Worksheet \#17

(1) Let $\mathbf{a}=-3 \mathbf{i}+2 \mathbf{j}-2 \mathbf{k}, \mathbf{b}=-\mathbf{i}+2 \mathbf{j}-4 \mathbf{k}$, and $\mathbf{c}=7 \mathbf{i}+3 \mathbf{j}-4 \mathbf{k}$

- $\mathbf{a} \times \mathbf{b}$

Solution:

$$
\mathbf{a} \times \mathbf{b}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-3 & 2 & -2 \\
-1 & 2 & -4
\end{array}\right|=<-4,-10,-4>
$$

- $\mathbf{a} \times(\mathbf{b}+\mathbf{c})$

Solution:

$$
\mathbf{a} \times(\mathbf{b}+\mathbf{c})=\mathbf{a} \times\langle 6,5,-8\rangle=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-3 & 2 & -2 \\
6 & 5 & -8
\end{array}\right|=\langle-6,-36,-27\rangle
$$

- $\mathbf{a} \cdot(\mathrm{b}+\mathrm{c})$

Solution:

$$
\mathbf{a} \cdot(\mathbf{b}+\mathbf{c})=\mathbf{a} \cdot<6,5,-8>=8
$$

(2) Find $|\mathbf{u} \times \mathbf{v}|$ and determine whether $\mathbf{u} \times \mathbf{v}$ is directed into the page or out of the page.

Solution:

$$
|\mathbf{u} \times \mathbf{v}|=|\mathbf{u}||\mathbf{v}| \sin \theta=4(5) \sin (\pi / 4)=10 \sqrt{2}
$$

The vector $\mathbf{u} \times \mathbf{v}$ points out of the page.
(3) Let $P(-1,3,1), Q(0,5,2)$, and $R(4,3,-1)$. Find a nonzero vector orthogonal to the plane through the points P, Q, and R.
Solution:
$\overrightarrow{P Q}=<1,2,1>$ and $\overrightarrow{P R}=<5,0,-2>$.

$$
\overrightarrow{P Q} \times \overrightarrow{P R}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 2 & 1 \\
5 & 0 & -2
\end{array}\right|=-4 \mathbf{i}+7 \mathbf{j}-10 \mathbf{k}
$$

(4) Let $P(-1,3,1), Q(0,5,2)$, and $R(4,3,-1)$. Find the area of the triangle $P Q R$.

Solution:
$A(P Q R)=1 / 2|\overrightarrow{P Q} \times \overrightarrow{P R}|=1 / 2 \sqrt{16+49+100}=\frac{\sqrt{165}}{2}$.
(5) Use the scalar triple product to determine whether the points $A(1,3,2), B(3,-1,6)$, $C(5,2,0)$, and $D(3,6,-4)$ lie in the same plane.
Solution:
$\overrightarrow{A B}=<2,-4,4>, \overrightarrow{A C}=<4,-1,-2>$, and $\overrightarrow{A D}=<2,3,-6>$. The volume is given by the triple product.

$$
\overrightarrow{A B} \cdot(\overrightarrow{A C} \times \overrightarrow{A D})=\left|\begin{array}{ccc}
2 & -4 & 4 \\
4 & -1 & -2 \\
2 & 3 & -6
\end{array}\right|=2(12)-4(20)+4(14)>0
$$

Thus the points are not coplanar.

