Worksheet \#18

(1) Find a parametric equation for the line through $(1,-2,3)$ and $(4,5,6)$.

Solution: $\mathbf{v}=<4-1,5+2,6-3>=<3,7,3>$. So the line is given by $x=1+3 t$, $y=-2+7 t$ and $z=3+3 t$.
(2) Write both the parametric equations and the symmetric equations for the line through the point $(1,1,1)$ parallel to the vector $\langle-10,-100,-1000\rangle$.
Solution: The parametric equation of the line is

$$
(x, y, z)=(1-10 t, 1-100 t, 1-1000 t) .
$$

The symmetric equation of the line is

$$
\frac{x-1}{-10}=\frac{y-1}{-100}=\frac{z-1}{-1000} .
$$

(3) Show that the lines

$$
\frac{x-1}{-4}=\frac{y-2}{3}=\frac{z-4}{-2}
$$

and

$$
\frac{x-2}{-1}=\frac{y-1}{1}=\frac{z+2}{6}
$$

intersect and find the equation of the plane they determine.
Solution: The parametric equation of the first line is

$$
\begin{aligned}
& x=1-4 t \\
& y=2+3 t \\
& z=4-2 t
\end{aligned}
$$

The parametric equation of the second line is

$$
\begin{aligned}
& x=2-s \\
& y=1+s \\
& z=-2+6 s
\end{aligned}
$$

Setting the x and y equations equal to each other, we get two equations with two unknowns.

$$
\begin{aligned}
& 1-4 t=2-s \\
& 2+3 t=1+s
\end{aligned}
$$

Solving we find $t=0$ and $s=1$. Pluging $t=0$ in to the first line, we find the intersect is $(x, y, z)=(1,2,4)$.

The direction vector for the first line is $\left.\mathbf{v}_{1}=<-4,3,-2\right\rangle$. The direction vector for the second line is $\mathbf{v}_{2}=\langle-1,1,6\rangle$. We need to find a vector normal to the plane determined by the two lines. It is

$$
\mathbf{n}=\mathbf{v}_{1} \times \mathbf{v}_{2}=\left[\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-4 & 3 & -2 \\
-1 & 1 & 6
\end{array}\right]=20 \mathbf{i}+26 \mathbf{j}-\mathbf{k}
$$

The plane determined by the two lines is

$$
\mathbf{n} \cdot<x-1, y-2, z-4>=20(x-1)+26(y-2)-(z-4)=0 .
$$

(4) Let $3 x-2 y+z=1$ and $2 x+y-3 z=3$ be two planes. Find the parametric equation for the line of intersection of the planes. Also find the angle between the two planes. Solution: First, we need to determine a point on the line of intersection. We choose to find the] point where both lines intersect the $x y$-plane. Setting $z=0$ and solving for x and y, we find the point $(1,1,0)$.

Next, we need to determine the direction. For the first plane, $\mathbf{n}_{1}=<3,-2,1>$. For the second plane, $\mathbf{n}_{2}=<2,1,-3>$. The direction is given by

$$
\mathbf{v}=\mathbf{n}_{1} \times \mathbf{n}_{2}=\left[\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
3 & -2 & 1 \\
2 & 1 & -3
\end{array}\right]=<5,11,7>
$$

Thus the line is given by

$$
(x, y, z)=(1+5 t, 1+11 t, 7 t)
$$

for $-\infty<t<\infty$.
To find the angle between the two planes, we know

$$
\cos \theta=\frac{\mathbf{n}_{1} \cdot \mathbf{n}_{2}}{\left|\mathbf{n}_{1}\right|\left|\mathbf{n}_{2}\right|}=\frac{1}{14}
$$

Solving for θ, we find the angle between the two planes to be $\arccos (1 / 14)$.

