(1) Find the limit if it exist

- $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}$

Solution: If we let $y=x$ then,

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}=\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}}{2 x^{2}}=\frac{1}{2}
$$

If we let $x=0$ then,

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}=0
$$

Since we get two different values, the limit does not exist.

- $\lim _{(x, y) \rightarrow(0,0)} \frac{\sin \left(x^{2}+y^{2}\right)}{3 x^{2}+3 y^{2}}$

Solution: We use the Mclaurin series for $\sin (w)$.

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{\sin \left(x^{2}+y^{2}\right)}{3 x^{2}+3 y^{2}}=\frac{1}{3} \frac{x^{2}+y^{2}+\left(x^{2}+y^{2}\right)^{3} / 3!+\cdots}{x^{2}+y^{2}}=\frac{1}{3}
$$

- $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+y^{2}}{x^{4}-y^{4}}$

Solution: We can rewrite the function

$$
\frac{x^{2}+y^{2}}{x^{4}-y^{4}}=\frac{x^{2}+y^{2}}{\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)}=\frac{1}{\left(x^{2}-y^{2}\right)}
$$

If we take the limit along $(x, 0)$, we get

$$
\lim _{x \rightarrow 0} \frac{1}{x^{2}} \rightarrow \infty
$$

Now taking the limit along $(0, y)$, we get

$$
\lim _{y \rightarrow 0} \frac{1}{-y^{2}} \rightarrow-\infty
$$

The two limits do not match, thus the limit does not exist.
(2) Determine the largest set where the function is continuous.

- $f(x, y)=\left(4-x^{2}-y^{2}\right)^{-1 / 2}$

Solution: $\left\{(x, y): 4>x^{2}+y^{2}\right\}$ This corresponds to the interior of a circle centered at the orgin with radius 2 .

- $f(x, y)=\ln \left(1-x^{2}-y^{2}\right)$

Solution: $\left\{(x, y): 1>x^{2}+y^{2}\right\}$ This corresponds to the interior of a circle centered at the orgin with radius 1 .

- $f(x, y)=\frac{x^{3}+x y-5}{x^{2}+y^{2}+1}$

Solution: This is continuous for all (x, y) in \mathbf{R}^{2}.

