Worksheet \#23

(1) Find the equation of the tangent plane to the surface $z=2 e^{3 y} \cos (2 x)$ at $(\pi / 3,0,-1)$. Solution: We first need to compute $\mathbf{n}=<-f_{x}(\pi / 3,0),-f_{y}(\pi / 3,0), 1>$.

$$
\begin{gathered}
f_{x}=-4 e^{3 y} \sin (2 x) \quad f_{x}(\pi / 3,0)=-2 \sqrt{3} \\
f_{y}=6 e^{3 y} \cos (2 x) \quad f_{x}(\pi / 3,0)=-3
\end{gathered}
$$

The plane is given by

$$
<2 \sqrt{3}, 3,1>\cdot<x-\pi / 3, y, z+1>=0
$$

Expanded, the equation is

$$
z=-1-2 \sqrt{3}(x-\pi / 3)-3 y .
$$

(2) Find all points on the surface $z=x^{2}-2 x y-y^{2}-8 x+4 y$, where the tangent plane is horizontal.
Solution: The tanget plane being horizontal implies $\left.\mathbf{n}=<-f_{x},-f_{y}, 1\right\rangle=\langle 0,0,1\rangle$. This means that $f_{x}=0$ and $f_{y}=0$. Creating these equations,

$$
f_{x}=2 x-2 y-8=0 \quad f_{y}=-2 x-2 y+4=0
$$

Adding these two equations, we find $y=1$. Plugging this into the either other equation, $x=5$. So there is only one point $(5,1,-22)$.
(3) Use the total differential $d z$ to approximate the change in z as (x, y) moves from P to Q where $z=\ln \left(x^{2} y\right)$ where $P(-2,4)$ and $Q(-1.98,3.96)$.
Solution: $d x=0.02$ and $d y=-0.04$. Computing the differential, we find

$$
d z=z_{x} d x+z_{y} d y=\frac{2 x y}{x^{2} y} d x+\frac{x^{2}}{x^{2} y} d y=\frac{2}{x} d x+\frac{1}{y} d y=-0.03 .
$$

(4) In determining the specific gravity of an object, its weight in air is found to be $A=36 \mathrm{lbs}$ and its weight in water is $W=20 \mathrm{lbs}$, with a possible error in each measurement of 0.02 lb. Approximate the error in calculating the specific gravity S, where $S=A /(A-W)$.

Solution:

$$
\begin{aligned}
d S & =S_{A} d A+S_{W} d W \\
& =\left(-\frac{A}{(A-W)^{2}}+\frac{1}{A-W}\right) d A+\frac{A}{(A-W)^{2}} d W \\
& =\left(\frac{-36}{16^{2}}+\frac{1}{16}\right) 0.002+\frac{36}{16^{2}}(0.02) \\
& =\frac{0.02}{16}
\end{aligned}
$$

