)$.
Solution:

$$
\begin{gathered}
\nabla f(x, y, z)=<2 x y z, x^{2} z, x^{2} y>\left.\quad \nabla f\right|_{P}=<-4,2,-1> \\
|\nabla f|_{P} \mid=\sqrt{16+4+1}=\sqrt{21}
\end{gathered}
$$

The unit vector in the direction of max increase is $\mathbf{u}=\frac{1}{\sqrt{21}}<-4,2,-1>$
(4) The elevation of a mountain above sea level at (x, y) is $3000 e^{-\left(x^{2}+2 y^{2}\right) / 100}$ meters. The positive x -axis points east and the positive y -axis points north. A climber is directly above $(10,10)$. If the climber moves northwest, will she ascend or descend and at what slope?
Solution: Let $f(x, y)=3000 e^{-\left(x^{2}+2 y^{2}\right) / 100}$. We must look at the gradient of f to determine whether northwest is the ascend or descend.

$$
\begin{gathered}
\nabla f=<-60 x e^{-\left(x^{2}+2 y^{2}\right) / 100},-120 y e^{-\left(x^{2}+2 y^{2}\right) / 100}> \\
\left.\nabla f\right|_{(10,10)}=-600 e^{-3}<1,2> \\
\mathbf{u}=\frac{1}{\sqrt{2}}<-1,1> \\
1
\end{gathered}
$$

The vector \mathbf{u} points in the northwest direction which means the climber is ascending. The slope is given by

$$
D_{\mathbf{u}} f=\frac{-600 e^{-3}}{\sqrt{2}}<1,2>\cdot<-1,1>=\frac{-600 e^{-3}}{\sqrt{2}}(-1+2)=\frac{-600 e^{-3}}{\sqrt{2}} .
$$

